1
|
Srivastava S, Krivokhizhina T, Keith R, Bhatnagar A, Srivastava S, Xie Z, Lorkiewicz P. High-throughput UPLC-ESI/MSMS method for simultaneous measurement of the urinary metabolites of volatile organic compounds and tobacco alkaloids. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124463. [PMID: 39826161 PMCID: PMC11929525 DOI: 10.1016/j.jchromb.2025.124463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Human exposure to volatile organic compounds (VOCs) poses significant health risks, contributing to cardiovascular disease, pulmonary disease, and cancer. Measurement of VOC metabolites (VOCm) in urine by liquid chromatography-mass spectrometry (LC-MS) is a preferred method for VOCm analysis; however, existing methods encounter challenges related to sensitivity, throughput, and analyte coverage. In addition to VOCm, the measurement of tobacco alkaloids (TAm) is critical to account for tobacco use in population-based studies. A method is needed that is highly sensitive, offers higher throughput, and can analyze VOCm and TAm in a single run. Herein, we present a robust dilute-and-shoot method aimed at overcoming these analytical challenges and expanding the targeted analysis to include 35 urinary VOCm and TAm and their metabolites. By leveraging high-speed polarity switching and optimized chromatographic parameters, our method achieved comprehensive analyte coverage and enhanced sensitivity, enabling reliable individual level VOC exposure assessment. Validation demonstrates robust linearity, sensitivity, accuracy, and precision, with minimal matrix effects. This high-throughput UPLC-MS/MS method significantly enhances VOC exposure assessment by enabling simultaneous measurement of 35 urinary VOC and TAm with high sensitivity and efficiency. Multiple metabolites from single parent xenobiotics are included in one run, expanding biomarker specificity. Our data indicate the method effectively accounts for tobacco consumption as a confounder in population-based studies, ensuring accurate VOC exposure assessment.
Collapse
Affiliation(s)
- Shweta Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Tatiana Krivokhizhina
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Rachel Keith
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Aruni Bhatnagar
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Sanjay Srivastava
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Zhengzhi Xie
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| | - Pawel Lorkiewicz
- Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY 40202, United States; Superfund Research Center, University of Louisville, Louisville, KY 40202, United States; Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY 40202, United States.
| |
Collapse
|
2
|
Monien BH, Bergau N, Gauch F, Weikert C, Abraham K. Internal exposure to heat-induced food contaminants in omnivores, vegans and strict raw food eaters: biomarkers of exposure to acrylamide (hemoglobin adducts, urinary mercapturic acids) and new insights on its endogenous formation. Arch Toxicol 2024; 98:2889-2905. [PMID: 38819476 PMCID: PMC11324683 DOI: 10.1007/s00204-024-03798-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
The urinary mercapturic acids N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA) are short-term biomarkers of exposure from acrylamide and its metabolite glycidamide, respectively. The medium-term exposure to acrylamide and glycidamide is monitored by the adducts N-(2-carbamoylethyl)-Val (AA-Val) and N-(2-carbamoyl-2-hydroxyethyl)-Val (GA-Val) in hemoglobin (Hb), respectively. Three questions were addressed by application of these biomarkers in two diet studies including 36 omnivores, 36 vegans and 16 strict raw food eaters (abstaining from any warmed or heated food for at least four months): first, what is the internal acrylamide exposure following a vegan or a raw food diet in comparison to that in omnivores? Second, did the exposure change between 2017 and 2021? And third, what is the stability over time of AAMA/GAMA excretion compared to that of AA-Val/GA-Val levels in Hb between both time points? Median urinary AAMA excretion per day in non-smoking omnivores, vegans and raw food eaters were 62.4, 85.4 and 15.4 µg/day, respectively; the corresponding median AA-Val levels were 27.7, 39.7 and 13.3 pmol/g Hb, respectively. Median levels in strict raw food eaters were about 25% (AAMA excretion) and 48% (AA-Val) of those in omnivores. In comparison to 2017, AAMA and GAMA excretion levels were hardly altered in 2021, however, levels of AA-Val and GA-Val in 2021 slightly increased. There was a weak correlation between AAMA excretion levels determined four years apart (rS = 0.30), and a moderate correlation between levels of AA-Val (rS = 0.55) in this timeframe. Our data in strict raw food eaters confirm a significant endogenous formation to acrylamide in a size range, which is-based on the levels of AA-Val-distinctly higher than reported previously based on levels of urinary AAMA excretion. The relatively lower AAMA excretion in raw food eaters likely represents a lower extent of glutathione conjugation due to missing hepatic first-pass metabolism in case of endogenous formation of acrylamide, which leads to a higher systemic exposure.
Collapse
Affiliation(s)
- Bernhard H Monien
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany.
| | - Nick Bergau
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Fabian Gauch
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Cornelia Weikert
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| | - Klaus Abraham
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589, Berlin, Germany
| |
Collapse
|
3
|
Moghadasi A, Yousefinejad S, Soleimani E. False positives and false negatives in benzene biological monitoring. ENVIRONMENTAL RESEARCH 2024; 243:117836. [PMID: 38065394 DOI: 10.1016/j.envres.2023.117836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 02/06/2024]
Abstract
Benzene is a commonly used industrial chemical that is a significant environmental pollutant. Occupational health specialists and industrial toxicologists are concerned with determining the exact amount of exposure to chemicals in the workplace. There are two main approaches to assess chemical exposure; air monitoring and biological monitoring. Air monitoring has limitations, which biological monitoring overcomes and could be used as a supplement to it. However, there are several factors that influence biological monitoring results. It would be possible to assess exposure more accurately if these factors were taken into account. This study aimed to review published papers for recognizing and discussing parameters that could affect benzene biological monitoring. Two types of effects can be distinguished: positive and negative effects. Factors causing positive effects will increase the metabolite concentration in urine more than expected. Furthermore, the parameters that decrease the urinary metabolite level were referred to as false negatives. From the papers, sixteen influential factors were extracted that might affect benzene biological monitoring results. Identified factors were clarified in terms of their nature and mechanism of action. It is also important to note that some factors influence the quantity and quality of the influence of other factors. As a result of this study, a decision-making protocol was developed for interpreting the final results of benzene biological monitoring.
Collapse
Affiliation(s)
- Abolfazl Moghadasi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Yousefinejad
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Esmaeel Soleimani
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Nieschalke K, Bergau N, Jessel S, Seidel A, Baldermann S, Schreiner M, Abraham K, Lampen A, Monien BH, Kleuser B, Glatt H, Schumacher F. Urinary Excretion of Mercapturic Acids of the Rodent Carcinogen Methyleugenol after a Single Meal of Basil Pesto: A Controlled Exposure Study in Humans. Chem Res Toxicol 2023; 36:1753-1767. [PMID: 37875262 PMCID: PMC10664145 DOI: 10.1021/acs.chemrestox.3c00212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 10/26/2023]
Abstract
Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3'-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3'-MEMA), and developed methods for its extraction and LC-MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3'-MEMA as an internal standard for LC-MS/MS quantification, we were able to detect E-3'-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1'-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1'-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species.
Collapse
Affiliation(s)
- Kai Nieschalke
- Department
of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Nick Bergau
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Sönke Jessel
- Biochemical
Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation, 22927 Grosshansdorf, Germany
| | - Albrecht Seidel
- Biochemical
Institute for Environmental Carcinogens, Prof. Dr. Gernot Grimmer-Foundation, 22927 Grosshansdorf, Germany
| | - Susanne Baldermann
- Department
Plant Quality and Food Security, Leibniz
Institute of Vegetable and Ornamental Crops (IGZ), 14979 Grossbeeren, Germany
- Faculty of
Life Sciences: Food, Nutrition & Health, University of Bayreuth, 95326 Kulmbach, Germany
| | - Monika Schreiner
- Department
Plant Quality and Food Security, Leibniz
Institute of Vegetable and Ornamental Crops (IGZ), 14979 Grossbeeren, Germany
| | - Klaus Abraham
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Alfonso Lampen
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Bernhard H. Monien
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Burkhard Kleuser
- Department
of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department
of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hansruedi Glatt
- Department
of Food Safety, German Federal Institute
for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Fabian Schumacher
- Department
of Nutritional Toxicology, Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department
of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
5
|
Zhao FF, Wang XL, Lei YT, Li HQ, Li ZM, Hao XX, Ma WW, Wu YH, Wang SY. A systematic review: on the mercaptoacid metabolites of acrylamide, N-acetyl-S-(2-carbamoylethyl)-L-cysteine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88350-88365. [PMID: 37458885 DOI: 10.1007/s11356-023-28714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 07/06/2023] [Indexed: 08/11/2023]
Abstract
Acrylamide is widely found in a variety of fried foods and cigarettes and is not only neurotoxic and carcinogenic, but also has many potential toxic effects. The current assessment of acrylamide intake through dietary questionnaires is confounded by a variety of factors, which poses limitations to safety assessment. In this review, we focus on the levels of AAMA, the urinary metabolite of acrylamide in humans, and its association with other diseases, and discuss the current research gaps in AAMA and the future needs. We reviewed a total of 25 studies from eight countries. In the general population, urinary AAMA levels were higher in smokers than in non-smokers, and higher in children than in adults; the highest levels of AAMA were found in the population from Spain, compared with the general population from other countries. In addition, AAMA is associated with several diseases, especially cardiovascular system diseases. Therefore, AAMA, as a biomarker of internal human exposure, can reflect acrylamide intake in the short term, which is of great significance for tracing acrylamide-containing foods and setting the allowable intake of acrylamide in foods.
Collapse
Affiliation(s)
- Fang-Fang Zhao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Li Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Ya-Ting Lei
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Hong-Qiu Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Zhi-Ming Li
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Xiao-Xiao Hao
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Wei-Wei Ma
- Harbin Railway Center for Disease Control and Prevention, Harbin, People's Republic of China
| | - Yong-Hui Wu
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China
| | - Sheng-Yuan Wang
- Department of Occupational Health, Public Health College, Harbin Medical University, 157 Baojian Road, Nan gang District, Harbin, 150086, People's Republic of China.
| |
Collapse
|
6
|
Naved MM, Wathore R, Kumbhare H, Gupta A, Labhasetwar N. Community kitchen tandoors (CKT)-a potential candidate for air pollution mitigation strategies? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56317-56329. [PMID: 36917380 DOI: 10.1007/s11356-023-26176-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Community kitchen tandoor (CKT) is a clay-based hollow cylindrical device commonly used in South Asian and Middle Eastern countries for baking flatbreads and cooking meat. These CKTs, generally fuelled by charcoal or wood, contribute significantly to the pollution loads in ambient air along with occupational exposure hazards. CKTs, being a part of the informal sector, lack emissions and safety guidelines. This study surveys 139 restaurants in CKT hotspots of New Delhi, India, to understand tandoor design and operational parameters and to assess PM2.5 and CO exposure concentrations at representative field restaurants. PM2.5 and CO exposure concentrations from traditional CKT was found to be several-folds higher than safe indoor air quality levels. Further, the traditional CKT was evaluated for different improved fuels (like briquettes and pellets) in the laboratory for PM2.5 and CO microenvironment concentrations. It was found that the fuel improvements in traditional CKT could not improve microenvironment concentrations to the desired levels; hence, an automated pellet-fed forced-draft improved tandoor with an improved combustion chamber design is demonstrated. The results of the laboratory trial of improved tandoor were compared with traditional tandoor (using pellets) and have shown 84% and 94% reductions in PM2.5 and CO concentrations, respectively, indicating significant benefits to the environment and health. We recommend implementing such improved CKT, on a large scale, combined with other identified control options, as a potential candidate under air pollution mitigation strategies in cities' action plans under National Clean Air Programme (NCAP).
Collapse
Affiliation(s)
- Mohd Mubashshir Naved
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Roshan Wathore
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Himanshu Kumbhare
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
| | - Ankit Gupta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
- CSIR-National Environmental Engineering Research Institute, Delhi Zonal Centre, Naraina, New Delhi, 110028, India.
| | - Nitin Labhasetwar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
7
|
Roser M, Béal D, Eldin C, Gudimard L, Caffin F, Gros-Désormeaux F, Léonço D, Fenaille F, Junot C, Piérard C, Douki T. Glutathione conjugates of the mercapturic acid pathway and guanine adduct as biomarkers of exposure to CEES, a sulfur mustard analog. Anal Bioanal Chem 2021; 413:1337-1351. [PMID: 33410976 DOI: 10.1007/s00216-020-03096-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organisation for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) approach to the conjugate of CEES to glutathione and two of its metabolites: the cysteine and the N-acetylcysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid-phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetylcysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similar to SM, the results are promising for application to this toxic of interest.
Collapse
Affiliation(s)
- Marie Roser
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - David Béal
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Camille Eldin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Leslie Gudimard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Fanny Caffin
- Institut de Recherche Biomédicale des Armées (IRBA), 91223, Brétigny-sur-Orge, France
| | - Fanny Gros-Désormeaux
- Institut de Recherche Biomédicale des Armées (IRBA), 91223, Brétigny-sur-Orge, France
| | - Daniel Léonço
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Christophe Piérard
- Institut de Recherche Biomédicale des Armées (IRBA), 91223, Brétigny-sur-Orge, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France.
| |
Collapse
|
8
|
Chen X, Jia W, Wang Q, Han J, Cheng J, Zeng W, Zhao Q, Zhang Y, Zhang Y. Protective effect of a dietary flavonoid-rich antioxidant from bamboo leaves against internal exposure to acrylamide and glycidamide in humans. Food Funct 2020; 11:7000-7011. [PMID: 32812964 DOI: 10.1039/d0fo00811g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyphenolic antioxidants may effectively reduce acrylamide contents in processed foods. However, few studies focused on their detoxification effects via estimating the profile change of internal exposure biomarkers. Here we showed the protective effect of a water-soluble flavone-C-glycoside-rich antioxidant from bamboo leaves (AOB-w) against acrylamide-induced toxicity in college students. The participants were randomly assigned to either the AOB-w or control group and served potato chips, corresponding to 12.6 μg per kg·bw of dietary exposure to acrylamide, followed by capsules containing 350 mg AOB-w or equivalent placebo. The kinetics of acrylamide, glycidamide, and mercapturic acid metabolites was profiled, and their hemoglobin adducts were measured. The toxicokinetic study showed that AOB-w promoted the excretion of acrylamide and shortened the distribution but prolonged the excretion of N-acetyl-S-(2-carbamoylethyl)-l-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-l-cysteine. The intervention with AOB-w reduced the peak concentration and area under curve of AAMA by 42.1% and 49.8%, respectively. Besides, AOB-w gender-dependently altered the toxicokinetic profile and reduced the amount of a human-specific urinary biomarker, N-acetyl-S-(2-carbamoylethyl)-l-cysteine-sulfoxide in women. AOB-w accelerated the metabolism of hemoglobin adducts of acrylamide and glycidamide in blood of women. Compared with the baseline levels on the beginning day, we observed a significant enhancement of hemoglobin adducts on the 10th day after serving them potato chips, showing 54.5% and 20.9% higher levels of the hemoglobin adducts of acrylamide and glycidamide, respectively, which thus indicated a lower level of glycidamide-to-acrylamide ratio in blood of participants. Overall AOB-w could effectively reduce the internal exposure to acrylamide in college students, which provides advanced insights into protective functions of natural antioxidants against in vivo toxicity of chemical contaminants from diet.
Collapse
Affiliation(s)
- Xinyu Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Frigerio G, Mercadante R, Campo L, Polledri E, Boniardi L, Olgiati L, Missineo P, Fustinoni S. Urinary biomonitoring of subjects with different smoking habits. Part I: Profiling mercapturic acids. Toxicol Lett 2020; 327:48-57. [PMID: 32278717 DOI: 10.1016/j.toxlet.2020.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND While tobacco smoke contains thousands of chemicals, some of which are carcinogenic to humans, the content of electronic cigarette smoke is less known. This work aimed to assess and compare the exposure associated with different smoking habits by profiling urinary mercapturic acids as biomarkers of toxic compounds. METHODS In this pilot study, sixty-seven healthy adults with different smoking habits were investigated: 38 non-smokers (NS), 7 electronic cigarette users (ECU), and 22 traditional tobacco smokers (TTS). Seventeen urinary mercapturic acids, metabolites of 1,3-butadiene (DHBMA, MHBMA), 4-chloronitrobenze (NANPC), acrolein (3-HPMA), acrylamide (AAMA, GAMA), acrylonitrile (CEMA), benzene (SPMA), crotonaldehyde (CMEMA, HMPMA), ethylating agents (EMA), methylating agents (MMA), ethylene oxide (HEMA), N,N-dimethylformamide (AMCC), propylene oxide (2-HPMA), styrene (PHEMA), and toluene (SBMA), were quantified, along with urinary nicotine and cotinine. RESULTS Median urinary cotinine was 0.4, 1530 and 1772 μg/L in NS, ECU and TTS, respectively. Most mercapturic acids were 2-165 fold-higher in TTS compared to NS, with CEMA, MHBMA, 3-HPMA and SPMA showing the most relevant increases. Furthermore, some mercapturic acids were higher in ECU than NS; CEMA and 3-HPMA, in particular, showed significant increases and were 1.8 and 4.9 fold-higher, respectively. CONCLUSIONS This study confirms that tobacco smoking is a major source of carcinogenic chemicals such as benzene and 1,3-butadiene; electronic cigarette use is a minor source, mostly associated with exposure to chemicals with less carcinogenic potential such as acrylonitrile and acrolein.
Collapse
Affiliation(s)
- Gianfranco Frigerio
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Rosa Mercadante
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Laura Campo
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Polledri
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Luca Boniardi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Luca Olgiati
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Pasquale Missineo
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy; Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
10
|
Chen M, Carmella SG, Li Y, Zhao Y, Hecht SS. Resolution and Quantitation of Mercapturic Acids Derived from Crotonaldehyde, Methacrolein, and Methyl Vinyl Ketone in the Urine of Smokers and Nonsmokers. Chem Res Toxicol 2020; 33:669-677. [PMID: 31957442 PMCID: PMC7193944 DOI: 10.1021/acs.chemrestox.9b00491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Using improved HPLC analysis conditions, we report the separation of three isomers of mercapturic acid conjugates previously assigned in the literature only to 3-hydroxy-1-methylpropylmercapturic acid (HMPMA-1), a human urinary metabolite of crotonaldehyde. The new conditions, employing a biphenyl column cooled to 5 °C and eluted with a gradient of formic acid, acetonitrile, and methanol, allow the analysis of human urinary mercapturic acids derived not only from crotonaldehyde but also from its isomers methacrolein (3-hydroxy-2-methylpropyl mercapturic acid, HMPMA-2) and methyl vinyl ketone (3-hydroxy-3-methylpropyl mercapturic acid, HMPMA-3). The mercapturic acids were detected and quantified by LC-ESI-MS/MS using the corresponding stable isotope labeled mercapturic acids as internal standards. The analysis was validated for accuracy and precision and applied to urine samples collected from cigarette smokers and nonsmokers. Smokers had significantly higher levels of all three mercapturic acids than did nonsmokers. The results demonstrated that HMPMA-3 from methyl vinyl ketone comprised the major portion of the peaks previously ascribed in multiple studies to HMPMA-1. HMPMA-1 had concentrations intermediate between those of HMPMA-2 and HMPMA-3 in both smokers and nonsmokers. This study reports the first quantitation of HMPMA-2 and HMPMA-3 in human urine. The observation of higher levels of HMPMA-3 than in the other two mercapturic acids suggests a previously unrecognized potential significance of methyl vinyl ketone as a toxicant in smokers and nonsmokers.
Collapse
Affiliation(s)
- Menglan Chen
- Masonic Cancer Center, University of Minnesota, 2231 6 St. SE, Minneapolis, MN 55455, USA
| | - Steven G. Carmella
- Masonic Cancer Center, University of Minnesota, 2231 6 St. SE, Minneapolis, MN 55455, USA
| | - Yupeng Li
- Masonic Cancer Center, University of Minnesota, 2231 6 St. SE, Minneapolis, MN 55455, USA
| | - Yingchun Zhao
- Masonic Cancer Center, University of Minnesota, 2231 6 St. SE, Minneapolis, MN 55455, USA
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, 2231 6 St. SE, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
12
|
Frigerio G, Mercadante R, Polledri E, Missineo P, Campo L, Fustinoni S. An LC-MS/MS method to profile urinary mercapturic acids, metabolites of electrophilic intermediates of occupational and environmental toxicants. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1117:66-76. [DOI: 10.1016/j.jchromb.2019.04.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/08/2019] [Accepted: 04/04/2019] [Indexed: 11/24/2022]
|
13
|
The mercapturomic profile of health and non-communicable diseases. High Throughput 2019; 8:ht8020010. [PMID: 31018482 PMCID: PMC6630208 DOI: 10.3390/ht8020010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 12/17/2022] Open
Abstract
The mercapturate pathway is a unique metabolic circuitry that detoxifies electrophiles upon adducts formation with glutathione. Since its discovery over a century ago, most of the knowledge on the mercapturate pathway has been provided from biomonitoring studies on environmental exposure to toxicants. However, the mercapturate pathway-related metabolites that is formed in humans—the mercapturomic profile—in health and disease is yet to be established. In this paper, we put forward the hypothesis that these metabolites are key pathophysiologic factors behind the onset and development of non-communicable chronic inflammatory diseases. This review goes from the evidence in the formation of endogenous metabolites undergoing the mercapturate pathway to the methodologies for their assessment and their association with cancer and respiratory, neurologic and cardiometabolic diseases.
Collapse
|
14
|
Marinho AT, Miranda JP, Caixas U, Charneira C, Gonçalves-Dias C, Marques MM, Monteiro EC, Antunes AMM, Pereira SA. Singularities of nevirapine metabolism: from sex-dependent differences to idiosyncratic toxicity. Drug Metab Rev 2019; 51:76-90. [PMID: 30712401 DOI: 10.1080/03602532.2019.1577891] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nevirapine (NVP) is a first-generation non-nucleoside reverse transcriptase inhibitor widely used for the treatment and prophylaxis of human immunodeficiency virus infection. The drug is taken throughout the patient's life and, due to the availability of an extended-release formulation, it is administered once daily. This antiretroviral is one of the scarce examples of drugs with prescription criteria based on sex, in order to prevent adverse reactions. The therapy with NVP has been associated with potentially life-threatening liver and idiosyncratic skin toxicity. Multiple evidence has emerged regarding the formation of electrophilic NVP metabolites as crucial for adverse idiosyncratic reactions. The formation of reactive metabolites that yield covalent adducts with proteins has been demonstrated in patients under NVP-based treatment. Interestingly, several pharmacogenetic- and sex-related factors associated with NVP toxicity can be mechanistically explained by an imbalance toward increased formation of NVP-derived reactive metabolites and/or impaired detoxification capability. Moreover, the haptenation of self-proteins by these reactive species provides a plausible link between NVP bioactivation and immunotoxicity, further supporting the relevance of this toxicokinetics hypothesis. In the current paper, we review the existing knowledge and recent developments on NVP metabolism and their relation to NVP toxicity.
Collapse
Affiliation(s)
- Aline T Marinho
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Joana P Miranda
- b Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy , Universidade de Lisboa , Lisboa , Portugal
| | - Umbelina Caixas
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal.,c Centro Hospitalar de Lisboa Central (CHLC) , Lisboa , Portugal
| | - Catarina Charneira
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Clara Gonçalves-Dias
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - M Matilde Marques
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Emília C Monteiro
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Alexandra M M Antunes
- d Centro de Química Estrutural (CQE) , Instituto Superior Técnico, ULisboa , Lisboa , Portugal
| | - Sofia A Pereira
- a CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| |
Collapse
|
15
|
Stack DE, Conrad JA, Mahmud B. Structural Identification and Kinetic Analysis of the in Vitro Products Formed by Reaction of Bisphenol A-3,4-quinone with N-Acetylcysteine and Glutathione. Chem Res Toxicol 2018; 31:81-87. [DOI: 10.1021/acs.chemrestox.7b00239] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Douglas E. Stack
- Department of Chemistry, University of Nebraska at Omaha, 6001 Dodge Street, Durham Science Center, Omaha, Nebraska 68182, United States
| | - John A. Conrad
- Department of Chemistry, University of Nebraska at Omaha, 6001 Dodge Street, Durham Science Center, Omaha, Nebraska 68182, United States
| | - Bejan Mahmud
- Department of Chemistry, University of Nebraska at Omaha, 6001 Dodge Street, Durham Science Center, Omaha, Nebraska 68182, United States
| |
Collapse
|
16
|
Deol R, Josephy PD. Acetylation of aromatic cysteine conjugates by recombinant human N-acetyltransferase 8. Xenobiotica 2016; 47:202-207. [DOI: 10.1080/00498254.2016.1178410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Reema Deol
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - P. David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|