1
|
Serezani CH, Divangahi M, Peters-Golden M. Leukotrienes in Innate Immunity: Still Underappreciated after All These Years? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:221-227. [PMID: 36649580 PMCID: PMC11749155 DOI: 10.4049/jimmunol.2200599] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
Leukotrienes (LTs) are lipid mediators derived from the 5-lipoxygenase pathway of arachidonate metabolism. Though best known for their role in asthma, they have broad actions that touch on virtually every aspect of mammalian biology. In a Brief Review published in the journal in 2005, we presented the existing evidence supporting a role for LTs in host defense. In this updated Brief Review, we focus on selected advances since then. We detail new insights into mechanisms and regulation of LT biosynthesis; the protective roles of LTs in the host response to diverse classes of pathogens, with an emphasis on viruses, including SARS-CoV-2; the phagocyte signal transduction mechanisms by which LTs exert their antimicrobial actions; the capacity for overexuberant LT production to promote tissue damage; and roles of LTs in the noninfectious immune-relevant conditions neuroinflammation and cancer.
Collapse
Affiliation(s)
- C. Henrique Serezani
- Department of Medicine, Division of Infectious Diseases; Department of Pathology, Microbiology, and Immunology; and Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maziar Divangahi
- Departments of Medicine, Pathology, Microbiology & Immunology; Meakins-Christie Laboratories; and McGill International TB Centre, McGill University Health Centre, Montreal, Canada
| | - Marc Peters-Golden
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, and Graduate Program in Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Cytotoxic Activity and Lymphocyte Subtypes in Mice Selected for Maximal and Minimal Inflammatory Response after Transplantation of B16F10 and S91 Melanoma Cells. Int J Inflam 2022; 2022:3298542. [PMID: 35265317 PMCID: PMC8901355 DOI: 10.1155/2022/3298542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
AIRmax and AIRmin mice strains were selected according to the intensity of their acute inflammatory responsiveness. Previous studies have shown that AIR mice differ in their resistance to chemically induced skin tumors and in the development of melanoma metastases, in addition to differences in neutrophil and NK cells activity. In the present work, we aimed to evaluate whether the difference of susceptibility to murine melanoma is associated with NK cytotoxic activity against Yac.1 cells and lymphocyte subsets. Mice were subcutaneously inoculated with B16F10 or S91 melanoma cells. After 7, 14, or 30 days, the animals were euthanized to analyze the number of lymphocyte subsets, cytotoxic activity, and number of cytokine-producing spleen cells. AIRmax mice presented a higher number of CD4+/CD25+ cells than that of AIRmin mice following inoculation of B16F10 cells, whereas inoculation of S91 cells reduced CD4+/CD25+ and increased TCD8+ cell subsets in the AIRmax mice. AIRmax mice had a higher number of interleukin (IL)-10- and IL-12-producing cells and a lower number of interferon-γ–producing cells than those of AIRmin mice at 30 days. The cytotoxic activity of nonadherent spleen cells was similar in both the AIR strains. These results suggest that melanoma cells can induce different responses in AIR mice, possibly owing to alterations in regulatory mechanisms, such as the action of CD4+/CD25+ regulatory T cells and IL-10, in AIRmax mice.
Collapse
|
3
|
Song Z, Huang G, Chiquetto Paracatu L, Grimes D, Gu J, Luke CJ, Clemens RA, Dinauer MC. NADPH oxidase controls pulmonary neutrophil infiltration in the response to fungal cell walls by limiting LTB4. Blood 2020; 135:891-903. [PMID: 31951647 PMCID: PMC7082617 DOI: 10.1182/blood.2019003525] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Leukocyte reduced NADP (NADPH) oxidase plays a key role in host defense and immune regulation. Genetic defects in NADPH oxidase result in chronic granulomatous disease (CGD), characterized by recurrent bacterial and fungal infections and aberrant inflammation. Key drivers of hyperinflammation induced by fungal cell walls in CGD are still incompletely defined. In this study, we found that CGD (CYBB-) neutrophils produced higher amounts of leukotriene B4 (LTB4) in vitro after activation with zymosan or immune complexes, compared with wild-type (WT) neutrophils. This finding correlated with increased calcium influx in CGD neutrophils, which was restrained in WT neutrophils by the electrogenic activity of NADPH oxidase. Increased LTB4 generation by CGD neutrophils was also augmented by paracrine cross talk with the LTB4 receptor BLT1. CGD neutrophils formed more numerous and larger clusters in the presence of zymosan in vitro compared with WT cells, and the effect was also LTB4- and BLT1-dependent. In zymosan-induced lung inflammation, focal neutrophil infiltrates were increased in CGD compared with WT mice and associated with higher LTB4 levels. Inhibiting LTB4 synthesis or antagonizing the BLT1 receptor after zymosan challenge reduced lung neutrophil recruitment in CGD to WT levels. Thus, LTB4 was the major driver of excessive neutrophilic lung inflammation in CGD mice in the early response to fungal cell walls, likely by a dysregulated feed-forward loop involving amplified neutrophil production of LTB4. This study identifies neutrophil LTB4 generation as a target of NADPH oxidase regulation, which could potentially be exploited therapeutically to reduce excessive inflammation in CGD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mary C Dinauer
- Department of Pediatrics
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO
| |
Collapse
|
4
|
43 kDa Glycoprotein (gp43) from Paracoccidioides brasiliensis Induced IL-17A and PGE2 Production by Human Polymorphonuclear Neutrophils: Involvement of TLR2 and TLR4. J Immunol Res 2019; 2019:1790908. [PMID: 31886295 PMCID: PMC6899308 DOI: 10.1155/2019/1790908] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 11/17/2022] Open
Abstract
The glycoprotein gp43 is the major antigenic/diagnostic component of Paracoccidioides brasiliensis, one of the etiologic agents of paracoccidioidomycosis (PCM). Gp43 has protective roles in mice, but due to adhesive properties, this glycoprotein has also been associated with immune evasion mechanisms. The present study evaluated gp43 interaction in vitro with Toll-like receptors 2 and 4 (TLR2 and TLR4) present in polymorphonuclear neutrophils (PMNs) from healthy human individuals and the consequent modulation of the immune response through the expression and release of cytokines and eicosanoids. PMNs were incubated in the absence or presence of monoclonal antibodies anti-TLR2 and anti-TLR4 (individually or in combination) before gp43 stimulation. Then, PMNs were analyzed for the expression of both surface receptors and the detection of intracytoplasmic IL-17A and IL-4 using flow cytometry, while the production of PGE2, LTB4, IL-6, IL-10, IL-12, IFN-γ, and TNF-α was evaluated in the supernatants by enzyme-linked immunosorbent assay (ELISA). Our results showed that gp43 increased TLR2 and TLR4 expression by PMNs and induced PGE2 and IL-17A via TLR4 and TLR2, respectively. Thus, our data suggest that gp43 from P. brasiliensis might modulate host susceptibility to the fungal infection by affecting PGE2 and IL-17A production.
Collapse
|
5
|
Caffrey-Carr AK, Hilmer KM, Kowalski CH, Shepardson KM, Temple RM, Cramer RA, Obar JJ. Host-Derived Leukotriene B 4 Is Critical for Resistance against Invasive Pulmonary Aspergillosis. Front Immunol 2018; 8:1984. [PMID: 29375586 PMCID: PMC5768911 DOI: 10.3389/fimmu.2017.01984] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022] Open
Abstract
Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how immune competent hosts maintain control of fungal infections while constantly being exposed to fungi is rapidly emerging. It is known that timely neutrophil recruitment to and activation in the lungs is critical to the host defense against development of invasive pulmonary aspergillosis, but the inflammatory sequelae necessary remains to be fully defined. Here, we show that 5-Lipoxygenase (5-LO) and Leukotriene B4 (LTB4) are critical for leukocyte recruitment and resistance to pulmonary A. fumigatus challenge in a fungal-strain-dependent manner. 5-LO activity was needed in radiosensitive cells for an optimal anti-fungal response and in vivo LTB4 production was at least partially dependent on myeloid-derived hypoxia inducible factor-1α. Overall, this study reveals a role for host-derived leukotriene synthesis in innate immunity to A. fumigatus.
Collapse
Affiliation(s)
- Alayna K Caffrey-Carr
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kimberly M Hilmer
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Caitlin H Kowalski
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kelly M Shepardson
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Rachel M Temple
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Robert A Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Joshua J Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
6
|
Lipoxin Inhibits Fungal Uptake by Macrophages and Reduces the Severity of Acute Pulmonary Infection Caused by Paracoccidioides brasiliensis. Mediators Inflamm 2015; 2015:852574. [PMID: 26635449 PMCID: PMC4618125 DOI: 10.1155/2015/852574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/20/2015] [Indexed: 01/01/2023] Open
Abstract
Cysteinyl leukotrienes (CysLTs) and lipoxins (LXs) are lipid mediators that control inflammation, with the former inducing and the latter inhibiting this process. Because the role played by these mediators in paracoccidioidomycosis was not investigated, we aimed to characterize the role of CysLT in the pulmonary infection developed by resistant (A/J) and susceptible (B10.A) mice. 48 h after infection, elevated levels of pulmonary LTC4 and LXA4 were produced by both mouse strains, but higher levels were found in the lungs of susceptible mice. Blocking the CysLTs receptor by MTL reduced fungal loads in B10.A, but not in A/J mice. In susceptible mice, MLT treatment led to reduced influx of PMN leukocytes, increased recruitment of monocytes, predominant synthesis of anti-inflammatory cytokines, and augmented expression of 5- and 15-lipoxygenase mRNA, suggesting a prevalent LXA4 activity. In agreement, MTL-treated macrophages showed reduced fungal burdens associated with decreased ingestion of fungal cells. Furthermore, the addition of exogenous LX reduced, and the specific blockade of the LX receptor increased the fungal loads of B10.A macrophages. This study showed for the first time that inhibition of CysLTs signaling results in less severe pulmonary paracoccidioidomycosis that occurs in parallel with elevated LX activity and reduced infection of macrophages.
Collapse
|
7
|
Santos PC, Santos DA, Ribeiro LS, Fagundes CT, de Paula TP, Avila TV, Baltazar LDM, Madeira MM, Cruz RDC, Dias ACF, Machado FS, Teixeira MM, Cisalpino PS, Souza DG. The pivotal role of 5-lipoxygenase-derived LTB4 in controlling pulmonary paracoccidioidomycosis. PLoS Negl Trop Dis 2013; 7:e2390. [PMID: 23991239 PMCID: PMC3749973 DOI: 10.1371/journal.pntd.0002390] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/17/2013] [Indexed: 01/30/2023] Open
Abstract
Leukotrienes (LTs) produced from arachidonic acid by the action of 5-lipoxygenase (5-LO) are classical mediators of inflammatory responses. However, studies published in the literature regarding these mediators are contradictory and it remains uncertain whether these lipid mediators play a role in host defense against the fungal pathogen Paracoccidioides brasiliensis. To determine the involvement of LTs in the host response to pulmonary infection, wild-type and LT-deficient mice by targeted disruption of the 5-lipoxygenase gene (knockout mice) were studied following intratracheal challenge with P. brasiliensis yeasts. The results showed that infection is uniformly fatal in 5-LO-deficient mice and the mechanisms that account for this phenotype are an exacerbated lung injury and higher fungal pulmonary burden. Genetic ablation or pharmacological inhibition of LTs resulted in lower phagocytosis and fungicidal activity of macrophages in vitro, suggesting that deficiency in fungal clearance seems to be secondary to the absence of activation in 5-LO(-/-) macrophages. Exogenous LTB4 restored phagocytosis and fungicidal activity of 5-LO(-/-) macrophages. Moreover, P. brasiliensis killing promoted by LTB4 was dependent on nitric oxide (NO) production by macrophages. Taken together, these results reveal a fundamental role for 5-LO-derived LTB4 in the protective response to P. brasiliensis infection and identify relevant mechanisms for the control of fungal infection during the early stages of the host immune response.
Collapse
Affiliation(s)
- Patrícia Campi Santos
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Daniel Assis Santos
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Lucas Secchim Ribeiro
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Caio Tavares Fagundes
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Inflammation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Talles Prosperi de Paula
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Thiago Vinícius Avila
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Ludmila de Matos Baltazar
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Mila Moreira Madeira
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Rosana de Carvalho Cruz
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Ana Carolina Fialho Dias
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Fabiana Simão Machado
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Patrícia Silva Cisalpino
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
| | - Danielle G. Souza
- Laboratory of Microorganism-Host Interaction, Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- Laboratory of Immunopharmacology/Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|