1
|
Kazama I. Brain Leukocytes as the Potential Therapeutic Target for Post-COVID-19 Brain Fog. Neurochem Res 2023:10.1007/s11064-023-03912-0. [PMID: 36952147 PMCID: PMC10034247 DOI: 10.1007/s11064-023-03912-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
After recovering from the acute phase of coronavirus disease 2019 (COVID-19), many patients struggle with additional symptoms of long COVID during the chronic phase. Among them, the neuropsychiatric manifestations characterized by a short-term memory loss and inability to concentrate are called "brain fog". Recent studies have revealed the involvement of "chronic neuro-inflammation" in the pathogenesis of brain fog following COVID-19 infection. In the COVID-related brain fog, similarly to neurodegenerative disorders caused by neuro-inflammation, brain leukocytes, such as microglia and lymphocytes, are hyperactivated, suggesting the overexpression of delayed rectifier K+-channels (Kv1.3) within the cells. In our previous patch-clamp studies, drugs, such as antihistamines, statins, nonsteroidal anti-inflammatory drugs, antibiotics and anti-hypertensive drugs, suppressed the Kv1.3-channel activity and reduced the production of pro-inflammatory cytokines. Additionally, newer generation antihistamines, antibiotics and corticosteroids strongly stabilize mast cells that directly activate microglia in the brain. Taking such pharmacological properties of these commonly used drugs into account, they may be useful in the treatment of COVID-related brain fog, in which the enhanced innate and adaptive immune responses are responsible for the pathogenesis.
Collapse
Affiliation(s)
- Itsuro Kazama
- School of Nursing, Miyagi University, 1-1 Gakuen, Taiwa-Cho, Kurokawa-Gun, Miyagi, 981-3298, Japan.
| |
Collapse
|
2
|
Kazama I. Targeting lymphocyte Kv1.3-channels to suppress cytokine storm in severe COVID-19: Can it be a novel therapeutic strategy? Drug Discov Ther 2020; 14:143-144. [PMID: 32581194 DOI: 10.5582/ddt.2020.03046] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the midst of a pandemic, finding effective treatments for coronavirus disease 2019 (COVID-19) is the urgent issue. In "chronic inflammatory diseases", the overexpression of delayed rectifier K+-channels (Kv1.3) in leukocytes is responsible for the overactivation of cellular immunity and the subsequent cytokine storm. In our previous basic studies, drugs including chloroquine and azithromycin strongly suppressed the channel activity and pro-inflammatory cytokine production from lymphocytes. These findings suggest a novel pharmacological mechanism by which chloroquine, with or without azithromycin, is effective for severe cases of COVID-19, in which the overactivation of cellular immunity and the subsequent cytokine storm are responsible for the pathogenesis.
Collapse
Affiliation(s)
- Itsuro Kazama
- School of Nursing, Miyagi University, Taiwa-cho, Miyagi, Japan
| |
Collapse
|
3
|
Abe N, Toyama H, Ejima Y, Saito K, Tamada T, Yamauchi M, Kazama I. α 1-Adrenergic Receptor Blockade by Prazosin Synergistically Stabilizes Rat Peritoneal Mast Cells. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3214186. [PMID: 32461978 PMCID: PMC7243011 DOI: 10.1155/2020/3214186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/03/2020] [Accepted: 04/17/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND Adrenaline quickly inhibits the release of histamine from mast cells. Besides β 2-adrenergic receptors, several in vitro studies also indicate the involvement of α-adrenergic receptors in the process of exocytosis. Since exocytosis in mast cells can be detected electrophysiologically by the changes in the membrane capacitance (Cm), its continuous monitoring in the presence of drugs would determine their mast cell-stabilizing properties. METHODS Employing the whole-cell patch-clamp technique in rat peritoneal mast cells, we examined the effects of adrenaline on the degranulation of mast cells and the increase in the Cm during exocytosis. We also examined the degranulation of mast cells in the presence or absence of α-adrenergic receptor agonists or antagonists. RESULTS Adrenaline dose-dependently suppressed the GTP-γ-S-induced increase in the Cm and inhibited the degranulation from mast cells, which was almost completely erased in the presence of butoxamine, a β 2-adrenergic receptor antagonist. Among α-adrenergic receptor agonists or antagonists, high-dose prazosin, a selective α 1-adrenergic receptor antagonist, significantly reduced the ratio of degranulating mast cells and suppressed the increase in the Cm. Additionally, prazosin augmented the inhibitory effects of adrenaline on the degranulation of mast cells. CONCLUSIONS This study provided electrophysiological evidence for the first time that adrenaline dose-dependently inhibited the process of exocytosis, confirming its usefulness as a potent mast cell stabilizer. The pharmacological blockade of α 1-adrenergic receptor by prazosin synergistically potentiated such mast cell-stabilizing property of adrenaline, which is primarily mediated by β 2-adrenergic receptors.
Collapse
Affiliation(s)
- Nozomu Abe
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Hiroaki Toyama
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Yutaka Ejima
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Kazutomo Saito
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Itsuro Kazama
- Miyagi University, School of Nursing, Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi, Japan
| |
Collapse
|
4
|
Abe N, Toyama H, Saito K, Ejima Y, Yamauchi M, Mushiake H, Kazama I. Delayed Rectifier K +-Channel Is a Novel Therapeutic Target for Interstitial Renal Fibrosis in Rats with Unilateral Ureteral Obstruction. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7567638. [PMID: 31828127 PMCID: PMC6885154 DOI: 10.1155/2019/7567638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022]
Abstract
BACKGROUND Delayed rectifier K+-channel, Kv1.3, is most predominantly expressed in T-lymphocytes and macrophages. In such leukocytes, Kv1.3-channels play pivotal roles in the activation and proliferation of cells, promoting cellular immunity. Since leukocyte-derived cytokines stimulate fibroblasts to produce collagen fibers in inflamed kidneys, Kv1.3-channels expressed in leukocytes would contribute to the progression of tubulointerstitial renal fibrosis. METHODS Male Sprague-Dawley rats that underwent unilateral ureteral obstruction (UUO) were used at 1, 2, or 3 weeks after the operation. We examined the histological features of the kidneys and the leukocyte expression of Kv1.3-channels. We also examined the therapeutic effects of a selective channel inhibitor, margatoxin, on the progression of renal fibrosis and the proliferation of leukocytes within the cortical interstitium. RESULTS In rat kidneys with UUO, progression of renal fibrosis and the infiltration of leukocytes became most prominent at 3 weeks after the operation, when Kv1.3-channels were overexpressed in proliferating leukocytes. In the cortical interstitium of margatoxin-treated UUO rat kidneys, immunohistochemistry revealed reduced expression of fibrosis markers. Additionally, margatoxin significantly decreased the numbers of leukocytes and suppressed their proliferation. CONCLUSIONS This study clearly demonstrated that the numbers of T-lymphocytes and macrophages were markedly increased in UUO rat kidneys with longer postobstructive days. The overexpression of Kv1.3-channels in leukocytes was thought to be responsible for the proliferation of these cells and the progression of renal fibrosis. This study strongly suggested the therapeutic usefulness of targeting lymphocyte Kv1.3-channels in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Nozomu Abe
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Hiroaki Toyama
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Kazutomo Saito
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Yutaka Ejima
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Itsuro Kazama
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
- Miyagi University, School of Nursing, Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi, Japan
| |
Collapse
|
5
|
Saito K, Abe N, Toyama H, Ejima Y, Yamauchi M, Mushiake H, Kazama I. Second-Generation Histamine H1 Receptor Antagonists Suppress Delayed Rectifier K +-Channel Currents in Murine Thymocytes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6261951. [PMID: 31183371 PMCID: PMC6515180 DOI: 10.1155/2019/6261951] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/31/2019] [Accepted: 04/18/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND/AIMS Voltage-dependent potassium channels (Kv1.3) are predominantly expressed in lymphocyte plasma membranes. These channels are critical for the activation and proliferation of lymphocytes. Since second-generation antihistamines are lipophilic and exert immunomodulatory effects, they are thought to affect the lymphocyte Kv1.3-channel currents. METHODS Using the patch-clamp whole-cell recording technique in murine thymocytes, we tested the effects of second-generation antihistamines, such as cetirizine, fexofenadine, azelastine, and terfenadine, on the channel currents and the membrane capacitance. RESULTS These drugs suppressed the peak and the pulse-end currents of the channels, although the effects of azelastine and terfenadine on the peak currents were more marked than those of cetirizine and fexofenadine. Both azelastine and terfenadine significantly lowered the membrane capacitance. Since these drugs did not affect the process of endocytosis in lymphocytes, they were thought to have interacted directly with the plasma membranes. CONCLUSIONS Our study revealed for the first time that second-generation antihistamines, including cetirizine, fexofenadine, azelastine, and terfenadine, exert suppressive effects on lymphocyte Kv1.3-channels. The efficacy of these drugs may be related to their immunomodulatory mechanisms that reduce the synthesis of inflammatory cytokine.
Collapse
Affiliation(s)
- Kazutomo Saito
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Nozomu Abe
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Hiroaki Toyama
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Yutaka Ejima
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Itsuro Kazama
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
- Miyagi University, School of Nursing, Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi, Japan
| |
Collapse
|
6
|
Kazama I, Nakajima T. Acute Bronchitis Caused by Bordetella Pertussis Possibly Co-Infected with Mycoplasma Pneumoniae. AMERICAN JOURNAL OF CASE REPORTS 2019; 20:60-64. [PMID: 30643110 PMCID: PMC6340264 DOI: 10.12659/ajcr.913430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mycoplasma pneumoniae and Bordetella pertussis are among the causative pathogens of human acute bronchitis, which usually has mild symptoms. However, if there is a co-infection, the symptoms often can be prolonged and occasionally can lead to severe respiratory complications. CASE REPORT A 49-year-old Japanese female, who had not been vaccinated for B. pertussis, developed a persistent productive cough which became vigorous, and occasionally caused difficulty breathing and vomiting. Since serum IgM to M. pneumoniae was positive and IgG to B. pertussis was significantly elevated, and there were no findings of pneumonia on a chest x-ray film, we made a diagnosis of acute bronchitis caused by B. pertussis with possible co-infection with M. pneumoniae. The use of garenoxacin, a quinolone derivative, failed to work; however, a macrolide antibiotic clarithromycin dramatically improved her symptoms shortly after its administration. CONCLUSIONS In this patient case, because of the lymphocyte-stimulatory nature of M. pneumoniae and B. pertussis, an increased immunological response was likely to be involved in the pathogenesis of the symptoms. The immunosuppressive effect of clarithromycin was considered to repress the increased lymphocyte activity, facilitating the remission of the disease.
Collapse
Affiliation(s)
- Itsuro Kazama
- Miyagi University, School of Nursing, Gakuen, Taiwa, Miyagi, Japan.,Department of Internal Medicine, Iwakiri Hospital, Miyagino, Sendai, Miyagi, Japan.,Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Toshiyuki Nakajima
- Department of Internal Medicine, Iwakiri Hospital, Miyagino, Sendai, Miyagi, Japan
| |
Collapse
|
7
|
Kazama I, Nakajima T. Postrenal acute kidney injury in a patient with unilateral ureteral obstruction caused by urolithiasis: A case report. Medicine (Baltimore) 2017; 96:e8381. [PMID: 29069033 PMCID: PMC5671866 DOI: 10.1097/md.0000000000008381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RATIONALE In patients with bilateral ureteral obstruction, the serum creatinine levels are often elevated, sometimes causing postrenal acute kidney injury (AKI). In contrast, those with unilateral ureteral obstruction present normal serum creatinine levels, as long as their contralateral kidneys are preserved intact. However, the unilateral obstruction of the ureter could affect the renal function, as it humorally influences the renal hemodynamics. PATIENT CONCERNS A 66-year-old man with a past medical history of hypertension and diabetes mellitus came to our outpatient clinic because of right abdominal dullness. DIAGNOSES Unilateral ureteral obstruction caused by a radio-opaque calculus in the right upper ureter and a secondary renal dysfunction. INTERVENTIONS As oral hydration and the use of calcium antagonists failed to allow the spontaneous stone passage, extracorporeal shock wave lithotripsy (ESWL) was performed. OUTCOMES Immediately after the passage of the stone, the number of red blood cells in the urine was dramatically decreased and the serum creatinine level almost returned to the normal range with the significant increase in glomerular filtration rate. LESSONS Unilateral ureteral obstruction by the calculus, which caused reflex vascular constriction and ureteral spasm in the contralateral kidney, was thought to be responsible for the deteriorating renal function.
Collapse
Affiliation(s)
- Itsuro Kazama
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku
| | | |
Collapse
|
8
|
Kazama I, Tamada T. Lymphocyte Kv1.3-channels in the pathogenesis of chronic obstructive pulmonary disease: novel therapeutic implications of targeting the channels by commonly used drugs. Allergy Asthma Clin Immunol 2016; 12:60. [PMID: 27956907 PMCID: PMC5129211 DOI: 10.1186/s13223-016-0168-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/15/2016] [Indexed: 02/05/2023] Open
Abstract
In patients with chronic obstructive pulmonary disease (COPD), over-activated T-lymphocytes produce pro-inflammatory cytokines and proliferate in situ in the lower airways and pulmonary parenchyma, contributing substantially to the pathogenesis of the disease. Despite our understanding of the molecular mechanisms by which lymphocytes are activated, we know little about the physiological mechanisms. T-lymphocytes predominantly express delayed rectifier K+-channels (Kv1.3) in their plasma membranes and these channels play crucial roles in inducing the lymphocyte activation and proliferation. In the pathogenesis of chronic inflammatory diseases, such as chronic kidney disease (CKD) or inflammatory bowel disease (IBD), these channels, which are overexpressed in proliferating lymphocytes within the inflamed organs, are responsible for the progression of the diseases. Since the over-activation of cellular immunity is also mainly involved in the pathogenesis of COPD, this disease could share similar pathophysiological features as those of CKD or IBD. From a literature review including ours, it is highly likely that the Kv1.3-channels are overexpressed or over-activated in T-lymphocytes isolated from patients with COPD, and that the overexpression of the channels would contribute to the development or progression of COPD. The involvement of the channels leads to novel therapeutic implications of potentially useful Kv1.3-channel inhibitors, such as calcium channel blockers, macrolide antibiotics, HMG-CoA reductase inhibitors and nonsteroidal anti-inflammatory drugs, in the treatment of COPD.
Collapse
Affiliation(s)
- Itsuro Kazama
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi Japan
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
9
|
Mori T, Abe N, Saito K, Toyama H, Endo Y, Ejima Y, Yamauchi M, Goto M, Mushiake H, Kazama I. Hydrocortisone and dexamethasone dose-dependently stabilize mast cells derived from rat peritoneum. Pharmacol Rep 2016; 68:1358-1365. [PMID: 27710865 DOI: 10.1016/j.pharep.2016.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/24/2016] [Accepted: 09/03/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Besides their anti-inflammatory properties, corticosteroid drugs exert anti-allergic effects. Exocytosis of mast cells is electrophysiologically detected as the increase in the whole-cell membrane capacitance (Cm). Therefore, the lack of such increase after exposure to the drugs suggests their mast cell-stabilizing effects. METHODS We examined the effects of 1, 10, 100 and 200μM hydrocortisone or dexamethasone on the degranulation from rat peritoneal mast cells. Employing the whole-cell patch-clamp recording technique, we also tested their effects on the Cm during exocytosis. RESULTS At relatively lower concentrations (1, 10μM), both hydrocortisone and dexamethasone did not significantly affect the degranulation from mast cells and the increase in the Cm induced by GTP-γ-S. Nevertheless, at higher doses (100, 200μM), these drugs inhibited the degranulation from mast cells and markedly suppressed the GTP-γ-S-induced increase in the Cm. CONCLUSIONS Our results provided electrophysiological evidence for the first time that corticosteroid drugs, such as hydrocortisone and dexamethasone, inhibited the exocytotic process of mast cells in a dose-dependent manner. The mast cell-stabilizing effects of these drugs may be attributable to their "non-genomic" action, by which they exert rapid anti-allergic effects.
Collapse
Affiliation(s)
- Tomohiro Mori
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Nozomu Abe
- Department of Anesthesiology, Tohoku University Hospital Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Kazutomo Saito
- Department of Anesthesiology, Tohoku University Hospital Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Hiroaki Toyama
- Department of Anesthesiology, Tohoku University Hospital Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Yasuhiro Endo
- Department of Anesthesiology, Tohoku University Hospital Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Yutaka Ejima
- Department of Anesthesiology, Tohoku University Hospital Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Masanori Yamauchi
- Department of Anesthesiology, Tohoku University Hospital Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Mariko Goto
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan
| | - Itsuro Kazama
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan.
| |
Collapse
|
10
|
Kazama I, Saito K, Baba A, Mori T, Abe N, Endo Y, Toyama H, Ejima Y, Matsubara M, Yamauchi M. Clarithromycin Dose-Dependently Stabilizes Rat Peritoneal Mast Cells. Chemotherapy 2016; 61:295-303. [PMID: 27088971 DOI: 10.1159/000445023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/28/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Macrolides, such as clarithromycin, have antiallergic properties. Since exocytosis in mast cells is detected electrophysiologically via changes in membrane capacitance (Cm), the absence of such changes due to the drug indicates its mast cell-stabilizing effect. METHODS Employing the whole-cell patch clamp technique in rat peritoneal mast cells, we examined the effects of clarithromycin on Cm during exocytosis. Using a water-soluble fluorescent dye, we also examined its effect on deformation of the plasma membrane. RESULTS Clarithromycin (10 and 100 μM) significantly inhibited degranulation from mast cells and almost totally suppressed the GTP-x03B3;-S-induced increase in Cm. It washed out the trapping of the dye on the surface of mast cells. CONCLUSIONS This study provides for the first time electrophysiological evidence that clarithromycin dose-dependently inhibits the process of exocytosis. The mast cell-stabilizing action of clarithromycin may be attributable to its counteractive effect on plasma membrane deformation induced by exocytosis.
Collapse
|
11
|
Kazama I, Ejima Y, Endo Y, Toyama H, Matsubara M, Baba A, Tachi M. Chlorpromazine-induced changes in membrane micro-architecture inhibit thrombopoiesis in rat megakaryocytes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2805-12. [DOI: 10.1016/j.bbamem.2015.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/16/2015] [Accepted: 08/18/2015] [Indexed: 01/10/2023]
|
12
|
Kazama I, Tamada T, Tachi M. Usefulness of targeting lymphocyte Kv1.3-channels in the treatment of respiratory diseases. Inflamm Res 2015. [PMID: 26206235 DOI: 10.1007/s00011-015-0855-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
T lymphocytes predominantly express delayed rectifier K(+)-channels (Kv1.3) in their plasma membranes. Patch-clamp studies revealed that the channels play crucial roles in facilitating the calcium influx necessary to trigger lymphocyte activation and proliferation. Using selective channel inhibitors in experimental animal models, in vivo studies further revealed the clinically relevant relationship between the channel expression and the development of chronic respiratory diseases, in which chronic inflammation or the overstimulation of cellular immunity in the airways is responsible for the pathogenesis. In chronic respiratory diseases, such as chronic obstructive pulmonary disease, asthma, diffuse panbronchiolitis and cystic fibrosis, in addition to the supportive management for the symptoms, the anti-inflammatory effects of macrolide antibiotics were shown to be effective against the over-activation or proliferation of T lymphocytes. Recently, we provided physiological and pharmacological evidence that macrolide antibiotics, together with calcium channel blockers, HMG-CoA reductase inhibitors, and nonsteroidal anti-inflammatory drugs, effectively suppress the Kv1.3-channel currents in lymphocytes, and thus exert anti-inflammatory or immunomodulatory effects. In this review article, based on the findings obtained from recent in vivo and in vitro studies, we address the novel therapeutic implications of targeting the lymphocyte Kv1.3-channels for the treatment of chronic or acute respiratory diseases.
Collapse
Affiliation(s)
- Itsuro Kazama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan.
| | - Tsutomu Tamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
13
|
Roles of lymphocyte Kv1.3-channels in gut mucosal immune system: Novel therapeutic implications for inflammatory bowel disease. Med Hypotheses 2015; 85:61-3. [DOI: 10.1016/j.mehy.2015.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/25/2015] [Indexed: 01/16/2023]
|
14
|
Roles of lymphocyte kv1.3-channels in the pathogenesis of renal diseases and novel therapeutic implications of targeting the channels. Mediators Inflamm 2015; 2015:436572. [PMID: 25866450 PMCID: PMC4381730 DOI: 10.1155/2015/436572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/25/2015] [Indexed: 12/04/2022] Open
Abstract
Delayed rectifier K+-channels (Kv1.3) are predominantly expressed in T lymphocytes. Based on patch-clamp studies, the channels play crucial roles in facilitating the calcium influx necessary to trigger lymphocyte activation and proliferation. Using selective channel inhibitors in experimental animal models, in vivo studies then revealed the clinically relevant relationship between the channel expression and the pathogenesis of autoimmune diseases. In renal diseases, in which “chronic inflammation” or “the overstimulation of cellular immunity” is responsible for the pathogenesis, the overexpression of Kv1.3-channels in lymphocytes promotes their cellular proliferation and thus contributes to the progression of tubulointerstitial fibrosis. We recently demonstrated that benidipine, a potent dihydropyridine calcium channel blocker, which also strongly and persistently inhibits the lymphocyte Kv1.3-channel currents, suppressed the proliferation of kidney lymphocytes and actually ameliorated the progression of renal fibrosis. Based on the recent in vitro evidence that revealed the pharmacological properties of the channels, the most recent studies have revealed novel therapeutic implications of targeting the lymphocyte Kv1.3-channels for the treatment of renal diseases.
Collapse
|
15
|
Baba A, Tachi M, Maruyama Y, Kazama I. Suppressive effects of diltiazem and verapamil on delayed rectifier K(+)-channel currents in murine thymocytes. Pharmacol Rep 2015; 67:959-64. [PMID: 26398391 DOI: 10.1016/j.pharep.2015.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Lymphocytes predominantly express delayed rectifier K(+)-channels (Kv1.3) in their plasma membranes, and these channels play crucial roles in the lymphocyte activation and proliferation. Since diltiazem and verapamil, which are highly lipophilic Ca(2+) channel blockers (CCBs), exert relatively stronger immunomodulatory effects than the other types of CCBs, they would affect the Kv1.3-channel currents in lymphocytes. METHODS Employing the standard patch-clamp whole-cell recording technique in murine thymocytes, we examined the effects of these drugs on the channel currents and the membrane capacitance. RESULTS Both diltiazem and verapamil significantly suppressed the peak and the pulse-end currents of the channels, although the effects of verapamil were more marked than those of diltiazem. Both drugs significantly lowered the membrane capacitance, indicating the interactions between the drugs and the plasma membranes. CONCLUSIONS This study demonstrated for the first time that CCBs, such as diltiazem and verapamil, exert inhibitory effects on Kv1.3-channels expressed in lymphocytes. The effects of these drugs may be associated with the mechanisms of immunomodulation by which they decrease the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Asuka Baba
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Tachi
- Department of Plastic and Reconstructive Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshio Maruyama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Itsuro Kazama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
16
|
Kazama I. Physiological significance of delayed rectifier K(+) channels (Kv1.3) expressed in T lymphocytes and their pathological significance in chronic kidney disease. J Physiol Sci 2015; 65:25-35. [PMID: 25096892 PMCID: PMC10717717 DOI: 10.1007/s12576-014-0331-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/14/2014] [Indexed: 11/24/2022]
Abstract
T lymphocytes predominantly express delayed rectifier K(+) channels (Kv1.3) in their plasma membranes. More than 30 years ago, patch-clamp studies revealed that the channels play crucial roles in facilitating the calcium influx necessary to trigger lymphocyte activation and proliferation. In addition to selective channel inhibitors that have been developed, we recently showed physiological evidence that drugs such as nonsteroidal anti-inflammatory drugs, antibiotics, and anti-hypertensives effectively suppress the channel currents in lymphocytes, and thus exert immunosuppressive effects. Using experimental animal models, previous studies revealed the pathological relevance between the expression of ion channels and the progression of renal diseases. As an extension, we recently demonstrated that the overexpression of lymphocyte Kv1.3 channels contributed to the progression of chronic kidney disease (CKD) by promoting cellular proliferation and interstitial fibrosis. Together with our in-vitro results, the studies indicated the therapeutic potency of Kv1.3-channel inhibitors in the treatment or the prevention of CKD.
Collapse
Affiliation(s)
- Itsuro Kazama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi, Japan,
| |
Collapse
|
17
|
Kazama I, Baba A, Matsubara M, Endo Y, Toyama H, Ejima Y. Benidipine suppresses in situ proliferation of leukocytes and slows the progression of renal fibrosis in rat kidneys with advanced chronic renal failure. Nephron Clin Pract 2014; 128:67-79. [PMID: 25358915 DOI: 10.1159/000368080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 08/27/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Leukocytes, such as lymphocytes and macrophages, predominantly express delayed rectifier K(+) channels (Kv1.3) in their plasma membranes. In our previous study, the overexpression of these channels in leukocytes was strongly associated with their proliferation in kidneys and the progression of renal fibrosis in advanced-stage chronic renal failure (CRF). Since benidipine, a long-acting 1,4-dihydropyridine Ca(2+) channel blocker, is also highly potent as a Kv1.3 channel inhibitor, it could exert therapeutic efficacy in advanced CRF. METHODS Male Sprague-Dawley rats that underwent 5/6 nephrectomy followed by a 14-week recovery period were used as the model of advanced CRF. Benidipine hydrochloride (5 mg/kg) was started at 8 weeks after nephrectomy and orally administered daily for 6 weeks. The histopathological features of the kidneys were examined in vehicle-treated and benidipine-treated CRF rat kidneys. Cellular proliferation of leukocytes and the cortical expression of proinflammatory cytokines were also examined. RESULTS In CRF rat kidneys, Kv1.3 channels began to be overexpressed in leukocytes as early as 8 weeks after nephrectomy. In the cortical interstitium of benidipine-treated CRF rat kidneys, both immunohistochemistry and real-time PCR demonstrated decreased expression of fibrotic markers. Benidipine treatment significantly reduced the number of proliferating leukocytes within the cortical interstitium and decreased the expression of cell cycle markers and proinflammatory cytokines. CONCLUSION This study demonstrated for the first time that benidipine slowed the progression of renal fibrosis in rat kidneys with advanced CRF. Kv1.3 channels overexpressed in leukocytes were thought to be the most likely therapeutic targets of benidipine in decreasing the number of proliferating leukocytes and repressing the production of inflammatory cytokines.
Collapse
Affiliation(s)
- Itsuro Kazama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Mu X, Ubagai T, Kikuchi-Ueda T, Tansho-Nagakawa S, Nakano R, Kikuchi H, Ono Y. Effects of Erythromycin and Rifampicin on Immunomodulatory Gene Expression and Cellular Function in Human Polymorphonuclear Leukocytes. Chemotherapy 2014; 59:395-401. [DOI: 10.1159/000358818] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/17/2014] [Indexed: 01/06/2023]
|
19
|
Kazama I, Baba A, Maruyama Y. HMG-CoA reductase inhibitors pravastatin, lovastatin and simvastatin suppress delayed rectifier K(+)-channel currents in murine thymocytes. Pharmacol Rep 2014; 66:712-7. [PMID: 24948077 DOI: 10.1016/j.pharep.2014.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/03/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Since lymphocytes predominantly express delayed rectifier K(+)-channels (Kv1.3) that trigger lymphocyte activation, statins, which exert immunosuppressive effects, would affect the channel currents. METHODS Employing the patch-clamp technique in murine thymocytes, we examined the effects of statins on Kv1.3-channel currents and the membrane capacitance (Cm). RESULTS Pravastatin significantly suppressed the pulse-end currents of the channels. Lovastatin and simvastatin also suppressed the peak currents, significantly decreasing the Cm. CONCLUSIONS This study demonstrated for the first time that statins inhibit thymocyte Kv1.3-channels. The slow inactivation patterns induced by lovastatin and simvastatin may be associated with their accumulation in the plasma membranes.
Collapse
Affiliation(s)
- Itsuro Kazama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | - Asuka Baba
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Yoshio Maruyama
- Department of Physiology I, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|