1
|
Di Francesco B, Verzella D, Capece D, Vecchiotti D, Di Vito Nolfi M, Flati I, Cornice J, Di Padova M, Angelucci A, Alesse E, Zazzeroni F. NF-κB: A Druggable Target in Acute Myeloid Leukemia. Cancers (Basel) 2022; 14:3557. [PMID: 35884618 PMCID: PMC9319319 DOI: 10.3390/cancers14143557] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive hematological malignancy that relies on highly heterogeneous cytogenetic alterations. Although in the last few years new agents have been developed for AML treatment, the overall survival prospects for AML patients are still gloomy and new therapeutic options are still urgently needed. Constitutive NF-κB activation has been reported in around 40% of AML patients, where it sustains AML cell survival and chemoresistance. Given the central role of NF-κB in AML, targeting the NF-κB pathway represents an attractive strategy to treat AML. This review focuses on current knowledge of NF-κB's roles in AML pathogenesis and summarizes the main therapeutic approaches used to treat NF-κB-driven AML.
Collapse
|
2
|
Vadukoot AK, Mottemmal S, Vekaria PH. Curcumin as a Potential Therapeutic Agent in Certain Cancer Types. Cureus 2022; 14:e22825. [PMID: 35399416 PMCID: PMC8980239 DOI: 10.7759/cureus.22825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer is a devastating disease condition and is the second most common etiology of death globally. After decades of research in the field of hematological malignancies and cellular therapeutics, we are still looking for therapeutic agents with the most efficacies and least toxicities. Curcumin is one of the cancer therapeutic agents that is derived from the Curcuma longa (turmeric) plant, and still in vitro and in vivo research is going on to find its beneficial effects on various cancers. Due to its potency to affect multiple targets of different cellular pathways, it is considered a promising agent to tackle various cancers alone or in combination with the existing chemotherapies. This review covers basic properties, mechanism of action, potential targets (molecules and cell-signaling pathways) of curcumin, as well as its effect on various solid and hematological malignancies.
Collapse
|
3
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
4
|
Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The Role of Curcumin in Cancer Treatment. Biomedicines 2021; 9:1086. [PMID: 34572272 PMCID: PMC8464730 DOI: 10.3390/biomedicines9091086] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Curcumin is a polyphenol extracted from the rhizomes of the turmeric plant, Curcuma longa which has anti-inflammatory, and anticancer properties. Chronic inflammation is associated with the development of cancer. Curcumin acts on the regulation of various immune modulators, including cytokines, cyclooxygenase-2 (COX-2), and reactive oxygen species (ROS), which partly explains its anticancer effects. It also takes part in the downregulation of growth factors, protein kinases, oncogenic molecules and various signaling pathways, such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), c-Jun N-terminal kinase (JNK) and signal transducer and activator of transcription 3 (STAT3) signaling. Clinical trials of curcumin have been completed or are ongoing for various types of cancer. This review presents the molecular mechanisms of curcumin in different types of cancer and the evidence from the most recent clinical trials.
Collapse
Affiliation(s)
- Vasiliki Zoi
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Vasiliki Galani
- Department of Anatomy Histology-Embryology, School of Medicine, University of Ioannina, 45500 Ioannina, Greece;
| | - Georgios D. Lianos
- Department of Surgery, University Hospital of Ioannina, 45500 Ioannina, Greece;
| | - Spyridon Voulgaris
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Neurosurgery, School of Medicine Ioannina, University of Ioannina, 45500 Ioannina, Greece
| | - Athanasios P. Kyritsis
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
| | - George A. Alexiou
- Neurosurgical Institute, School of Medicine, University of Ioannina, 45500 Ioannina, Greece; (V.Z.); (S.V.); (A.P.K.)
- Department of Neurosurgery, School of Medicine Ioannina, University of Ioannina, 45500 Ioannina, Greece
| |
Collapse
|
5
|
Davoodvandi A, Farshadi M, Zare N, Akhlagh SA, Alipour Nosrani E, Mahjoubin-Tehran M, Kangari P, Sharafi SM, Khan H, Aschner M, Baniebrahimi G, Mirzaei H. Antimetastatic Effects of Curcumin in Oral and Gastrointestinal Cancers. Front Pharmacol 2021; 12:668567. [PMID: 34456716 PMCID: PMC8386020 DOI: 10.3389/fphar.2021.668567] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Gastrointestinal (GI) cancers are known as frequently occurred solid malignant tumors that can cause the high rate mortality in the world. Metastasis is a significant destructive feature of tumoral cells, which directly correlates with decreased prognosis and survival. Curcumin, which is found in turmeric, has been identified as a potent therapeutic natural bioactive compound (Curcuma longa). It has been traditionally applied for centuries to treat different diseases, and it has shown efficacy for its anticancer properties. Numerous studies have revealed that curcumin inhibits migration and metastasis of GI cancer cells by modulating various genes and proteins, i.e., growth factors, inflammatory cytokines and their receptors, different types of enzymes, caspases, cell adhesion molecules, and cell cycle proteins. Herein, we summarized the antimetastatic effects of curcumin in GI cancers, including pancreatic cancer, gastric cancer, colorectal cancer, oral cancer, and esophageal cancer.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Noushid Zare
- Faculty of Pharmacy, International Campus, Tehran University of Medical Science, Tehran, Iran
| | | | - Esmail Alipour Nosrani
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Kangari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedeh Maryam Sharafi
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ghazaleh Baniebrahimi
- Department of Pediatric Dentistry, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
6
|
Curcumin sensitizes Epstein-Barr-immortalized lymphoblastoid cell lines to inorganic arsenic toxicity. Exp Ther Med 2021; 22:872. [PMID: 34194550 DOI: 10.3892/etm.2021.10304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/23/2021] [Indexed: 11/05/2022] Open
Abstract
Chronic exposure to inorganic arsenic (iAs) through contaminated drinking water is an important health problem in certain countries. The use of phytochemicals such as curcumin has recently emerged as an alternative strategy for preventing cellular damage caused by iAs. The Epstein-Barr virus (EBV) affects ~90% of the population and experimental evidence suggested that curcumin mediates cytotoxicity against EBV-infected cells. Due to the potential for an interaction of these factors, the aim of the present study was to evaluate the effect of this phytochemical on iAs-related toxicity in EBV-infected cells. Two independent EBV-immortalized human lymphoblastoid cell lines (LCLs) were used as the model. The cell lines were first incubated with increasing concentrations of curcumin or iAs for 24 and 15 h, respectively, to determine the individual effects of each exposure on cell death. In the next experiment, cell cultures were pre-incubated with 5 µM curcumin for 9 h prior to treatment with 10 µM iAs for 15 h, followed by evaluation of cell death and the cell cycle profile via flow cytometry. The results indicated that individual treatment with either curcumin or iAs induced cell death in a concentration-dependent manner. Furthermore, curcumin pre-treatment enhanced iAs-induced cell death and promoted cell cycle arrest in G1 phase. Taken together, these results suggested that curcumin sensitizes EBV-positive LCLs to the cytotoxic effects of iAs.
Collapse
|
7
|
Mutha RE, Tatiya AU, Surana SJ. Flavonoids as natural phenolic compounds and their role in therapeutics: an overview. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:25. [PMID: 33495733 PMCID: PMC7816146 DOI: 10.1186/s43094-020-00161-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Natural plants and plant-derived formulations have been used by mankind from the ancient period of time. For the past few years, many investigations elaborated the therapeutic potential of various secondary chemicals present in the plants. Literature revealed that the various secondary metabolites, viz. phenolics and flavonoids, are responsible for a variety of therapeutic action in humans. MAIN BODY In the present review, an attempt has been made to compile the exploration of natural phenolic compounds with major emphasis on flavonoids and their therapeutic potential too. Interestingly, long-term intake of many dietary foods (rich in phenolics) proved to be protective against the development and management of diabetes, cancer, osteoporosis, cardiovascular diseases and neurodegenerative diseases, etc. CONCLUSION This review presents an overview of flavonoid compounds to use them as a potential therapeutic alternative in various diseases and disorders. In addition, the present understanding of phenolics and flavonoids will serve as the basis for the next scientific studies.
Collapse
Affiliation(s)
- Rakesh E. Mutha
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Anilkumar U. Tatiya
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| | - Sanjay J. Surana
- Department of Pharmacognosy, R. C. Patel Institute of Pharmaceutical Education and Research, Karwand Naka, Shirpur, Dist., Dhule, Maharashtra 425405 India
| |
Collapse
|
8
|
Son HK, Kim D, Lim Y, Kim J, Park I. A novel TGF-β receptor II mutation (I227T/N236D) promotes aggressive phenotype of oral squamous cell carcinoma via enhanced EGFR signaling. BMC Cancer 2020; 20:1163. [PMID: 33246423 PMCID: PMC7694911 DOI: 10.1186/s12885-020-07669-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/20/2020] [Indexed: 01/02/2023] Open
Abstract
Background Transforming growth factor-β (TGF-β) signaling is a double-edged sword in cancer development and progression. TGF-β signaling plays a tumor suppressive role during the early stages of tumor development but promotes tumor progression in later stages. We have previously identified various mutations of TGF-β receptor II (TβRII) in human oral squamous cell carcinoma (OSCC) samples. In the present study we analyzed I227T/N236D mutation of TβRII, which was detected in the metastatic lymph node of an OSCC patient. Methods The effect of I227T/N236D TβRII mutation on transcriptional activities was measured using DR26 cells, which lack functional TβRII. HSC2 human OSCC cells stably expressing wild-type and I227T/N236D mutant TβRII were generated and used to examine the effect of I227T/N236D TβRII mutation on xenograft tumor growth, in vitro cell proliferation, apoptosis, migration, and invasion. Results The I227T/N236D mutation of TβRII upregulated TGF-β signaling and promoted xenograft tumor growth when compared with the wild-type, without affecting the in vitro proliferative capacities. To delineate the differences in proliferative capacities in vivo and in vitro, the apoptotic and survival signals were analyzed following curcumin treatment. Concomitant with apoptotic induction, epidermal growth factor receptor (EGFR) activation was observed upon curcumin treatment, which was further activated in I227T/N236D mutant transfectant cells when compared with wild-type cells. Enhanced EGFR activation correlated with cell survival and apoptotic resistance. Enhanced migratory and invasive capabilities of I227T/N236D mutant cells also depended on EGFR signaling. Conclusions These results suggest that enhanced EGFR signaling via upregulated TGF-β signaling shifted the balance toward survival and promoted cell migration and invasion in I227T/N236D mutant cells, elucidating the role of I227T/N236D mutation of TβRII in OSCC progression.
Collapse
Affiliation(s)
- Hwa-Kyung Son
- Department of Dental Hygiene, Yeungnam University College, Daegu, 42415, Republic of Korea
| | - Dokyeong Kim
- Department of Dental Hygiene, Jeonju Kijeon College, Jeonju, 54989, Republic of Korea.,Department of Oral Pathology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Yongwoon Lim
- Department of Biochemistry, Department of Biomedical Sciences, Research Institute of Medical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Jin Kim
- Department of Oral Pathology, Oral Cancer Research Institute, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, 03722, Republic of Korea
| | - Iha Park
- Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
9
|
Li Z, Shi M, Li N, Xu R. Application of Functional Biocompatible Nanomaterials to Improve Curcumin Bioavailability. Front Chem 2020; 8:589957. [PMID: 33134284 PMCID: PMC7573119 DOI: 10.3389/fchem.2020.589957] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
Curcumin is a lipophilic natural product extracted from turmeric and commonly used as a dietary spice. Being multi-functional, curcumin has been proposed in the prevention and treatment of a broad spectrum of diseases. However, due to unsatisfactory aqueous solubility and hence low bioavailability, clinical application of curcumin has been greatly restrained. To break these limitations, biocompatible nanoformulation, such as liposomes, nanoparticles, micelles, nanoemulsions and conjugates has been employed as alternatives to improve in vivo delivery of curcumin. In this scenario, in order to enhance bioavailability of curcumin, the choice of effective molecules as facilitators is of prominence. In this review, we focus on functional biocompatible materials, including polymers, protein molecules, polysaccharide, surface stabilizers and phospholipid complexes, and decipher their potential applications as how they assist to promote medicinal performance of curcumin.
Collapse
Affiliation(s)
- Ziyun Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Hsiao PC, Chang JH, Lee WJ, Ku CC, Tsai MY, Yang SF, Chien MH. The Curcumin Analogue, EF-24, Triggers p38 MAPK-Mediated Apoptotic Cell Death via Inducing PP2A-Modulated ERK Deactivation in Human Acute Myeloid Leukemia Cells. Cancers (Basel) 2020; 12:cancers12082163. [PMID: 32759757 PMCID: PMC7464750 DOI: 10.3390/cancers12082163] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin (CUR) has a range of therapeutic benefits against cancers, but its poor solubility and low bioavailability limit its clinical use. Demethoxycurcumin (DMC) and diphenyl difluoroketone (EF-24) are natural and synthetic curcumin analogues, respectively, with better solubilities and higher anti-carcinogenic activities in various solid tumors than CUR. However, the efficacy of these analogues against non-solid tumors, particularly in acute myeloid leukemia (AML), has not been fully investigated. Herein, we observed that both DMC and EF-24 significantly decrease the proportion of viable AML cells including HL-60, U937, and MV4-11, harboring different NRAS and Fms-like tyrosine kinase 3 (FLT3) statuses, and that EF-24 has a lower half maximal inhibitory concentration (IC50) than DMC. We found that EF-24 treatment induces several features of apoptosis, including an increase in the sub-G1 population, phosphatidylserine (PS) externalization, and significant activation of extrinsic proapoptotic signaling such as caspase-8 and -3 activation. Mechanistically, p38 mitogen-activated protein kinase (MAPK) activation is critical for EF-24-triggered apoptosis via activating protein phosphatase 2A (PP2A) to attenuate extracellular-regulated protein kinase (ERK) activities in HL-60 AML cells. In the clinic, patients with AML expressing high level of PP2A have the most favorable prognoses compared to various solid tumors. Taken together, our results indicate that EF-24 is a potential therapeutic agent for treating AML, especially for cancer types that lose the function of the PP2A tumor suppressor.
Collapse
Affiliation(s)
- Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Jer-Hwa Chang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Meng-Ying Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-2-2736-1661 (ext. 3237) (M.-H.C.); +886-4-2473-9595 (ext. 34253) (S.-F.Y.); Fax: +886-2-2739-0500 (M.-H.C.); +886-4-2472-3229 (S.-F.Y.)
| | - Ming-Hsien Chien
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Correspondence: (S.-F.Y.); (M.-H.C.); Tel.: +886-2-2736-1661 (ext. 3237) (M.-H.C.); +886-4-2473-9595 (ext. 34253) (S.-F.Y.); Fax: +886-2-2739-0500 (M.-H.C.); +886-4-2472-3229 (S.-F.Y.)
| |
Collapse
|
11
|
Reikvam H. Inhibition of NF-κB Signaling Alters Acute Myelogenous Leukemia Cell Transcriptomics. Cells 2020; 9:E1677. [PMID: 32664684 PMCID: PMC7408594 DOI: 10.3390/cells9071677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myelogenous leukemia (AML) is an aggressive hematological malignancy. The pathophysiology of the disease depends on cytogenetic abnormalities, gene mutations, aberrant gene expressions, and altered epigenetic regulation. Although new pharmacological agents have emerged during the last years, the prognosis is still dismal and new therapeutic strategies are needed. The transcription factor nuclear factor-κB (NF-κB) is regarded a possible therapeutic target. In this study, we investigated the alterations in the global gene expression profile (GEP) in primary AML cells derived from 16 consecutive patients after exposure to the NF-κB inhibitor BMS-345541. We identified a profound and highly discriminative transcriptomic profile associated with NF-κB inhibition. Bioinformatical analyses identified cytokine/interleukin signaling, metabolic regulation, and nucleic acid binding/transcription among the major biological functions influenced by NF-κB inhibition. Furthermore, several key genes involved in leukemogenesis, among them RUNX1 and CEBPA, in addition to NFKB1 itself, were influenced by NF-κB inhibition. Finally, we identified a significant impact of NF-κB inhibition on the expression of genes included in a leukemic stem cell (LSC) signature, indicating possible targeting of LSCs. We conclude that NF-κB inhibition significantly altered the expression of genes central to the leukemic process.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Line, Tumor
- Down-Regulation/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Ontology
- Gene Regulatory Networks
- Genes, Neoplasm
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Male
- Middle Aged
- NF-kappa B/metabolism
- Signal Transduction
- Transcriptome/genetics
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Håkon Reikvam
- Institute of Clinical Science, University of Bergen, 5020 Bergen, Norway;
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| |
Collapse
|
12
|
Mutlu Altundağ E, Yılmaz AM, Serdar BS, Jannuzzi AT, Koçtürk S, Yalçın AS. Synergistic Induction of Apoptosis by Quercetin and Curcumin in Chronic Myeloid Leukemia (K562) Cells: II. Signal Transduction Pathways Involved. Nutr Cancer 2020; 73:703-712. [PMID: 32420759 DOI: 10.1080/01635581.2020.1767167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flavonoids are phenolic substances with chemo-preventive and chemotherapeutic properties. They are widely found in fruits and vegetables. The polyphenols quercetin and curcumin have antioxidant, anti-inflammatory, anti-carcinogenic, and pro-apoptotic properties. They were successfully used against different human cancers, especially chronic myeloid leukemia cancer cells. We have previously investigated anti-proliferative and apoptotic effects of quercetin and curcumin combination in K562 cells. Our data showed that they had beneficial synergistic effects. Based on these findings, we aimed to clarify signaling pathways involved in synergistic combination treatment with quercetin and curcumin in these cells. Proteins were investigated by Western blotting and by confocal microscopy. Changes in several genes in 10 different pathways related to cell proliferation, apoptosis, cell cycle, inflammation, hypoxia and oxidative stress were observed. Combination of quercetin and curcumin was effective on genes that were particularly related to p53, NF-κB and TGF-α pathways. Down-regulatory (CDKN1B, AKT1, IFN-γ) and up-regulatory (BTG2, CDKN1A, FAS) effects on genes and related protein expressions may provide a multi-targeted therapy potential for chronic myeloid leukemia cancer cells without affecting healthy cells.
Collapse
Affiliation(s)
- Ergül Mutlu Altundağ
- Faculty of Medicine, Department of Biochemistry, Eastern Mediterranean University, Famagusta, Cyprus
| | - Ayşe Mine Yılmaz
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, İstanbul, Turkey
| | - Belgin Sert Serdar
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - Ayşe Tarbın Jannuzzi
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, İstanbul, Turkey.,Faculty of Pharmacy, Department of Pharmaceutical Toxicology, İstanbul University, İstanbul, Turkey
| | - Semra Koçtürk
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - A Süha Yalçın
- Department of Biochemistry, School of Medicine/Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, İstanbul, Turkey
| |
Collapse
|
13
|
Mu YT, Feng HH, Yu JQ, Liu ZK, Wang Y, Shao J, Li RH, Li DK. Curcumin suppressed proliferation and migration of human retinoblastoma cells through modulating NF-κB pathway. Int Ophthalmol 2020; 40:2435-2440. [PMID: 32399774 DOI: 10.1007/s10792-020-01406-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE To study the effect of curcumin on proliferation and invasion of the human retinoblastoma cells and its potential mechanism. METHODS A cell line of retinoblastoma (WERI-Rb-1) was treated with various concentrations of curcumin (0-40 µM). Cell number was counted with CCK8 kit, and cell migration was assessed using the Transwell assay. Immunoblotting was performed to detect the proteins of metalloproteinase-2 (MMP-2), MMP-9 and vascular endothelial growth factor (VEGF) as well as nuclear translocation of nuclear factor-κB (NF-κB, p65). RESULTS Proliferation and migration of WERI-Rb-1 cells were significantly inhibited by curcumin in a concentration-dependent manner (0-40 µM). Protein expressions of MMP-2, MMP-9 and VEGF in the WERI-Rb-1 cells were also significantly inhibited by curcumin in a concentration-dependent manner (0-40 µM). Furthermore, nuclear translocation of NF-κB (p65) was significantly inhibited by curcumin in time-dependent manner (6-24 h). CONCLUSION Curcumin inhibited proliferation and migration of WERI-Rb-1 cells, a cell line of human retinoblastoma, which might be through modulating NF-κB and its downstream proteins including VEGF, MMP-2, and MMP-9.
Collapse
Affiliation(s)
- Ying-Tao Mu
- Department of Ophthalmology, Shiyan Renmin Hospital, Hubei University of Medicine, No.39 Middle Chaoyang Road, Shiyan, 442000, Hubei, China
| | - Huan-Huan Feng
- Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Jin-Qiang Yu
- Department of Ophthalmology, Shiyan Renmin Hospital, Hubei University of Medicine, No.39 Middle Chaoyang Road, Shiyan, 442000, Hubei, China
| | - Zhen-Kai Liu
- Department of Ophthalmology, Shiyan Renmin Hospital, Hubei University of Medicine, No.39 Middle Chaoyang Road, Shiyan, 442000, Hubei, China
| | - Yan Wang
- Department of Ophthalmology, Shiyan Renmin Hospital, Hubei University of Medicine, No.39 Middle Chaoyang Road, Shiyan, 442000, Hubei, China
| | - Jie Shao
- Department of Ophthalmology, Shiyan Renmin Hospital, Hubei University of Medicine, No.39 Middle Chaoyang Road, Shiyan, 442000, Hubei, China
| | - Ran-Hui Li
- Institute of Pathogen Biology, University of South China, Heyang, Hunan, China
| | - De-Kun Li
- Department of Ophthalmology, Shiyan Renmin Hospital, Hubei University of Medicine, No.39 Middle Chaoyang Road, Shiyan, 442000, Hubei, China.
| |
Collapse
|
14
|
Yang JS, Lin RC, Hsieh YH, Wu HH, Li GC, Lin YC, Yang SF, Lu KH. CLEFMA Activates the Extrinsic and Intrinsic Apoptotic Processes through JNK1/2 and p38 Pathways in Human Osteosarcoma Cells. Molecules 2019; 24:molecules24183280. [PMID: 31505816 PMCID: PMC6767181 DOI: 10.3390/molecules24183280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/01/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022] Open
Abstract
Due to the poor prognosis of metastatic osteosarcoma, chemotherapy is usually employed in the adjuvant situation to improve the prognosis and the chances of long-term survival. 4-[3,5-Bis(2-chlorobenzylidene)-4-oxo-piperidine-1-yl]-4-oxo-2-butenoic acid (CLEFMA) is a synthetic analog of curcumin and possesses anti-inflammatory and anticancer properties. To further obtain information regarding the apoptotic pathway induced by CLEFMA in osteosarcoma cells, microculture tetrazolium assay, annexin V-FITC/PI apoptosis staining assay, human apoptosis array, and Western blotting were employed. CLEFMA dose-dependently decreased the cell viabilities of human osteosarcoma U2OS and HOS cells and significantly induced apoptosis in human osteosarcoma cells. In addition to the effector caspase 3, CLEFMA significantly activated both extrinsic caspase 8 and intrinsic caspase 9 initiators. Moreover, CLEFMA increased the phosphorylation of extracellular signal-regulated protein kinases (ERK)1/2, c-Jun N-terminal kinases (JNK)1/2 and p38. Using inhibitors of JNK (JNK-in-8) and p38 (SB203580), CLEFMA’s increases of cleaved caspases 3, 8, and 9 could be expectedly suppressed, but they could not be affected by co-treatment with the ERK inhibitor (U0126). Conclusively, CLEFMA activates both extrinsic and intrinsic apoptotic pathways in human osteosarcoma cells through JNK and p38 signaling. These findings contribute to a better understanding of the mechanisms responsible for CLEFMA’s apoptotic effects on human osteosarcoma cells.
Collapse
Affiliation(s)
- Jia-Sin Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Renn-Chia Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
- Division of Hyperbaric Oxygen Therapy and Wound Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| | - Yi-Hsien Hsieh
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Heng-Hsiung Wu
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404, Taiwan.
- Research Center of Tumor Medical Science, China Medical University, Taichung 404, Taiwan.
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.
| | - Geng-Chung Li
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Ya-Chiu Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Shun-Fa Yang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Ko-Hsiu Lu
- Department of Orthopedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| |
Collapse
|
15
|
Yao L, Zhang Z. The reversal of MRP1 expression induced by low-frequency and low-intensity ultrasound and curcumin mediated by VEGF in brain glioma. Onco Targets Ther 2019; 12:3581-3593. [PMID: 31190861 PMCID: PMC6526172 DOI: 10.2147/ott.s195205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Purpose: To explore the effect of curcumin and low-frequency and low-intensity ultrasound (LFLIU) on C6 and U87 cell, and whether LFLIU could inhibit multidrug resistance protein 1 (MRP1) by increasing the sensitivity of curcumin via vascular epithelial growth factor (VEGF)/PI3K/Akt signaling pathway targeting. Methods: C6 and U87 cells were treated with various doses of curcumin and/or different intensities of LFLIU for 60 s. After 24 hrs, the effects of curcumin and/or LFLIU on the proliferation of C6 and U87 cells were examined. Real-time PCR and western blot analysis were used to detect the expression of VEGF and MRP1 at both mRNA and protein levels. The expression of MRP1 in C6 and U87 cells was also determined following stimulation with recombinant human VEGF and/or LY294002. Results: Curcumin and LFLIU inhibited the proliferation of glioma cells in an intensity- or dose-dependent manner. Furthermore, survivin was significant after combined treatment compares with that of curcumin or LFLIU treatment alone. VEGF and MRP1 were highly expressed in C6 and U87 cells, curcumin and LFLIU alone or in combination could decrease the expression of both VEGF and MRP1. MRP1 expression was down-regulated following LY294002 treatment, which blocked after exposure to VEGF. Conclusion: The synergistic effects, such as a higher inhibition rate, and lower expressions of MRP1 and VEGF, of combined curcumin and LFLIU against glioma was much better than that of a single treatment. The down-regulation of MRP1 may be related with the VEGF/PI3K/Akt pathway in glioma.
Collapse
Affiliation(s)
- Lei Yao
- Department of ultrasound, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| | - Zhen Zhang
- Department of ultrasound, First Affiliated Hospital of China Medical University, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|
16
|
Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P, Zhou M, Wang K. Potential Mechanisms of Action of Curcumin for Cancer Prevention: Focus on Cellular Signaling Pathways and miRNAs. Int J Biol Sci 2019; 15:1200-1214. [PMID: 31223280 PMCID: PMC6567807 DOI: 10.7150/ijbs.33710] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/10/2019] [Indexed: 12/15/2022] Open
Abstract
Despite significant progressions in treatment modalities over the last decade, either cancer incidence or mortality is continuously on the rise throughout the world. Current anticancer agents display limited efficacy, accompanied by severe side effects. In order to improve therapeutic outcomes in patients with cancer, it is crucial to identify novel, highly efficacious pharmacological agents. Curcumin, a hydrophobic polyphenol extracted from turmeric, has gained increasing attention due to its powerful anticancer properties. Curcumin can inhibit the growth, invasion and metastasis of various cancers. The anticancer mechanisms of curcumin have been extensively studied. The anticancer effects of curcumin are mainly mediated through its regulation of multiple cellular signaling pathways, including Wnt/β-catenin, PI3K/Akt, JAK/STAT, MAPK, p53 and NF-ĸB signaling pathways. Moreover, curcumin also orchestrates the expression and activity of oncogenic and tumor-suppressive miRNAs. In this review, we summarized the regulation of these signaling pathways by curcumin in different cancers. We also discussed the modulatory function of curcumin in the downregulation of oncogenic miRNAs and the upregulation of tumor-suppressive miRNAs. An in-depth understanding of the anticancer mechanisms of curcumin will be helpful for developing this promising compound as a therapeutic agent in clinical management of cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan 430071, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Meng Zhou
- Department of Dermatology, Qilu Hospital of Shandong University (Qingdao), Qingdao 266000, China
| | - Kun Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
17
|
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 2019; 60:887-939. [PMID: 30632782 DOI: 10.1080/10408398.2018.1552244] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Curcumin is a naturally occurring polyphenolic compound present in rhizome of Curcuma longa belonging to the family zingiberaceae. Growing experimental evidence revealed that curcumin exhibit multitarget biological implications signifying its crucial role in health and disease. The current review highlights the recent progress and mechanisms underlying the wide range of pharmacological effects of curcumin against numerous diseases like neuronal, cardiovascular, metabolic, kidney, endocrine, skin, respiratory, infectious, gastrointestinal diseases and cancer. The ability of curcumin to modulate the functions of multiple signal transductions are linked with attenuation of acute and chronic diseases. Numerous preclinical and clinical studies have revealed that curcumin modulates several molecules in cell signal transduction pathway including PI3K, Akt, mTOR, ERK5, AP-1, TGF-β, Wnt, β-catenin, Shh, PAK1, Rac1, STAT3, PPARγ, EBPα, NLRP3 inflammasome, p38MAPK, Nrf2, Notch-1, AMPK, TLR-4 and MyD-88. Curcumin has a potential to prevent and/or manage various diseases due to its anti-inflammatory, anti-oxidant and anti-apoptotic properties with an excellent safety profile. In contrast, the anti-cancer effects of curcumin are reflected due to induction of growth arrest and apoptosis in various premalignant and malignant cells. This review also carefully emphasized the pharmacokinetics of curcumin and its interaction with other drugs. Clinical studies have shown that curcumin is safe at the doses of 12 g/day but exhibits poor systemic bioavailability. The use of adjuvant like piperine, liposomal curcumin, curcumin nanoparticles and curcumin phospholipid complex has shown enhanced bioavailability and therapeutic potential. Further studies are warranted to prove the potential of curcumin against various ailments.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ashish Acharya
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - R S Ray
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Ritesh Agrawal
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| | - Priyal Jain
- Department of Pharmacy, Sagar Institute of Research and Technology, Bhopal, India
| |
Collapse
|
18
|
Farhat F, Daulay ER, Chrestella J, Asnir RA, Yudhistira A, Susilo RR. Correlation of P38 Mitogen-Activated Protein Kinase Expression to Clinical Stage in Nasopharyngeal Carcinoma. Open Access Maced J Med Sci 2018; 6:1982-1985. [PMID: 30559847 PMCID: PMC6290411 DOI: 10.3889/oamjms.2018.355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/04/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is uncommon and usually diagnosed at the advanced stage. A subfamily of mitogen-activated protein kinase which is called p38 mitogen-activated protein kinase (MAPK) involved in response to stress, and plays an important role in cell regulation. There is a suggestion that p38 mitogen-activated protein kinase could be a potential biomarker to determine the clinical stage of nasopharyngeal carcinoma. AIM The aim of this study is for observing and analysing the correlation of p38 mitogen-activated protein kinase expression in regards to nasopharyngeal carcinoma patient's clinical stage. METHODS This study involved 126 nasopharyngeal carcinoma patients admitted to Haji Adam Malik General Hospital. RESULTS The result of this study indicates that nasopharyngeal carcinoma mostly found in the age group 41-60 years, male, non-keratinizing squamous cell carcinoma, and stage IV group. In immunohistochemistry evaluation, most of p38 mitogen-activated protein kinase overexpressed in non-keratinizing squamous cell carcinoma, T3-T4, N2-N3 and clinical stage III-IV. Spearman's test for categorical correlation yield p-value of < 0.001. CONCLUSION In conclusion, there is a significant correlation between p38 mitogen-activated protein kinase expression and the clinical stage of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Farhat Farhat
- Universitas Sumatera Utara Fakultas Kedokteran, Otorhynolaryngology Head and Neck Surgery Jl. Dr. T. Mansyur No. 9, Medan, North Sumatera 20155, Indonesia
| | - Elvita Rahmi Daulay
- Universitas Sumatera Utara Fakultas Kedokteran, Radiology Medan, North Sumatera, Indonesia
| | - Jessy Chrestella
- Universitas Sumatera Utara Fakultas Kedokteran, Pathology Medan, Sumatera Utara, Indonesia
| | - Rizalina Arwinati Asnir
- Universitas Sumatera Utara Fakultas Kedokteran, Otorhynolaryngology Head and Neck Surgery Jl. Dr. T. Mansyur No. 9, Medan, North Sumatera 20155, Indonesia
| | - Ashri Yudhistira
- Universitas Sumatera Utara Fakultas Kedokteran, Otorhynolaryngology Head and Neck Surgery Jl. Dr. T. Mansyur No. 9, Medan, North Sumatera 20155, Indonesia
| | - Riko Radityatama Susilo
- Universitas Sumatera Utara Fakultas Kedokteran, Otorhynolaryngology Head and Neck Surgery Jl. Dr. T. Mansyur No. 9, Medan, North Sumatera 20155, Indonesia
| |
Collapse
|
19
|
Zhu GH, Dai HP, Shen Q, Zhang Q. Downregulation of LPXN expression by siRNA decreases the malignant proliferation and transmembrane invasion of SHI-1 cells. Oncol Lett 2018; 17:135-140. [PMID: 30655748 PMCID: PMC6313184 DOI: 10.3892/ol.2018.9605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/30/2018] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to investigate the effects of decreasing leupaxin (LPXN) expression on the proliferation and invasion of human acute monocytic leukemia SHI-1 cells. The transfection efficiency of fluorescein amidite (FAM)-small interfering RNA (siRNA) was determined using flow cytometry, and the protein expression levels of LPXN, phosphorylated (p)-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein kinase (p38 MAPK) and p-extracellular-signal-regulated kinase (ERK) were detected by western blot analysis. Proliferation was determined using the cell counting kit-8 reagent and cellular transmembrane invasion ability was determined using a Transwell chamber system. The gelatinase levels of matrix metalloproteinase (MMP)-2 and MMP-9 in the cell culture supernatant were also analyzed by gelatin zymography. In SHI-1 cells, the optimal transfection conditions of siRNA were a cell density of 4×105 cells/ml and a ratio of siRNA/Lipofectamine® 2000 of 200 pmol/1 µl. The highest transfection efficiency of FAM-siRNA was 74.5%. In the present study, L2-siRNA was selected to effectively decrease the expression of LPXN. Following downregulation of LPXN expression by L2-siRNA, proliferation inhibition rates increased to 27.043±2.051 and cell transmembrane invasion rates decreased to 25.270±2.145 (P<0.05). The results of the western blot analysis and the gelatin zymography indicated that downregulation of LPXN expression increased the expression of p-p38 MAPK and p-JNK, and attenuated the secretion levels of MMP-2 and MMP-9. However, downregulation of LPXN expression had no effect on p-ERK expression in SHI-1 cells. The results of the present study indicated that downregulation of LPXN expression decreased the malignant proliferation and transmembrane invasion of SHI-1 cells by activating JNK and p38 MAPK, and inhibiting MMP-2 and MMP-9 secretion.
Collapse
Affiliation(s)
- Guo-Hua Zhu
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Hai-Ping Dai
- Leukemia Research Unit, Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Qun Shen
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China.,Department of Hematology, First Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210009, P.R. China
| | - Qi Zhang
- First Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
20
|
朱 国, 戴 海, 段 元, 余 泽. [Small interfering RNA-mediated LPXN silencing suppresses proliferation and enhances drug sensitivity of human acute monocytic leukemia SHI-1 cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:807-811. [PMID: 33168498 PMCID: PMC6765540 DOI: 10.3969/j.issn.1673-4254.2018.07.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To investigate the effect of silencing LPXN expression by RNA interference on the proliferation and drug sensitivity of human acute monocytic leukemia SHI-1 cells in vitro. METHODS Small interfering RNA (siRNA) sequences targeting LPXN were designed and transiently transfected in SHI-1 cells via Lipofectamine 2000, and the most efficient siRNA sequence for LPXN silencing was identified using Western blotting. The protein expression levels of LPXN, p-JNK, p-P38 MAPK and p-ERK were in the cells transfected with the selected siRNA were detected using Western blotting, and the cell proliferation changes were assessed using CCK-8 reagent. RESULTS LPXN silencing by siRNA transfection resulted in significant proliferation suppression in SHI-1 cells with an inhibition rate of(27.04±2.05) % (P < 0.05). Western blotting showed that treatment of the siRNA-transfected SHI-1 cells with 0-25 μmol/L curcumin or with 0-2.0 μmol/L Ara-C further increased the cell inhibition rate and obviously enhanced the expressions of p-P38 MAPK and p-JNK without significantly affecting p-ERK expression. CONCLUSIONS Down-regulation of LPXN expression by siRNA transfection can suppress the proliferation and increase the drug sensitivity of SHI-1 cells probably by activating JNK and P38 MAPK.
Collapse
Affiliation(s)
- 国华 朱
- 南京中医药大学第一临床医学院,江苏 南京 210023First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - 海萍 戴
- 苏州大学第一附属医院血液科,江苏 苏州 215006Department of Hematology, First Hospital Affiliated to Suzhou University, Suzhou 215006, China
| | - 元勋 段
- 南京中医药大学第一临床医学院,江苏 南京 210023First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - 泽霖 余
- 南京中医药大学第一临床医学院,江苏 南京 210023First Clinical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
21
|
Wang Y, Mo H, Gu J, Chen K, Han Z, Liu Y. Cordycepin induces apoptosis of human acute monocytic leukemia cells via downregulation of the ERK/Akt signaling pathway. Exp Ther Med 2017; 14:3067-3073. [PMID: 28912858 PMCID: PMC5585717 DOI: 10.3892/etm.2017.4855] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/19/2017] [Indexed: 12/25/2022] Open
Abstract
The aim of the present study was to examine the apoptotic effect of cordycepin (COR) on human THP-1 acute monocytic leukemia cells. THP-1 cells were exposed to different concentrations of COR for 24, 48, 72 or 96 h. The cell viability and apoptotic rate were analyzed. The gene expression of Akt1, Akt2, Akt3, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were assessed by reverse-transcription quantitative PCR. Western blot analysis was used to detect the protein levels of phosphorylated (p)-Akt, p-extracellular signal-regulated kinase (ERK) and cleaved caspase-3. It was found that the viability of THP-1 cells was inhibited by COR in a dose- and time-dependent manner. After treatment with 200 µM COR for 24 h, the percentage of apoptotic cells was significantly increased. COR also downregulated the levels of Bcl-2, Akt1, Akt2 and Akt3, and elevated the expression of Bax. The protein levels of p-Akt and p-ERK were suppressed and cleaved caspase-3 was increased after treatment of COR. In conclusion, COR was found to induce apoptosis of THP-1 acute monocytic leukemia cells through downregulation of ERK/Akt signaling.
Collapse
Affiliation(s)
- Yue Wang
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Huimin Mo
- Institute of Hematology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, P.R. China
| | - Jun Gu
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Kan Chen
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Zhihua Han
- Department of Cardiology, Ninth People's Hospital, Shanghai Jiaotong University Medical School, Shanghai 200011, P.R. China
| | - Yi Liu
- Department of Ultrasound, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai 200127, P.R. China
| |
Collapse
|
22
|
Zhan JW, Jiao DM, Wang Y, Song J, Wu JH, Wu LJ, Chen QY, Ma SL. Integrated microRNA and gene expression profiling reveals the crucial miRNAs in curcumin anti-lung cancer cell invasion. Thorac Cancer 2017; 8:461-470. [PMID: 28660665 PMCID: PMC5582578 DOI: 10.1111/1759-7714.12467] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 12/11/2022] Open
Abstract
Background Curcumin (diferuloylmethane) has chemopreventive and therapeutic properties against many types of tumors, both in vitro and in vivo. Previous reports have shown that curcumin exhibits anti‐invasive activities, but the mechanisms remain largely unclear. Methods In this study, both microRNA (miRNA) and messenger RNA (mRNA) expression profiles were used to characterize the anti‐metastasis mechanisms of curcumin in human non‐small cell lung cancer A549 cell line. Results Microarray analysis revealed that 36 miRNAs were differentially expressed between the curcumin‐treated and control groups. miR‐330‐5p exhibited maximum upregulation, while miR‐25‐5p exhibited maximum downregulation in the curcumin treatment group. mRNA expression profiles and functional analysis indicated that 226 differentially expressed mRNAs belonged to different functional categories. Significant pathway analysis showed that mitogen‐activated protein kinase, transforming growth factor‐β, and Wnt signaling pathways were significantly downregulated. At the same time, axon guidance, glioma, and ErbB tyrosine kinase receptor signaling pathways were significantly upregulated. We constructed a miRNA gene network that contributed to the curcumin inhibition of metastasis in lung cancer cells. let‐7a‐3p, miR‐1262, miR‐499a‐5p, miR‐1276, miR‐331‐5p, and miR‐330‐5p were identified as key microRNA regulators in the network. Finally, using miR‐330‐5p as an example, we confirmed the role of miR‐330‐5p in mediating the anti‐migration effect of curcumin, suggesting the importance of miRNAs in the regulation of curcumin biological activity. Conclusion Our findings provide new insights into the anti‐metastasis mechanism of curcumin in lung cancer.
Collapse
Affiliation(s)
- Jian-Wei Zhan
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - De-Min Jiao
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Yi Wang
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Jia Song
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Jin-Hong Wu
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| | - Li-Jun Wu
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Qing-Yong Chen
- Department of Respiratory Disease, The 117th Hospital of PLA, Hangzhou, China
| | - Sheng-Lin Ma
- Department of Emergency Disease, Hangzhou First People's Hospital, Nanjing Medical University, Hangzhou, China
| |
Collapse
|
23
|
Yu X, Zhong J, Yan L, Li J, Wang H, Wen Y, Zhao Y. Curcumin exerts antitumor effects in retinoblastoma cells by regulating the JNK and p38 MAPK pathways. Int J Mol Med 2016; 38:861-8. [DOI: 10.3892/ijmm.2016.2676] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/07/2016] [Indexed: 11/05/2022] Open
|