1
|
Gallorini M, Mencarelli N, Di Pietro N, di Giacomo V, Zara S, Ricci A, Rapino M, Piattelli A, Cipollina A, Cataldi A. The Immunophenotype and the Odontogenic Commitment of Dental Pulp Stem Cells Co-Cultured with Macrophages Under Inflammatory Conditions Is Modulated by Complex Magnetic Fields. Int J Mol Sci 2024; 26:48. [PMID: 39795907 PMCID: PMC11720158 DOI: 10.3390/ijms26010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Dental inflammatory diseases remain a challenging clinical issue, whose causes and development are still not fully understood. During dental caries, bacteria penetrate the tooth pulp, causing pulpitis. To prevent pulp necrosis, it is crucial to promote tissue repair by recruiting immune cells, such as macrophages, able to secrete signal molecules for the pulp microenvironment and thus to recruit dental pulp stem cells (DPSCs) in the damaged site. To date, root canal therapy is the standard for dental caries, but alternative regenerative treatments are gaining attention. Complex Multifrequency Magnetoelectric Fields (CMFs) represent an interesting tool due to their potential anti-inflammatory activity. Against this background, the present work aims at investigating whether the CMF treatment might restore redox balance in a co-culture model of DPSCs and inflamed macrophages mimicking an inflammatory condition, like pulpitis. Results show that superoxide anion levels and markers related to the polarization of macrophages are modulated by the CMF treatment. In parallel, the use of CMFs discloses an impact on the odontogenic commitment of DPSCs, their immunophenotype being considerably modified. In conclusion, CMFs, by modulating the odontogenic commitment and the anti-inflammatory response of DPSCs, might represent a suitable therapeutic tool against pulpitis and, in general, towards dental inflammatory diseases.
Collapse
Affiliation(s)
- Marialucia Gallorini
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (N.M.); (V.d.G.); (S.Z.); (A.R.)
| | - Noemi Mencarelli
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (N.M.); (V.d.G.); (S.Z.); (A.R.)
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy;
| | - Viviana di Giacomo
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (N.M.); (V.d.G.); (S.Z.); (A.R.)
| | - Susi Zara
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (N.M.); (V.d.G.); (S.Z.); (A.R.)
| | - Alessia Ricci
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (N.M.); (V.d.G.); (S.Z.); (A.R.)
| | - Monica Rapino
- Genetic Molecular Institute of CNR, Unit of Chieti, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University Rome, Via di Sant’Alessandro, 00131 Rome, Italy;
| | | | - Amelia Cataldi
- Department of Pharmacy, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy; (M.G.); (N.M.); (V.d.G.); (S.Z.); (A.R.)
- UdA Tech Lab, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
2
|
Ganguly K, Luthfikasari R, Randhawa A, Dutta SD, Patil TV, Acharya R, Lim KT. Stimuli-Mediated Macrophage Switching, Unraveling the Dynamics at the Nanoplatforms-Macrophage Interface. Adv Healthc Mater 2024; 13:e2400581. [PMID: 38637323 DOI: 10.1002/adhm.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Macrophages play an essential role in immunotherapy and tissue regeneration owing to their remarkable plasticity and diverse functions. Recent bioengineering developments have focused on using external physical stimuli such as electric and magnetic fields, temperature, and compressive stress, among others, on micro/nanostructures to induce macrophage polarization, thereby increasing their therapeutic potential. However, it is difficult to find a concise review of the interaction between physical stimuli, advanced micro/nanostructures, and macrophage polarization. This review examines the present research on physical stimuli-induced macrophage polarization on micro/nanoplatforms, emphasizing the synergistic role of fabricated structure and stimulation for advanced immunotherapy and tissue regeneration. A concise overview of the research advancements investigating the impact of physical stimuli, including electric fields, magnetic fields, compressive forces, fluid shear stress, photothermal stimuli, and multiple stimulations on the polarization of macrophages within complex engineered structures, is provided. The prospective implications of these strategies in regenerative medicine and immunotherapeutic approaches are highlighted. This review will aid in creating stimuli-responsive platforms for immunomodulation and tissue regeneration.
Collapse
Affiliation(s)
- Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
3
|
Markus I, Ohayon E, Constantini K, Geva-Kleinberger K, Ibrahim R, Ruban A, Gepner Y. The Effect of Extremely Low-Frequency Electromagnetic Fields on Inflammation and Performance-Related Indices in Trained Athletes: A Double-Blinded Crossover Study. Int J Mol Sci 2023; 24:13463. [PMID: 37686264 PMCID: PMC10487818 DOI: 10.3390/ijms241713463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Previous investigations have demonstrated the therapeutic advantages of extremely low-frequency electromagnetic fields (ELF-EMFs) in mitigating inflammation and influencing biological processes. We aimed to shed light on the effects of ELF-EMF on recovery rate following high-intensity exercise. Nine male athletes (26.7 ± 6.0 years; 69.6 ± 7.7 kg, VO2peak 57.3 ± 6.8 mL/kg/min) completed five visits in a double-blinded crossover design, performing two consecutive testing days, following a ventilatory thresholds assessment. Following 62 min of high-intensity cycling, participants lay on an ELF-EMF mattress under active (A) and non-active (NA) conditions, immediately post protocol and during the night. Physical performance and blood markers were assessed at baseline and at 60 min (60 P) and 24 h (24 H) post-protocol. The A-condition demonstrated a notable reduction in interleukin-10 (IL-10) concentrations (mean difference = -88%, p = 0.032) and maximal isometric strength of the quadriceps muscles (mean difference = ~8%, p = 0.045) compared to the NA-condition between 60 P and 24 H. In a sensitivity analysis, the A-condition revealed that younger athletes who possessed lower fat mass experienced attenuated inflammation and biochemical responses and improved physical performance. In conclusion, ELF-EMF showed no significant overall effects on performance and inflammation after intense cycling among athletes. Post-hoc analysis revealed modest benefits of ELF-MLF, suggesting a context-dependent impact. Further research with a larger sample size and multiple sessions is needed to confirm the recovery potential of ELF-EMF.
Collapse
Affiliation(s)
- Irit Markus
- Department of Health Promotion, School of Public Health, Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv 69978, Israel; (I.M.); (K.G.-K.)
| | - Evyatar Ohayon
- Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv 69978, Israel; (E.O.); (K.C.)
| | - Keren Constantini
- Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv 69978, Israel; (E.O.); (K.C.)
| | - Keren Geva-Kleinberger
- Department of Health Promotion, School of Public Health, Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv 69978, Israel; (I.M.); (K.G.-K.)
| | - Rawan Ibrahim
- Department of Biomedical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Angela Ruban
- Steyer School of Health Professions, Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Yftach Gepner
- Department of Health Promotion, School of Public Health, Faculty of Medicine, and Sylvan Adams Sports Institute, Tel-Aviv University, Tel-Aviv 69978, Israel; (I.M.); (K.G.-K.)
| |
Collapse
|
4
|
Wilson HM. Modulation of macrophages by biophysical cues in health and beyond. DISCOVERY IMMUNOLOGY 2023; 2:kyad013. [PMID: 38567062 PMCID: PMC10917218 DOI: 10.1093/discim/kyad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 08/09/2023] [Indexed: 04/04/2024]
Abstract
Macrophages play a key role in tissue development and homeostasis, innate immune defence against microbes or tumours, and restoring homeostasis through tissue regeneration following infection or injury. The ability to adopt such diverse functions is due to their heterogeneous nature, which is driven largely by their developmental origin and their response to signals they encounter from the microenvironment. The most well-characterized signals driving macrophage phenotype and function are biochemical and metabolic. However, the way macrophages sense and respond to their extracellular biophysical environment is becoming increasingly recognized in the field of mechano-immunology. These biophysical cues can be signals from tissue components, such as the composition and charge of extracellular matrix or topography, elasticity, and stiffness of the tissue surrounding cells; and mechanical forces such as shear stress or stretch. Macrophages are important in determining whether a disease resolves or becomes chronic. Ageing and diseases such as cancer or fibrotic disorders are associated with significant changes in the tissue biophysical environment, and this provides signals that integrate with those from biochemical and metabolic stimuli to ultimately dictate the overall function of macrophages. This review provides a brief overview of macrophage polarization, followed by a selection of commonly recognized physiological and applied biophysical stimuli impacting macrophage activity, and the potential signalling mechanisms driving downstream responses. The effects of biophysical cues on macrophages' function in homeostasis and disease and the associated clinical implications are also highlighted.
Collapse
Affiliation(s)
- Heather M Wilson
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
5
|
Beltran-Huarac J, Yamaleyeva DN, Dotti G, Hingtgen S, Sokolsky-Papkov M, Kabanov AV. Magnetic Control of Protein Expression via Magneto-mechanical Actuation of ND-PEGylated Iron Oxide Nanocubes for Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19877-19891. [PMID: 37040569 PMCID: PMC10143622 DOI: 10.1021/acsami.3c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Engineered cells used as smart vehicles for delivery of secreted therapeutic proteins enable effective treatment of cancer and certain degenerative, autoimmune, and genetic disorders. However, current cell-based therapies use mostly invasive tools for tracking proteins and do not allow for controlled secretion of therapeutic proteins, which could result in unconstrained killing of surrounding healthy tissues or ineffective killing of host cancer cells. Regulating the expression of therapeutic proteins after success of therapy remains elusive. In this study, a noninvasive therapeutic approach mediated by magneto-mechanical actuation (MMA) was developed to remotely regulate the expression of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) protein, which is secreted by transduced cells. Stem cells, macrophages, and breast cancer cells were transduced with a lentiviral vector encoding the SGpL2TR protein. SGpL2TR comprises TRAIL and GpLuc domains optimized for cell-based applications. Our approach relies on the remote actuation of cubic-shape highly magnetic field responsive superparamagnetic iron oxide nanoparticles (SPIONs) coated with nitrodopamine PEG (ND-PEG), which are internalized within the cells. Cubic ND-PEG-SPIONs actuated by superlow frequency alternating current magnetic fields can translate magnetic forces into mechanical motion and in turn spur mechanosensitive cellular responses. Cubic ND-PEG-SPIONs were artificially designed to effectively operate at low magnetic field strengths (<100 mT) retaining approximately 60% of their saturation magnetization. Compared to other cells, stems cells were more sensitive to the interaction with actuated cubic ND-PEG-SPIONs, which clustered near the endoplasmic reticulum (ER). Luciferase, ELISA, and RT-qPCR analyses revealed a marked TRAIL downregulation (secretion levels were depleted down to 30%) when intracellular particles at 0.100 mg/mL Fe were actuated by magnetic fields (65 mT and 50 Hz for 30 min). Western blot studies indicated actuated, intracellular cubic ND-PEG-SPIONs can cause mild ER stress at short periods (up to 3 h) of postmagnetic field treatment thus leading to the unfolded protein response. We observed that the interaction of TRAIL polypeptides with ND-PEG can also contribute to this response. To prove the applicability of our approach, we used glioblastoma cells, which were exposed to TRAIL secreted from stem cells. We demonstrated that in the absence of MMA treatment, TRAIL essentially killed glioblastoma cells indiscriminately, but when treated with MMA, we were able to control the cell killing rate by adjusting the magnetic doses. This approach can expand the capabilities of stem cells to serve as smart vehicles for delivery of therapeutic proteins in a controlled manner without using interfering and expensive drugs, while retaining their potential to regenerate damaged tissue after treatment. This approach brings forth new alternatives to regulate protein expression noninvasively for cell therapy and other cancer therapies.
Collapse
Affiliation(s)
- Juan Beltran-Huarac
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department
of Physics, Howell Science Complex, East
Carolina University, Greenville, North Carolina 27858, United States
| | - Dina N. Yamaleyeva
- Joint
UNC/NC State Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Gianpietro Dotti
- Lineberger
Comprehensive Cancer Center and Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Shawn Hingtgen
- Division
of Pharmacoengineering and Molecular Therapeutics, Eshelman School
of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Marina Sokolsky-Papkov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Alexander V. Kabanov
- Center
for Nanotechnology in Drug Delivery and Division of Pharmacoengineering
and Molecular Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Playing with Biophysics: How a Symphony of Different Electromagnetic Fields Acts to Reduce the Inflammation in Diabetic Derived Cells. Int J Mol Sci 2023; 24:ijms24021754. [PMID: 36675268 PMCID: PMC9861282 DOI: 10.3390/ijms24021754] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/02/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.
Collapse
|
7
|
Jain N, Moeller J, Vogel V. Mechanobiology of Macrophages: How Physical Factors Coregulate Macrophage Plasticity and Phagocytosis. Annu Rev Biomed Eng 2020; 21:267-297. [PMID: 31167103 DOI: 10.1146/annurev-bioeng-062117-121224] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In addition to their early-recognized functions in host defense and the clearance of apoptotic cell debris, macrophages play vital roles in tissue development, homeostasis, and repair. If misregulated, they steer the progression of many inflammatory diseases. Much progress has been made in understanding the mechanisms underlying macrophage signaling, transcriptomics, and proteomics, under physiological and pathological conditions. Yet, the detailed mechanisms that tune circulating monocytes/macrophages and tissue-resident macrophage polarization, differentiation, specification, and their functional plasticity remain elusive. We review how physical factors affect macrophage phenotype and function, including how they hunt for particles and pathogens, as well as the implications for phagocytosis, autophagy, and polarization from proinflammatory to prohealing phenotype. We further discuss how this knowledge can be harnessed in regenerative medicine and for the design of new drugs and immune-modulatory drug delivery systems, biomaterials, and tissue scaffolds.
Collapse
Affiliation(s)
- Nikhil Jain
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Jens Moeller
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, and Department of Health Sciences and Technology, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
8
|
Pesqueira T, Costa‐Almeida R, Gomes ME. Magnetotherapy: The quest for tendon regeneration. J Cell Physiol 2018; 233:6395-6405. [DOI: 10.1002/jcp.26637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/30/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Tamagno Pesqueira
- 3B's Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Zona Industrial da Gandra Barco Guimarães Portugal
- ICVS/3B's − PT Government Associate Laboratory Guimarães Portugal
| | - Raquel Costa‐Almeida
- 3B's Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Zona Industrial da Gandra Barco Guimarães Portugal
- ICVS/3B's − PT Government Associate Laboratory Guimarães Portugal
| | - Manuela E. Gomes
- 3B's Research Group − Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine Zona Industrial da Gandra Barco Guimarães Portugal
- ICVS/3B's − PT Government Associate Laboratory Guimarães Portugal
- The Discoveries Centre for Regenerative and Precision Medicine Headquarters at University of Minho Barco Guimarães Portugal
| |
Collapse
|
9
|
Bell IR, Schwartz GE. Enhancement of adaptive biological effects by nanotechnology preparation methods in homeopathic medicines. HOMEOPATHY 2015; 104:123-38. [DOI: 10.1016/j.homp.2014.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 11/16/2014] [Indexed: 01/19/2023]
|
10
|
Kubat NJ, Moffett J, Fray LM. Effect of pulsed electromagnetic field treatment on programmed resolution of inflammation pathway markers in human cells in culture. J Inflamm Res 2015; 8:59-69. [PMID: 25759595 PMCID: PMC4346366 DOI: 10.2147/jir.s78631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a complex process involving distinct but overlapping biochemical and molecular events that are highly regulated. Pulsed electromagnetic field (PEMF) therapy is increasingly used to treat pain and edema associated with inflammation following surgery involving soft tissue. However, the molecular and cellular effects of PEMF therapy on pathways involved in the resolution of inflammation are poorly understood. Using cell culture lines relevant to trauma-induced inflammation of the skin (human dermal fibroblasts, human epidermal keratinocytes, and human mononuclear cells), we investigated the effect of PEMF on gene expression involved in the acute and resolution phases of inflammation. We found that PEMF treatment was followed by changes in the relative amount of messenger (m)RNAs encoding enzymes involved in heme catabolism and removal of reactive oxygen species, including an increase in heme oxygenase 1 and superoxide dismutase 3 mRNAs, in all cell types examined 2 hours after PEMF treatment. A relative increase in mRNAs encoding enzymes involved in lipid mediator biosynthesis was also observed, including an increase in arachidonate 12- and 15-lipoxygenase mRNAs in dermal fibroblasts and epidermal keratinocytes, respectively. The relative amount of both of these lipoxygenase mRNAs was elevated in mononuclear cells following PEMF treatment relative to nontreated cells. PEMF treatment was also followed by changes in the mRNA levels of several cytokines. A decrease in the relative amount of interleukin 1 beta mRNA was observed in mononuclear cells, similar to that previously reported for epidermal keratinocytes and dermal fibroblasts. Based on our results, we propose a model in which PEMF therapy may promote chronic inflammation resolution by mediating gene expression changes important for inhibiting and resolving inflammation.
Collapse
Affiliation(s)
| | - John Moffett
- Life Science Department, Regenesis Biomedical, Inc., Scottsdale, AZ, USA
| | - Linley M Fray
- Life Science Department, Regenesis Biomedical, Inc., Scottsdale, AZ, USA
| |
Collapse
|