1
|
Melnikov K, Kaiglová A, Kucharíková S. The use of the model organism Caenorhabditis elegans in the investigation of the adverse effects of electronic cigarettes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117853. [PMID: 39919590 DOI: 10.1016/j.ecoenv.2025.117853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/09/2025]
Abstract
The use of tobacco products is one of the most preventable risk factors for mortality from a variety of diseases, including cardiovascular, infectious, respiratory, and neoplastic conditions. The use of electronic cigarettes (ECIGs), also known as electronic nicotine delivery devices, has increased significantly in recent years. Nicotine, propylene glycol, and / or glycerine, water, alcohol, flavorings, and other substances are among the many chemicals found in ECIGs that are vaporized and inhaled. A review of the existing literature shows that research dedicated to ECIGs is a rapidly developing and growing field of study. The rationale for the use of ECIGs is that they represent a safer alternative to traditional tobacco products. However, vaping safety profiles are still under development, as this is a relatively recent phenomenon. Various model organisms can be employed to examine the cellular processes that may be altered by exposure to the electronic liquids utilized for vaping. For example, the translucent multicellular eukaryote Caenorhabditis elegans is widely used as a model organism to explain a broad range of biological processes, including aging, stress response, development, and many others. Due to its short lifespan and easy use, C. elegans is an ideal model organism for studying chronic exposure to drugs and environmental toxicology. This review presents a summary of the most recent findings on the impact of electronic cigarettes on the physiological health of this nematode. Preliminary observations made in C. elegans can provide insight into the consequences of exposure to fundamental cellular physiology, which can then be used for future research in humans and mammalian models.
Collapse
Affiliation(s)
- Kamila Melnikov
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné námestie 1, Trnava 918 43, Slovakia
| | - Alžbeta Kaiglová
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné námestie 1, Trnava 918 43, Slovakia
| | - Soňa Kucharíková
- Department of Laboratory Medicine, Faculty of Health Care and Social Work, Trnava University in Trnava, Univerzitné námestie 1, Trnava 918 43, Slovakia.
| |
Collapse
|
2
|
Refaat RMM, Fouda AE, El-Shishtawy MA, Kumar A, El-Shafai NM, Faruk EM, Nafea OE, Hindawy RF. Exploring the potential of selenium nanoparticles and fabricated selenium nanoparticles @vitamin C nanocomposite in mitigating nicotine-induced testicular toxicity in rats. Toxicol Res (Camb) 2024; 13:tfae154. [PMID: 39359714 PMCID: PMC11442148 DOI: 10.1093/toxres/tfae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Background The tobacco epidemic signifies a major public health threat. Nicotine (NIC), a major active constituent in tobacco, impedes male fertility and semen quality. This work is implemented to explore the potential of selenium nanoparticles (SeNPs) and the newly fabricated SeNPs @vitamin C (SeNPs@VITC) nanocomposite in mitigating testicular toxicity induced by NIC. Materials and methods The six groups of 48 adult Wistar rats were designed as follows: the control group injected intraperitoneally with normal saline, the SeNPs group treated orally with 2 mg/kg of SeNPs, the SeNPs@VITC nanocomposite group treated orally with 2 mg/kg of SeNPs@VITC nanocomposite, the NIC group injected intraperitoneally with 1.25 mL/kg of NIC, the NIC+ SeNPs group received SeNPs plus NIC, and the NIC+ SeNPs@VITC nanocomposite group received SeNPs@VITC nanocomposite plus NIC. Treatments were administered over a 28-day period. Results NIC treatment significantly caused poor sperm quality, decreased serum testosterone, increased follicle-stimulating hormone (FSH), luteinizing hormone (LH) concentrations, reduced hemoglobin levels, leukocytosis, disrupted testicular oxidant/antioxidant balance, and disorganized testicular structure. The construction of the novel SeNPs@VITC nanocomposite, compared to NIC plus SeNPs alone, demonstrated a more potent ameliorative effect on NIC-induced reproductive toxicity in adult rats. The SeNPs@VITC nanocomposite significantly increased sperm count, reduced the percentage of sperm head abnormalities, lowered both serum FSH and LH concentrations, and improved the hemoglobin response. Conclusions Both SeNPs and SeNPs@VITC nanocomposite alleviated the testicular toxicity induced by NIC, but the SeNPs@VITC nanocomposite exhibited superior efficacy. The SeNPs@VITC nanocomposite could be employed to advance enhanced therapeutic strategies for addressing male infertility.
Collapse
Affiliation(s)
- Rana M M Refaat
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Atef E Fouda
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Mohamed A El-Shishtawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| | - Adarsh Kumar
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences (AIIMS), AIIMS Campus, Ansari Nagar East, New Delhi, India
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Qism Kafr El-Shaikh, Kafr Al Sheikh First, Kafr El-Sheikh Governorate, Kafrelsheikh 33516, Egypt
| | - Eman M Faruk
- Anatomy Department, College of Medicine, Umm Al-Qura University, College of Medicine, Umm Al-Qura, University, Al Abidiyah, Makkah, Saudi Arabia
- Department of Histology and Cytology, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha, Egypt
| | - Ola E Nafea
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig Rd inside Zagazig University, Shaibet an Nakareyah, Al-Sharqia Governorate, Zagazig 44519, Egypt
| | - Rabab F Hindawy
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Benha University, Al Nadi Al Ryadi, Qism Benha, Al-Qalyubia Governorate, Benha 13518, Egypt
| |
Collapse
|
3
|
Tobacco or marijuana use and infertility: a committee opinion. Fertil Steril 2024; 121:589-603. [PMID: 38284953 DOI: 10.1016/j.fertnstert.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024]
Abstract
In the United States, approximately 21% of adults report some form of tobacco use, although 18% report marijuana use. Although the negative impact of tobacco use in pregnancy is well documented, the impact of tobacco and marijuana on fertility and reproduction is less clear. This committee opinion reviews the potential deleterious effects of tobacco, nicotine, and marijuana use on conception, ovarian follicular dynamics, sperm parameters, gamete mutations, early pregnancy, and assisted reproductive technology outcomes. It also reviews the current status of tobacco smoking cessation strategies. This document replaces the 2018 American Society for Reproductive Medicine Practice Committee document entitled Smoking and Infertility: a committee opinion (Fertil Steril 2018).
Collapse
|
4
|
LaPointe S, Mehta A, Gaskins AJ. Diet and recreational drug use in relation to male reproductive health. Fertil Steril 2023; 120:1089-1097. [PMID: 37838140 DOI: 10.1016/j.fertnstert.2023.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/16/2023]
Abstract
Diet and lifestyle interventions present promising avenues for the improvement of male fertility. Our objective was to review and synthesize the existing observational and experimental studies among humans on the associations of diet and recreational drug use with semen quality and fertility outcomes. The available data on this topic are limited and, at times, conflicting. Nevertheless, on the basis of this review, dietary patterns that are composed of higher intakes of fruits, vegetables, whole grains, nuts, low-fat dairy, and seafood, as well as lower intakes of red and processed meats, sweets, and sugar-sweetened beverages were identified as having the strongest evidence for associations with better sperm quality. However, whether these dietary patterns translate into positive associations with clinical fertility endpoints such as assisted reproductive technology success rates or time-to-pregnancy among couples trying to conceive without medical assistance remains unclear. Male caffeine and alcohol intake, within low-to-moderate ranges of intake, do not appear to be detrimental to semen quality. Yet high-quality research on this topic, focused on clinical fertility endpoints, should continue given the conflicting evidence, particularly in populations undergoing infertility treatment with assisted reproductive technology. Recreational drug use, including marijuana, electronic cigarettes, and other illicit drugs, does not appear to be beneficial for male reproductive health and should be avoided or ceased. In conclusion, men should be encouraged to consume a healthy diet rich in fruits, vegetables, whole grains, nuts, low-fat dairy, and seafood, as well as lacking in red and processed meats, sweets, and sugar-sweetened beverages, and to avoid recreational drug use for improved male reproductive health.
Collapse
Affiliation(s)
- Sarah LaPointe
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia
| | - Akanksha Mehta
- Department of Urology, Emory University School of Medicine, Atlanta, Georgia
| | - Audrey J Gaskins
- Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, Georgia.
| |
Collapse
|
5
|
Chen T, Wu M, Dong Y, Ren H, Wang M, Kong B, Cai Y, Hei C, Wu K, Zhao C, Li Y, Fan Y, Chang Q. Ovarian toxicity of e-cigarette liquids: Effects of components and high and low nicotine concentration e-cigarette liquid in vitro. Tob Induc Dis 2023; 21:128. [PMID: 37818036 PMCID: PMC10561186 DOI: 10.18332/tid/170631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/16/2023] [Accepted: 08/04/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Electronic cigarette use has become increasingly popular, with potential consequences for reproductive health. We aimed to investigate the effects of different components of e-liquid on the ovary and compare the impact of low nicotine concentration e-liquids (LN e-liquids) and high nicotine concentration e-liquids (HN e-liquids) on ovarian toxicity. METHODS A total of 378 rat ovaries were divided into seven groups, including control (no intervention), nicotine (0.05 mg/mL), flavoring (0.25 μL/mL), propylene glycol (PG) (2.5 μL/mL), vegetable glycerin (VG) (2.0 μL/mL), LN e-liquid (0.05 mg nicotine + 0.25 μL flavoring + 2.5 μL PG + 2.0 μL VG + 0.25 μL distilled water/mL medium) and HN e-liquid groups (0.05 mg nicotine + 0.05 μL flavoring + 0.5 μL PG + 0.4 μL VG + 0.05 μL distilled water/mL medium). After three hours of in vitro culture, ovarian morphology, oxidation levels [superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA)], and apoptosis levels [factor related apoptosis (Fas), Cyt-c, Caspase-9, Caspase-3] were analyzed. RESULTS Our findings indicate that nicotine has limited impact on the ovary, while flavoring, PG, and VG all cause ovarian damage including morphological damage, disruption of oxidative balance and promotion of apoptosis, with VG having the most significant effect. Moreover, LN e-liquids may lead to more severe ovarian damage than HN e-liquids at an equal intake of total nicotine. CONCLUSIONS Our study highlights that in e-liquid formula, nicotine has a limited effect on the ovaries, but flavoring, PG, and VG all cause damage to the ovaries, with VG the most damaging. At a consistent level of total nicotine intake, e-liquids with low nicotine concentrations cause more damage to the ovaries than those with high nicotine concentrations. These findings contribute to a better understanding of the impact of e-liquids on ovarian health and have important implications for public health policy.
Collapse
Affiliation(s)
- Tairen Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Mengjing Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuting Dong
- Department of Critical Care Medicine, General Hospital of Benxi Iron and Steel Industry Group, Liaoning Health Industry Group, Benxi, China
| | - Hehe Ren
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Meiling Wang
- Department of Anatomy, Basic Medical College, Shanxi Medical University, Taiyuan, China
| | - Bin Kong
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yufang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Changchun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kai Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chengjun Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yiwei Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yucheng Fan
- Department of Pathology, The First People's Hospital of Shizuishan, Ningxia Medical University, Shizuishan, China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Cousin O, Vandecandelaere A, Bosquet D, Lefranc E, Scheffler F, Copin H, Mattoug S, Ben Khalifa M, Cabry R. [Electronic cigarettes and fertility: True or false friends?]. GYNECOLOGIE, OBSTETRIQUE, FERTILITE & SENOLOGIE 2023; 51:378-383. [PMID: 36931597 DOI: 10.1016/j.gofs.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023]
Abstract
While electronic cigarettes have been on the rise in France for the past ten years, data on their prevalence, use patterns and safety have remained fragmented and controversial. Electronic cigarettes seem to not be a harmless product to use, because although they contain fewer harmful substances than traditional cigarettes, they still contain toxic products such as endocrine disruptors, which appear to have a negative impact on hormonal homeostasis, morphology and functioning of the animal reproductive system. Mostly presented as a harmless alternative to traditional cigarettes by industry lobbies, electronic cigarettes are often offered as an aid to smoking cessation in the same way as nicotinic substitutes. This strategy is especially proposed without knowledge of its effects on human reproductive health. Indeed, there are currently very few scientific publications, which study the impact of the use of electronic cigarettes, nicotine and the vapours it delivers on fertility and the functioning of the human female and male reproductive systems. Thus, the great majority of the data we have to date come from studies carried out in animal populations and show that electronic cigarettes exposure affect fertility. There is, to our knowledge, no scientific publication on the results in Assisted Reproductive Technology in case of use of electronic cigarettes, motivating the realization of the study IVF-VAP currently underway in the department of Medicine and Biology of Reproduction of the Amiens Picardie University Hospital.
Collapse
Affiliation(s)
- O Cousin
- Service de médecine et biologie de la reproduction, CECOS de Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - A Vandecandelaere
- Service de médecine et biologie de la reproduction, CECOS de Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - D Bosquet
- Service de médecine et biologie de la reproduction, CECOS de Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - E Lefranc
- Service de médecine et biologie de la reproduction, CECOS de Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - F Scheffler
- Service de médecine et biologie de la reproduction, CECOS de Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - H Copin
- Service de médecine et biologie de la reproduction, CECOS de Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - S Mattoug
- 1, rond-point du Professeur Christian-Cabrol, 80054 Amiens cedex 1, France
| | - M Ben Khalifa
- Service de médecine et biologie de la reproduction, CECOS de Picardie, CHU d'Amiens-Picardie, Amiens, France
| | - R Cabry
- Service de médecine et biologie de la reproduction, CECOS de Picardie, CHU d'Amiens-Picardie, Amiens, France.
| |
Collapse
|
7
|
Ali N, Xavier J, Engur M, Pv M, Bernardino de la Serna J. The impact of e-cigarette exposure on different organ systems: A review of recent evidence and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131828. [PMID: 37320902 DOI: 10.1016/j.jhazmat.2023.131828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
The use of electronic cigarettes (e-cigs) is rapidly increasing worldwide and is promoted as a smoking cessation tool. The impact of traditional cigs on human health has been well-defined in both animal and human studies. In contrast, little is known about the adverse effects of e-cigs exposure on human health. This review summarizes the impact of e-cigs exposure on different organ systems based on the rapidly expanding recent evidence from experimental and human studies. A number of growing studies have shown the adverse effects of e-cigs exposure on various organ systems. The summarized data in this review indicate that while e-cigs use causes less adverse effects on different organs compared to traditional cigs, its long-term exposure may lead to serious health effects. Data on short-term organ effects are limited and there is no sufficient evidence on long-term organ effects. Moreover, the adverse effects of secondhand and third hand e-cigs vapour exposure have not been thoroughly investigated in previous studies. Although some studies demonstrated e-cigs used as a smoking cessation tool, there is a lack of strong evidence to support it. While some researchers suggested e-cigs as a safer alternative to tobacco smoking, their long-term exposure health effects remain largely unknown. Therefore, more epidemiological and prospective studies including mechanistic studies are needed to address the potential adverse health effects of e-cigs to draw a firm conclusion about their safe use. A wide variation in e-cigs products and the lack of standardized testing methods are the major barriers to evaluating the existing data. Specific regulatory guidelines for both e-cigs components and the manufacturing process may be effective to protect consumer health.
Collapse
Affiliation(s)
- Nurshad Ali
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh.
| | - Joseph Xavier
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK; Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | - Melih Engur
- National Heart and Lung Institute, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Mohanan Pv
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695012, Kerala, India.
| | | |
Collapse
|
8
|
Saygın H, Korgalı E, Koç T, Doğan K. The effect of smoking and electronic cigarettes on rat testicles. Rev Int Androl 2023; 21:100365. [PMID: 37276739 DOI: 10.1016/j.androl.2023.100365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 01/17/2022] [Accepted: 04/12/2022] [Indexed: 06/07/2023]
Abstract
OBJECTIVE After the negative effects of smoking on public health were proven, smoking cessation campaigns were initiated by health ministries and non-governmental organizations. Many drugs have been tried to reduce the addiction to smoking and the nicotine contained in it. Recently, e-cigarettes (EC) are widely used for smoking cessation efforts, although the effects and possible harms are not fully known. In our study, we planned to show the effect of cigarette and EC smoke on the male urogenital system. METHODS Adult male wistar rats were exposed to cigarette and EC smoke in a specially designed glass bell jar. Urine cotinine levels, testicular weights, gonadosomatic index, sperm count and sperm motility, testicular histology, and biochemical findings were compared with the control group. RESULTS In some rats in the cigarette and EC group, the seminiferous tubules were disorganized, and the germ cells and Sertoli cells were separated and shed. Stopped germ cell separation, cavity formation, necrosis, fibrosis, and atrophy were observed in severe cases. Higher PCO levels were found in the cigarette group compared to controls. Tissue homogenates levels of LPO were higher in both EC and cigarette groups compared to controls. No significant differences were observed between groups in terms of sperm motility and sperm count. CONCLUSION Cigarette and EC liquid can increase oxidative stress as well as cause morphological changes in the testicle. To be a safe option in smoking cessation studies, its effect on people needs to be enlightened.
Collapse
Affiliation(s)
- Hüseyin Saygın
- Department of Urology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey.
| | - Esat Korgalı
- Department of Urology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Tülay Koç
- Department of Pathology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Kübra Doğan
- Department of Biochemistry, Sivas Numune Hospital, Sivas, Turkey
| |
Collapse
|
9
|
Montjean D, Godin Pagé MH, Bélanger MC, Benkhalifa M, Miron P. An Overview of E-Cigarette Impact on Reproductive Health. Life (Basel) 2023; 13:life13030827. [PMID: 36983982 PMCID: PMC10053939 DOI: 10.3390/life13030827] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Electronic cigarettes (e-cigarettes) are often considered a "safe substitute" for conventional cigarette cessation. The composition of the fluid is not always clearly defined and shows a large variation within brands and manufacturers. More than 80 compounds were detected in liquids and aerosols. E-cigarettes contain nicotine, and the addition of flavorings increases the toxicity of e-cigarette vapour in a significant manner. The heat generated by the e-cigarette leads to the oxidation and decomposition of its components, eventually forming harmful constituents in the inhaled vapour. The effects of these toxicants on male and female reproduction are well established in conventional cigarette smokers. Although toxins were measured at much lower levels in e-cigarette aerosols compared to smoke from a conventional cigarette, there are concerns about their potential impact on male and female reproduction. The information available was mainly obtained from studies conducted in animal models, and investigations in humans are scarce. However, the effects observed in animal models suggest that caution should be taken when vaping and that more research needs to be conducted to identify its potential adverse effects on fertility. The prevalence of e-cigarette usage is alarming, and warnings should be made about the impact of vaping on reproductive health. This document reviews the data regarding the impact of e-cigarette use on male and female reproduction.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Center, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada
| | | | - Marie-Claire Bélanger
- Fertilys Fertility Center, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), CHUM Research Center, 900 Saint-Denis Street, Montreal, QC H2X 0A9, Canada
| | - Moncef Benkhalifa
- Fertilys Fertility Center, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada
- Médecine et Biologie de la Reproduction et Laboratoire PERITOX, Université Picardie Jules Verne, CBH-CHU Amiens Picardie, 1 Rond-Point du Professeur Christian Cabrol, 80054 Amiens, France
| | - Pierre Miron
- Fertilys Fertility Center, 1950 Maurice-Gauvin Street, Laval, QC H7S 1Z5, Canada
- Institut National de Recherche Scientifique-Centre Armand-Frappier Santé Biotechnologie, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
10
|
Elsherif R, Abdellah NZ, Hussein OA, Shaltout ES. Evaluation of hazards of electronic -cigarette's liquid refill on testes of mice, complemented by histopathological and chromatographic analysis. Ultrastruct Pathol 2023; 47:1-14. [PMID: 36841752 DOI: 10.1080/01913123.2023.2178569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/27/2023]
Abstract
Electronic-cigarettes (e-cigarettes) are devices designed to become an alternative to classic cigarettes. Vaping of e-cigarettes and their recharge liquid have become extremely popular among the adolescents; however, its safety is not well established. Evaluation of the components of e-cigarette liquid and their potential effects on testis of adult male mice. This aim will be fulfilled by histological, ultrastructural, and immunohistochemical analysis of mice testis biopsies. Twenty mice were allocated into two groups of equal size. The control group was given regular saline, whereas the treated group was given e-liquid (contains 3 mg of nicotine/kg of body weight) both groups daily intraperitoneally injected for 3 weeks. Analysis of e-liquid by Gas Chromatography-Mass Spectrometric GC/MS demonstrated nicotine, phenol, vanillin, aldehydes, and pyrethroid insecticide. Evaluation of oxidative stress parameters revealed significant reduction of SOD and GPx. Histological results revealed a significant reduction in the height of seminiferous tubules, sloughing of spermatogenic cells, most cells being dark and pyknotic, and thickening of the interstitium with accumulation of PAS positive exudate. Most spermatogenic cells showed degenerative changes as rarefied cytoplasm, ill-defined electron-dense nuclei, and elongated spermatid showed deformity of ectoplasmic specialization. Immunohistochemical studies revealed a significant increase in caspase-3 positive cells and a significant reduction of area % of E-cadherin. The analysis of an available E-liquid demonstrated potentially harmful chemicals that are not shown in the labeling of the product. E-liquid appears to impair anti-oxidant defense and cause degenerative changes in the body and disruption of blood testes barrier BTB. So, e-cigarettes cannot be regarded as a non-harmful smoking replacement.
Collapse
Affiliation(s)
- Raghda Elsherif
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nora Z Abdellah
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ola A Hussein
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman S Shaltout
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
11
|
Vivarelli F, Granata S, Rullo L, Mussoni M, Candeletti S, Romualdi P, Fimognari C, Cruz-Chamorro I, Carrillo-Vico A, Paolini M, Canistro D. On the toxicity of e-cigarettes consumption: Focus on pathological cellular mechanisms. Pharmacol Res 2022; 182:106315. [PMID: 35724819 DOI: 10.1016/j.phrs.2022.106315] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Tobacco smoking remains without a doubt one of the leading causes of premature death worldwide. In combination with conventional protocols for smoking cessation, e-cigarettes have been proposed as a useful tool to quit smoking. Advertised as almost free of toxic effects, e-cigarettes have rapidly increased their popularity, becoming a sought-after device, especially among young people. Recently some health concerns about e-cigarette consumption are being raised. It is well known that they can release several toxic compounds, some of which are carcinogenic to humans, and emerging results are now outlining the risks related to the onset of respiratory and cardiovascular diseases and even cancer. The present review shows the emerging evidence about the role of technical components of the devices, the e-liquid composition as well as customization by consumers. The primary topics we discuss are the main toxicological aspects associated with e-cigarette consumption, focusing on the molecular pathways involved. Here it will be shown how exposure to e-cigarette aerosol induces stress/mitochondrial toxicity, DNA breaks/fragmentation following the same pathological pathways triggered by tobacco smoke, including the deregulation of molecular signalling axis associated with cancer progression and cell migration. Risk to fertility and pregnancy, as well as cardiovascular risk associated with e-cigarette use, have also been reported.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Silvia Granata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; Department of Medicine and Surgery - University of Milano - Bicocca
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Matilde Mussoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Ivan Cruz-Chamorro
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla, IBiS (Universidad de Sevilla, HUVR, Junta de Andalucía, CSIC), 41013 Seville, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Universidad de Sevilla, 41009 Seville, Spain
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy.
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| |
Collapse
|
12
|
Chen T, Wu M, Dong Y, Kong B, Cai Y, Hei C, Wu K, Zhao C, Chang Q. Effect of e-cigarette refill liquid on follicular development and
estrogen secretion in rats. Tob Induc Dis 2022; 20:36. [PMID: 35529323 PMCID: PMC8988604 DOI: 10.18332/tid/146958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/01/2021] [Accepted: 02/25/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Tairen Chen
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Mengjing Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuting Dong
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Bin Kong
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yufang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Changchun Hei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kai Wu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Chengjun Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Qing Chang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Bonner E, Chang Y, Christie E, Colvin V, Cunningham B, Elson D, Ghetu C, Huizenga J, Hutton SJ, Kolluri SK, Maggio S, Moran I, Parker B, Rericha Y, Rivera BN, Samon S, Schwichtenberg T, Shankar P, Simonich MT, Wilson LB, Tanguay RL. The chemistry and toxicology of vaping. Pharmacol Ther 2021; 225:107837. [PMID: 33753133 PMCID: PMC8263470 DOI: 10.1016/j.pharmthera.2021.107837] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
Vaping is the process of inhaling and exhaling an aerosol produced by an e-cigarette, vape pen, or personal aerosolizer. When the device contains nicotine, the Food and Drug Administration (FDA) lists the product as an electronic nicotine delivery system or ENDS device. Similar electronic devices can be used to vape cannabis extracts. Over the past decade, the vaping market has increased exponentially, raising health concerns over the number of people exposed and a nationwide outbreak of cases of severe, sometimes fatal, lung dysfunction that arose suddenly in otherwise healthy individuals. In this review, we discuss the various vaping technologies, which are remarkably diverse, and summarize the use prevalence in the U.S. over time by youths and adults. We examine the complex chemistry of vape carrier solvents, flavoring chemicals, and transformation products. We review the health effects from epidemiological and laboratory studies and, finally, discuss the proposed mechanisms underlying some of these health effects. We conclude that since much of the research in this area is recent and vaping technologies are dynamic, our understanding of the health effects is insufficient. With the rapid growth of ENDS use, consumers and regulatory bodies need a better understanding of constituent-dependent toxicity to guide product use and regulatory decisions.
Collapse
Affiliation(s)
- Emily Bonner
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Chang
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Emerson Christie
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Victoria Colvin
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Daniel Elson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Christine Ghetu
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Juliana Huizenga
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Sara J Hutton
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Stephanie Maggio
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Ian Moran
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Bethany Parker
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Yvonne Rericha
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Brianna N Rivera
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Samantha Samon
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Trever Schwichtenberg
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Lindsay B Wilson
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Environmental Health Sciences Center, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
14
|
Cao Y, Wu D, Ma Y, Ma X, Wang S, Li F, Li M, Zhang T. Toxicity of electronic cigarettes: A general review of the origins, health hazards, and toxicity mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145475. [PMID: 33770885 DOI: 10.1016/j.scitotenv.2021.145475] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/24/2021] [Accepted: 01/24/2021] [Indexed: 06/12/2023]
Abstract
Electronic cigarettes (E-cigarette) are an alternative for traditional cigarette smokers to quit smoking. Based on the current understanding, electronic cigarettes have rapidly become popular among existing smokers and former non-smokers. However, increasing research at different levels reveals that e-cigarettes are unsafe. This review provides an overview of the toxicology of e-cigarettes based on existing in vivo and in vitro studies and compares their toxicity with that of traditional cigarettes. Moreover, we describe the associated toxicity components in e-cigarettes, as well as the potential mechanism by which e-cigarettes exert toxic effects. As is known to all, the nicotine in traditional cigarettes and e-cigarettes has certain toxicity. Besides, a few studies have shown that propylene glycol and vegetable glycerin mixture and flavoring agents in e-cigarettes also are the key components causing adverse effects in animals or cells. There is insufficient scientific evidence on the toxicity of e-cigarettes due to the lack of standardized research methods, prompting the need to conduct a comprehensive toxicity assessment of e-cigarette toxicity to elucidate the safety issues of e-cigarettes. Eventually, a basis for decision-making on whether people use e-cigarettes will be obtained.
Collapse
Affiliation(s)
- Yuna Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Daming Wu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xinmo Ma
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Shile Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Fuxian Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Menghan Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
15
|
Holmboe SA, Priskorn L, Jensen TK, Skakkebaek NE, Andersson AM, Jørgensen N. Use of e-cigarettes associated with lower sperm counts in a cross-sectional study of young men from the general population. Hum Reprod 2021; 35:1693-1701. [PMID: 32558890 DOI: 10.1093/humrep/deaa089] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Are use of e-cigarettes and snuff associated with testicular function as previously shown for conventional cigarettes and marijuana? SUMMARY ANSWER Use of e-cigarettes is associated with reduced semen quality but not with higher serum testosterone level as observed for conventional cigarette use. Snuff use was not associated with markers of testicular function. WHAT IS KNOWN ALREADY Cigarette smoking has previously been associated with higher testosterone levels and impaired semen quality, whereas it is unresolved whether use of e-cigarettes or snuff influence the testicular function. STUDY DESIGN, SIZE, DURATION This cross-sectional population-based study included 2008 men with information on cigarette and marijuana use (enrolled between 2012 and 2018), among whom 1221 men also had information on e-cigarette and snuff use (enrolled between 2015 and 2018). PARTICIPANTS/MATERIALS, SETTING, METHODS Men (median age 19.0 years) from the general population provided a semen and blood sample and filled out a questionnaire on lifestyle including information on smoking behaviour. Associations between different types of smoking (e-cigarettes, snuff, marijuana and cigarettes) and reproductive hormones (total and free testosterone, sex hormone-binding globulin, LH, oestradiol and ratios of inhibin B/FSH, testosterone/LH and free testosterone/LH) and semen parameters (total sperm count and sperm concentration) were examined using multiple linear regression analyses adjusted for relevant confounders. MAIN RESULTS AND THE ROLE OF CHANCE Approximately half of the men (52%) were cigarette smokers, 13% used e-cigarettes, 25% used snuff and 33% used marijuana. Users of e-cigarettes and marijuana were often also cigarette smokers. Compared to non-users, daily e-cigarette users had significantly lower total sperm count (147 million vs 91 million) as did daily cigarette smokers (139 million vs 103 million), in adjusted analyses. Furthermore, significantly higher total and free testosterone levels were seen in cigarette smoking men (6.2% and 4.1% higher total testosterone and 6.2% and 6.2% higher free testosterone in daily smokers and occasional smokers, respectively, compared to non-smoking men), but not among e-cigarette users. Daily users of marijuana had 8.3% higher total testosterone levels compared to non-users. No associations were observed for snuff in relation to markers of testicular function. LIMITATIONS, REASONS FOR CAUTION We cannot exclude that our results can be influenced by residual confounding by behavioural factors not adjusted for. The number of daily e-cigarette users was limited and findings should be replicated in other studies. WIDER IMPLICATIONS OF THE FINDINGS This is the first human study to indicate that not only cigarette smoking but also use of e-cigarettes is associated with lower sperm counts. This could be important knowledge for men trying to achieve a pregnancy, as e-cigarettes are often considered to be less harmful than conventional cigarette smoking. STUDY FUNDING/COMPETING INTEREST(S) Funding was received from the Danish Ministry of Health (1-1010-308/59), the Independent Research Fund Denmark (8020-00218B), ReproUnion (20200407) and the Research Fund of the Capital Region of Denmark (A6176). The authors have nothing to disclose. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- Stine Agergaard Holmboe
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Lærke Priskorn
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Tina Kold Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense 5000, Denmark
| | - Niels Erik Skakkebaek
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| | - Niels Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark.,International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
16
|
Eshraghian EA, Al-Delaimy WK. A review of constituents identified in e-cigarette liquids and aerosols. Tob Prev Cessat 2021; 7:10. [PMID: 33585727 PMCID: PMC7873740 DOI: 10.18332/tpc/131111] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/15/2020] [Accepted: 12/02/2020] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Identification of chemicals present in e-liquids and aerosols is a vital first step in assessing the human health effects of e-cigarettes. We aim to identify the qualitative and quantitative constituents present in e-cigarette liquids and aerosols. METHODS A comprehensive search of scientific databases included literature up to July 2020. A total of 28 articles met inclusion criteria; 18 articles assessed e-liquid constituents and 15 articles assessed aerosol constituents. Of these, 5 assessed constituents present in both mediums. We included English-language publications that examine qualitative and/or quantitative constituents in e-cigarette liquids and aerosols. RESULTS In total, articles identified 60 compounds in e-liquids and 47 compounds in aerosols. A total of 22 compounds were identified in both e-liquids and aerosols. These are: acenaphthylene, acetaldehyde, acetol, antimony, benzaldehyde, benzene, chromium, copper, diacetyl, formaldehyde, glycerol, lead, limonene, naphthalene, nickel, nicotine, nicotine-N'-oxides, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N-Nitrosonornicotine (NNN), propylene glycol, toluene, and vegetable glycerin. Some of the identified chemicals have been labeled as harmful, toxic, or cancerous through human, animal, and cell line studies. A variety of laboratory methods were used for analyses, which made reported levels less consistent. CONCLUSIONS E-liquids and aerosols contain a variety of chemicals with potential health effects from inhaling them. Further, secondhand health effects are unknown because of limited understanding of the dose of exposure by non-users. Identification of constituents in e-cigarettes is the first step to determine their risks to humans and support evidence-based regulations and health policies.
Collapse
Affiliation(s)
- Emily A Eshraghian
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, United States
| | - Wael K Al-Delaimy
- Department of Family Medicine and Public Health, University of California San Diego, San Diego, United States
| |
Collapse
|
17
|
Kaur G, Gaurav A, Lamb T, Perkins M, Muthumalage T, Rahman I. Current Perspectives on Characteristics, Compositions, and Toxicological Effects of E-Cigarettes Containing Tobacco and Menthol/Mint Flavors. Front Physiol 2020; 11:613948. [PMID: 33329065 PMCID: PMC7710937 DOI: 10.3389/fphys.2020.613948] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/23/2020] [Indexed: 11/13/2022] Open
Abstract
Electronic nicotine delivery systems/devices (ENDS) such as electronic cigarettes (e-cigarettes) have been made available globally, with the intent to reduce tobacco smoking. To make these products more appealing to young adults, many brands have added flavoring agents. However, these flavoring agents are shown to progressively result in lung toxicity when inhaled via e-cigarettes. While recent federal regulations have banned the sale of flavored e-cigarettes other than tobacco or menthol flavors, concerns have been raised about the health effects of even these flavors. In this review, we evaluate the current toxicological data with regard to effects upon exposure in animal models and in vitro cell culture for these popular flavorants. We have tabulated the current e-cigarette products containing these most common flavors (menthol, mint, and tobacco) in the market. We have also indicated the prevalence of tobacco and menthol-flavor use among e-cigarette users and highlighted the possible challenges and benefits that will result from new federal regulations.
Collapse
Affiliation(s)
- Gurjot Kaur
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Anshuman Gaurav
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Thomas Lamb
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Melanie Perkins
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
18
|
Krzastek SC, Farhi J, Gray M, Smith RP. Impact of environmental toxin exposure on male fertility potential. Transl Androl Urol 2020; 9:2797-2813. [PMID: 33457251 PMCID: PMC7807371 DOI: 10.21037/tau-20-685] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 10/18/2020] [Indexed: 11/06/2022] Open
Abstract
Idiopathic infertility is the most common individual diagnosis in male infertility, representing nearly 44% of cases. Research studies dating over the last half-century consistently demonstrate a decline in male fertility that is incompletely explained by obesity, known genetic causes, or diet and lifestyle changes alone. Human exposures have changed dramatically over the same time course as this fertility decline. Synthetic chemicals surround us. Some are benevolent; however, many are known to cause disruption of the hypothalamic-pituitary-gonadal axis and impair spermatogenesis. More than 80,000 chemicals are registered with the United States National Toxicology Program and nearly 2,000 new chemicals are introduced each year. Many of these are known toxins, such as phthalates, polycyclic aromatic hydrocarbons, aromatic amines, and organophosphate esters, and have been banned or significantly restricted by other countries as they carry known carcinogenic effects and are reproductively toxic. In the United States, many of these chemicals are still permissible in exposure levels known to cause reproductive harm. This contrasts to other chemical regulatory legislature, such as the European Union's REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) regulations which are more comprehensive and restrictive. Quantification of these diverse exposures on an individual level has proven challenging, although forthcoming technologies may soon make this data available to consumers. Establishing causality and the proportion of idiopathic infertility attributable to environmental toxin exposures remains elusive, however, continued investigation, avoidance of exposure, and mitigation of risk is essential to our reproductive health. The aim of this review is to examine the literature linking changes in male fertility to some of the most common environmental exposures. Specifically, pesticides and herbicides such as dichlorodiphenyltrichloroethane (DDT), dibromochloropropane (DBCP), organophosphates and atrazine, endocrine disrupting compounds including plastic compounds phthalates and bisphenol A (BPA), heavy metals, natural gas/oil, non-ionizing radiation, air and noise pollution, lifestyle factors including diet, obesity, caffeine use, smoking, alcohol and drug use, as well as commonly prescribed medications will be discussed.
Collapse
Affiliation(s)
- Sarah C. Krzastek
- Department of Urology, University of Virginia, Charlottesville, VA, USA
- Division of Urology, Virginia Commonwealth University, Richmond, VA, USA
- Division of Urology, Hunter Holmes McGuire VAMC, Richmond, VA, USA
| | - Jack Farhi
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Marisa Gray
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| | - Ryan P. Smith
- Department of Urology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
19
|
Szumilas K, Szumilas P, Grzywacz A, Wilk A. The Effects of E-Cigarette Vapor Components on the Morphology and Function of the Male and Female Reproductive Systems: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176152. [PMID: 32847119 PMCID: PMC7504689 DOI: 10.3390/ijerph17176152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022]
Abstract
E-cigarettes, a comparatively new phenomenon, are regarded as a safer alternative to conventional cigarettes. They are increasingly popular among adolescents of both sexes, and many smokers use e-cigarettes in their attempts to quit smoking. There is little understanding of the effects of exposure to e-cigarette vapors on human reproductive health, human development, or the functioning of the organs of the male and female reproductive systems. Data on the effects of the exposure were derived mainly from animal studies, and they show that e-cigarettes can affect fertility. Here, we review recent studies on the effects of exposure to e-cigarettes on facets of morphology and function in the male and female reproductive organs. E-cigarettes, even those which are nicotine-free, contain many harmful substances, including endocrine disruptors, which disturb hormonal balance and morphology and the function of the reproductive organs. E-cigarettes cannot be considered a completely healthy alternative to smoking. As is true for smoking, deleterious effects on the human reproductive system from vaping are likely, from the limited evidence to date.
Collapse
Affiliation(s)
- Kamila Szumilas
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Paweł Szumilas
- Department of Social Medicine and Public Health, Pomeranian Medical University, 71-210 Szczecin, Poland;
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University, 70-204 Szczecin, Poland;
| | - Aleksandra Wilk
- Department of Histology and Embryology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-4661681
| |
Collapse
|
20
|
Marczylo T. How bad are e-cigarettes? What can we learn from animal exposure models? J Physiol 2020; 598:5073-5089. [PMID: 32500527 DOI: 10.1113/jp278366] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 02/26/2020] [Indexed: 01/15/2023] Open
Abstract
Electronic cigarettes divide opinions. Some consider them key to reducing smoking incidence while others are concerned over potential for detrimental health consequences. It will take many years to identify the health consequences of e-cigarette use if we rely only upon human data. However, there is a growing body of work using rodent models that inform on these potential toxicities. These studies have focused upon the pulmonary, cardiovascular and central nervous systems. Observations include perturbations of pro-inflammatory, pro-fibrotic and oxidative stress markers, sometimes together with DNA damage and downregulation of DNA repair and antioxidant enzymes. However, the markers affected are often different between studies. A more consistent observation has been the increase in airway hyperresponsiveness, a characteristic of asthma, on exposure to electronic cigarettes, across mouse strains, sex and ages. Detrimental effects in this and other susceptible animal models such as the apolipoprotein E knock-out mouse model of atherosclerosis, suggest greater risk where there is an existing predisposition. Other adverse reactions, including weight loss, oxidative stress and angiogenesis, are reported in animal studies with nicotine-containing devices. These effects remain less severe than cigarette smoke, where investigated. Animal studies have identified therefore that e-cigarettes are potentially hazardous, especially in susceptible populations, nicotine is integral to risk of health effects, but overall e-cigarettes are much less hazardous than cigarettes.
Collapse
Affiliation(s)
- Tim Marczylo
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxfordshire, OX11 ORQ, UK
| |
Collapse
|
21
|
Merecz-Sadowska A, Sitarek P, Zielinska-Blizniewska H, Malinowska K, Zajdel K, Zakonnik L, Zajdel R. A Summary of In Vitro and In Vivo Studies Evaluating the Impact of E-Cigarette Exposure on Living Organisms and the Environment. Int J Mol Sci 2020; 21:ijms21020652. [PMID: 31963832 PMCID: PMC7013895 DOI: 10.3390/ijms21020652] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/03/2020] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Worldwide use of electronic cigarettes has been rapidly expanding over recent years, but the long-term effect of e-cigarette vapor exposure on human health and environment is not well established; however, its mechanism of action entails the production of reactive oxygen species and trace metals, and the exacerbation of inflammation, which are associated with potential cytotoxicity and genotoxicity. The present study examines the effects of selected liquid chemicals used in e-cigarettes, such as propylene glycol/vegetable glycerin, nicotine and flavorings, on living organisms; the data collected indicates that exposure to e-cigarette liquid has potentially detrimental effects on cells in vitro, and on animals and humans in vivo. While e-liquid exposure can adversely influence the physiology of living organisms, vaping is recommended as an alternative for tobacco smoking. The study also compares the impact of e-cigarette liquid exposure and traditional cigarette smoke on organisms and the environmental impact. The environmental influence of e-cigarette use is closely connected with the emission of airborne particulate matter, suggesting the possibility of passive smoking. The obtained data provides an insight into the impact of nicotine delivery systems on living organisms and the environment.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
- Correspondence: ; Tel.: +48-663-626-667
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | | | - Katarzyna Malinowska
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
- Department of Allergology and Respiratory Rehabilitation, Medical University of Lodz, 90-725 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Lukasz Zakonnik
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
| | - Radoslaw Zajdel
- Department of Economic Informatics, University of Lodz, 90-214 Lodz, Poland; (K.M.); (L.Z.); (R.Z.)
| |
Collapse
|
22
|
Abstract
Sale of electronic cigarette (e-cigarette) products has exponentially increased in the past decade, which raise concerns about its safety. This updated review provides the available toxicology profile of e-cigarettes, summarizing evidence from in vitro and in vivo studies. Data regarding which components in e-liquids exhibit potential toxicities are inconsistent. Some studies have reported that nicotine plays a significant role in inducing adverse outcomes and that solvents alone do not induce any adverse effects. However, other studies have suggested that nicotine is not associated with any adverse outcomes, whereas solvents and flavorings are the key components to elicit considerable deleterious effects on cells or animals. In addition, most of the studies that have compared the toxicity of e-cigarettes with tobacco cigarettes have suggested that e-cigarettes are less toxic than tobacco cigarettes. Nevertheless, scientific evidence regarding the toxicity profile of e-cigarette is insufficient owing to the lack of a standardized research approach. In the future, scientific toxicology data derived from standardized testing protocols including nicotine, ingredients analysis, the various e-cigarette devices made from different materials are urgently needed for thorough toxicology assessment. This review aims to update the toxicity profiles, identify knowledge gaps, and outline future directions for e-cigarettes research, which would greatly benefit public health professionals.
Collapse
Affiliation(s)
- Guanghe Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Wenjing Liu
- Science and Technology Museum of Inner Mongolia , Hohhot, Inner Mongolia , China
| | - Weimin Song
- Department of Environmental Health, School of Public Health and the Key Laboratory of Public Health Safety, Fudan University , Shanghai , China
| |
Collapse
|
23
|
Ween MP, Hamon R, Macowan MG, Thredgold L, Reynolds PN, Hodge SJ. Effects of E‐cigarette E‐liquid components on bronchial epithelial cells: Demonstration of dysfunctional efferocytosis. Respirology 2019; 25:620-628. [DOI: 10.1111/resp.13696] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 06/16/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Miranda P. Ween
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Rhys Hamon
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Matthew G. Macowan
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Leigh Thredgold
- Department of Occupational and Environmental Health, School of Public HealthUniversity of Adelaide Adelaide SA Australia
| | - Paul N. Reynolds
- Department of Thoracic MedicineRoyal Adelaide Hospital Adelaide SA Australia
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| | - Sandra J. Hodge
- School of MedicineUniversity of Adelaide Adelaide SA Australia
| |
Collapse
|
24
|
Vivarelli F, Canistro D, Cirillo S, Cardenia V, Rodriguez-Estrada MT, Paolini M. Impairment of testicular function in electronic cigarette (e-cig, e-cigs) exposed rats under low-voltage and nicotine-free conditions. Life Sci 2019; 228:53-65. [DOI: 10.1016/j.lfs.2019.04.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022]
|
25
|
Bals R, Boyd J, Esposito S, Foronjy R, Hiemstra PS, Jiménez-Ruiz CA, Katsaounou P, Lindberg A, Metz C, Schober W, Spira A, Blasi F. Electronic cigarettes: a task force report from the European Respiratory Society. Eur Respir J 2019; 53:13993003.01151-2018. [PMID: 30464018 DOI: 10.1183/13993003.01151-2018] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/09/2018] [Indexed: 01/10/2023]
Abstract
There is a marked increase in the development and use of electronic nicotine delivery systems or electronic cigarettes (ECIGs). This statement covers electronic cigarettes (ECIGs), defined as "electrical devices that generate an aerosol from a liquid" and thus excludes devices that contain tobacco. Database searches identified published articles that were used to summarise the current knowledge on the epidemiology of ECIG use; their ingredients and accompanied health effects; second-hand exposure; use of ECIGs for smoking cessation; behavioural aspects of ECIGs and social impact; in vitro and animal studies; and user perspectives.ECIG aerosol contains potentially toxic chemicals. As compared to conventional cigarettes, these are fewer and generally in lower concentrations. Second-hand exposures to ECIG chemicals may represent a potential risk, especially to vulnerable populations. There is not enough scientific evidence to support ECIGs as an aid to smoking cessation due to a lack of controlled trials, including those that compare ECIGs with licenced stop-smoking treatments. So far, there are conflicting data that use of ECIGs results in a renormalisation of smoking behaviour or for the gateway hypothesis. Experiments in cell cultures and animal studies show that ECIGs can have multiple negative effects. The long-term effects of ECIG use are unknown, and there is therefore no evidence that ECIGs are safer than tobacco in the long term. Based on current knowledge, negative health effects cannot be ruled out.
Collapse
Affiliation(s)
- Robert Bals
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | | | - Susanna Esposito
- Pediatric Clinic, Dept of Surgical and Biomedical Sciences, Università degli Studi di Perugia, Perugia, Italy
| | - Robert Foronjy
- Pulmonary and Critical Care Medicine, SUNY Downstate Medical Center, New York, NY, USA
| | - Pieter S Hiemstra
- Dept of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Paraskevi Katsaounou
- 1st ICU Evangelismos Hospital, National Kapodistrian University of Athens, Athens, Greece
| | - Anne Lindberg
- Dept of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Carlos Metz
- Dept of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University, Homburg, Germany
| | - Wolfgang Schober
- Bavarian Health and Food Safety Authority, Dept of Chemical Safety and Toxicology, Munich, Germany
| | - Avrum Spira
- Boston University School of Medicine, Boston, MA, USA
| | - Francesco Blasi
- Dept of Pathophysiology and Transplantation, Università degli Studi di Milano, Internal Medicine Department, Respiratory Unit and Regional Adult Cystic Fibrosis Center, IRCCS Fondazione Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
26
|
Ween MP, Whittall JJ, Hamon R, Reynolds PN, Hodge SJ. Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages. Physiol Rep 2018; 5:5/16/e13370. [PMID: 28867672 PMCID: PMC5582261 DOI: 10.14814/phy2.13370] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 01/24/2023] Open
Abstract
E‐cigarettes are perceived as harmless; however, evidence of their safety is lacking. New data suggests E‐cigarettes discharge a range of compounds capable of physiological damage to users. We previously established that cigarette smoke caused defective alveolar macrophage phagocytosis. The present study compared the effect E‐cigarette of components; E‐liquid flavors, nicotine, vegetable glycerine, and propylene glycol on phagocytosis, proinflammatory cytokine secretion, and phagocytic recognition molecule expression using differentiated THP‐1 macrophages. Similar to CSE, phagocytosis of NTHi bacteria was significantly decreased by E‐liquid flavoring (11.65–15.75%) versus control (27.01%). Nicotine also decreased phagocytosis (15.26%). E‐liquid, nicotine, and E‐liquid+ nicotine reduced phagocytic recognition molecules; SR‐A1 and TLR‐2. IL‐8 secretion increased with flavor and nicotine, while TNFα, IL‐1β, IL‐6, MIP‐1α, MIP‐1β, and MCP‐1 decreased after exposure to most flavors and nicotine. PG, VG, or PG:VG mix also induced a decrease in MIP‐1α and MIP‐1β. We conclude that E‐cigarettes can cause macrophage phagocytic dysfunction, expression of phagocytic recognition receptors and cytokine secretion pathways. As such, E‐cigarettes should be treated with caution by users, especially those who are nonsmokers.
Collapse
Affiliation(s)
- Miranda P Ween
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia .,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Jonathan J Whittall
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Rhys Hamon
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Paul N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Sandra J Hodge
- School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
27
|
Zhao J, Zhang Y, Sisler JD, Shaffer J, Leonard SS, Morris AM, Qian Y, Bello D, Demokritou P. Assessment of reactive oxygen species generated by electronic cigarettes using acellular and cellular approaches. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:549-557. [PMID: 29102637 PMCID: PMC5848214 DOI: 10.1016/j.jhazmat.2017.10.057] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/11/2017] [Accepted: 10/27/2017] [Indexed: 05/11/2023]
Abstract
Electronic cigarettes (e-cigs) have fast increased in popularity but the physico-chemical properties and toxicity of the generated emission remain unclear. Reactive oxygen species (ROS) are likely present in e-cig emission and can play an important role in e-cig toxicity. However, e-cig ROS generation is poorly documented. Here, we generated e-cig exposures using a recently developed versatile exposure platform and performed systematic ROS characterization on e-cig emissions using complementary acellular and cellular techniques: 1) a novel acellular Trolox-based mass spectrometry method for total ROS and hydrogen peroxide (H2O2) detection, 2) electron spin resonance (ESR) for hydroxyl radical detection in an acellular and cellular systems and 3) in vitro ROS detection in small airway epithelial cells (SAEC) using the dihydroethidium (DHE) assay. Findings confirm ROS generation in cellular and acellular systems and is highly dependent on the e-cig brand, flavor, puffing pattern and voltage. Trolox method detected a total of 1.2-8.9nmol H2O2eq./puff; H2O2 accounted for 12-68% of total ROS. SAEC cells exposed to e-cig emissions generated up to eight times more ROS compared to control. The dependency of e-cig emission profile on e-cig features and operational parameters should be taken into consideration in toxicological studies.
Collapse
Affiliation(s)
- Jiayuan Zhao
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA
| | - Yipei Zhang
- Department of Public Health, University of Massachusetts Lowell, MA 01854, USA
| | - Jennifer D Sisler
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Justine Shaffer
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Stephen S Leonard
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Anna M Morris
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Yong Qian
- Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health (NIOSH), Morgantown, WV 26505, USA
| | - Dhimiter Bello
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA; Department of Public Health, University of Massachusetts Lowell, MA 01854, USA.
| | - Philip Demokritou
- Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard School of Public Health, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Zucchet A, Schmaltz G. Electronic cigarettes—A review of the physiological health effects. Facets (Ott) 2017. [DOI: 10.1139/facets-2017-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Electronic cigarettes (ECs) are devices that are used recreationally or as smoking cessation tools, and have become increasingly popular in recent years. We conducted a review of the available literature to determine the health effects caused by the use of these devices. A heating element in the EC aerosolizes a solution of propylene glycol, glycerol, nicotine (optional), and flavouring (optional). These compounds are generally harmless on their own. However, upon heating, they produce various carcinogens and irritants. We found that concentrations of these toxicants vary significantly depending on the type of EC device, the type of EC liquid, and the smoking behaviour of the user. Exposure to these vapours can cause inflammation and oxidative damage to in vitro and in vivo cells. EC aerosol can also potentially affect organ systems and especially cardiovascular and lung function. We concluded that EC use causes acute effects on health but not as severe as those of conventional cigarettes (CCs). These devices could, therefore, be of use for smokers of CCs wishing to quit. However, as EC aerosol introduces new toxicants not found in CCs, long-term studies are needed to investigate possible chronic effects associated with EC use.
Collapse
Affiliation(s)
- Alyssa Zucchet
- Department of Biology, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Grégory Schmaltz
- Department of Biology, University of the Fraser Valley, Abbotsford, BC V2S 7M8, Canada
| |
Collapse
|
29
|
Dixit R. Special issue on electronic cigarettes. Toxicol Mech Methods 2017; 26:389-391. [PMID: 27690197 PMCID: PMC5309867 DOI: 10.1080/15376516.2016.1221267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rakesh Dixit
- a Editor-in-Chief Toxicology Mechanisms and Methods, Taylor & Francis Group , Washington , DC , USA.,b Vice President , Medimmune, 1 Medimmune Way , Gaithersburg , MD , USA
| |
Collapse
|
30
|
Glasser AM, Collins L, Pearson JL, Abudayyeh H, Niaura RS, Abrams DB, Villanti AC. Overview of Electronic Nicotine Delivery Systems: A Systematic Review. Am J Prev Med 2017; 52:e33-e66. [PMID: 27914771 PMCID: PMC5253272 DOI: 10.1016/j.amepre.2016.10.036] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Accepted: 10/26/2016] [Indexed: 12/20/2022]
Abstract
CONTEXT Rapid developments in e-cigarettes, or electronic nicotine delivery systems (ENDS), and the evolution of the overall tobacco product marketplace warrant frequent evaluation of the published literature. The purpose of this article is to report updated findings from a comprehensive review of the published scientific literature on ENDS. EVIDENCE ACQUISITION The authors conducted a systematic review of published empirical research literature on ENDS through May 31, 2016, using a detailed search strategy in the PubMed electronic database, expert review, and additional targeted searches. Included studies presented empirical findings and were coded to at least one of nine topics: (1) Product Features; (2) Health Effects; (3) Consumer Perceptions; (4) Patterns of Use; (5) Potential to Induce Dependence; (6) Smoking Cessation; (7) Marketing and Communication; (8) Sales; and (9) Policies; reviews and commentaries were excluded. Data from included studies were extracted by multiple coders (October 2015 to August 2016) into a standardized form and synthesized qualitatively by topic. EVIDENCE SYNTHESIS There were 687 articles included in this systematic review. The majority of studies assessed patterns of ENDS use and consumer perceptions of ENDS, followed by studies examining health effects of vaping and product features. CONCLUSIONS Studies indicate that ENDS are increasing in use, particularly among current smokers, pose substantially less harm to smokers than cigarettes, are being used to reduce/quit smoking, and are widely available. More longitudinal studies and controlled trials are needed to evaluate the impact of ENDS on population-level tobacco use and determine the health effects of longer-term vaping.
Collapse
Affiliation(s)
- Allison M Glasser
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia.
| | - Lauren Collins
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia
| | - Jennifer L Pearson
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia
| | - Haneen Abudayyeh
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia
| | - Raymond S Niaura
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - David B Abrams
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Andrea C Villanti
- The Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, District of Columbia; Department of Health, Behavior and Society, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|