1
|
Medina-Feliciano JG, Valentín-Tirado G, Luna-Martínez K, Beltran-Rivera A, Miranda-Negrón Y, Garcia-Arraras JE. Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium. eLife 2025; 13:RP100796. [PMID: 40111904 PMCID: PMC11925454 DOI: 10.7554/elife.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
In holothurians, the regenerative process following evisceration involves the development of a 'rudiment' or 'anlage' at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and hybridization chain reaction fluorescent in situ hybridization analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified 13 distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells, and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.
Collapse
|
2
|
Medina-Feliciano JG, Valentín-Tirado G, Luna-Martínez K, Beltran-Rivera A, Miranda-Negrón Y, García-Arrarás JE. Single-cell RNA sequencing of the holothurian regenerating intestine reveals the pluripotency of the coelomic epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601561. [PMID: 39005414 PMCID: PMC11244903 DOI: 10.1101/2024.07.01.601561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
In holothurians, the regenerative process following evisceration involves the development of a "rudiment" or "anlage" at the injured end of the mesentery. This regenerating anlage plays a pivotal role in the formation of a new intestine. Despite its significance, our understanding of the molecular characteristics inherent to the constituent cells of this structure has remained limited. To address this gap, we employed state-of-the-art scRNA-seq and HCR-FISH analyses to discern the distinct cellular populations associated with the regeneration anlage. Through this approach, we successfully identified thirteen distinct cell clusters. Among these, two clusters exhibit characteristics consistent with putative mesenchymal cells, while another four show features akin to coelomocyte cell populations. The remaining seven cell clusters collectively form a large group encompassing the coelomic epithelium of the regenerating anlage and mesentery. Within this large group of clusters, we recognized previously documented cell populations such as muscle precursors, neuroepithelial cells and actively proliferating cells. Strikingly, our analysis provides data for identifying at least four other cellular populations that we define as the precursor cells of the growing anlage. Consequently, our findings strengthen the hypothesis that the coelomic epithelium of the anlage is a pluripotent tissue that gives rise to diverse cell types of the regenerating intestinal organ. Moreover, our results provide the initial view into the transcriptomic analysis of cell populations responsible for the amazing regenerative capabilities of echinoderms.
Collapse
|
3
|
Montemurro T, Lavazza C, Montelatici E, Budelli S, La Rosa S, Barilani M, Mei C, Manzini P, Ratti I, Cimoni S, Brasca M, Prati D, Saporiti G, Astori G, Elice F, Giordano R, Lazzari L. Off-the-Shelf Cord-Blood Mesenchymal Stromal Cells: Production, Quality Control, and Clinical Use. Cells 2024; 13:1066. [PMID: 38920694 PMCID: PMC11202005 DOI: 10.3390/cells13121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Background Recently, mesenchymal stromal cells (MSCs) have gained recognition for their clinical utility in transplantation to induce tolerance and to improve/replace pharmacological immunosuppression. Cord blood (CB)-derived MSCs are particularly attractive for their immunological naivety and peculiar anti-inflammatory and anti-apoptotic properties. OBJECTIVES The objective of this study was to obtain an inventory of CB MSCs able to support large-scale advanced therapy medicinal product (ATMP)-based clinical trials. STUDY DESIGN We isolated MSCs by plastic adherence in a GMP-compliant culture system. We established a well-characterized master cell bank and expanded a working cell bank to generate batches of finished MSC(CB) products certified for clinical use. The MSC(CB) produced by our facility was used in approved clinical trials or for therapeutic use, following single-patient authorization as an immune-suppressant agent. RESULTS We show the feasibility of a well-defined MSC manufacturing process and describe the main indications for which the MSCs were employed. We delve into a regulatory framework governing advanced therapy medicinal products (ATMPs), emphasizing the need of stringent quality control and safety assessments. From March 2012 to June 2023, 263 of our Good Manufacturing Practice (GMP)-certified MSC(CB) preparations were administered as ATMPs in 40 subjects affected by Graft-vs.-Host Disease, nephrotic syndrome, or bronco-pulmonary dysplasia of the newborn. There was no infusion-related adverse event. No patient experienced any grade toxicity. Encouraging preliminary outcome results were reported. Clinical response was registered in the majority of patients treated under therapeutic use authorization. CONCLUSIONS Our 10 years of experience with MSC(CB) described here provides valuable insights into the use of this innovative cell product in immune-mediated diseases.
Collapse
Affiliation(s)
- Tiziana Montemurro
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Cristiana Lavazza
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Elisa Montelatici
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Silvia Budelli
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Salvatore La Rosa
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Mario Barilani
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Cecilia Mei
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Paolo Manzini
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Ilaria Ratti
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Silvia Cimoni
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Manuela Brasca
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Daniele Prati
- Milano Cord Blood Bank and Center of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (I.R.); (S.C.); (M.B.); (D.P.)
| | - Giorgia Saporiti
- Bone Marrow Transplantation and Cellular Therapy Center, Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy;
| | - Giuseppe Astori
- Laboratory of Advanced Cellular Therapies and Haematology Unit, San Bortolo Hospital, AULSS8 “Berica”, 36100 Vicenza, Italy; (G.A.); (F.E.)
| | - Francesca Elice
- Laboratory of Advanced Cellular Therapies and Haematology Unit, San Bortolo Hospital, AULSS8 “Berica”, 36100 Vicenza, Italy; (G.A.); (F.E.)
| | - Rosaria Giordano
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| | - Lorenza Lazzari
- Unit of Cellular and Gene Therapy, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; (T.M.); (C.L.); (E.M.); (S.B.); (S.L.R.); (M.B.); (C.M.); (P.M.); (L.L.)
| |
Collapse
|
4
|
Quatredeniers M, Serafin AS, Benmerah A, Rausell A, Saunier S, Viau A. Meta-analysis of single-cell and single-nucleus transcriptomics reveals kidney cell type consensus signatures. Sci Data 2023; 10:361. [PMID: 37280226 DOI: 10.1038/s41597-023-02209-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 05/05/2023] [Indexed: 06/08/2023] Open
Abstract
While the amount of studies involving single-cell or single-nucleus RNA-sequencing technologies grows exponentially within the biomedical research area, the kidney field requires reference transcriptomic signatures to allocate each cluster its matching cell type. The present meta-analysis of 39 previously published datasets, from 7 independent studies, involving healthy human adult kidney samples, offers a set of 24 distinct consensus kidney cell type signatures. The use of these signatures may help to assure the reliability of cell type identification in future studies involving single-cell and single-nucleus transcriptomics while improving the reproducibility in cell type allocation.
Collapse
Affiliation(s)
- Marceau Quatredeniers
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France.
| | - Alice S Serafin
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| | - Alexandre Benmerah
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| | - Antonio Rausell
- Université de Paris Cité, Imagine Institute, Laboratory of Clinical Bioinformatics, Paris, INSERM UMR 1163, F-75015, France
| | - Sophie Saunier
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| | - Amandine Viau
- Université de Paris Cité, Imagine Institute, Laboratory of Hereditary Kidney Diseases, Paris, INSERM UMR 1163, F-75015, France
| |
Collapse
|
5
|
Okazaki Y, Taniguchi K, Miyamoto Y, Kinoshita S, Nakabayashi K, Kaneko K, Hamada H, Satoh T, Murashima A, Hata K. Glucocorticoids increase the risk of preterm premature rupture of membranes possibly by inducing ITGA8 gene expression in the amnion. Placenta 2022; 128:73-82. [DOI: 10.1016/j.placenta.2022.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/30/2022]
|
6
|
Slack RJ, Macdonald SJF, Roper JA, Jenkins RG, Hatley RJD. Emerging therapeutic opportunities for integrin inhibitors. Nat Rev Drug Discov 2021; 21:60-78. [PMID: 34535788 PMCID: PMC8446727 DOI: 10.1038/s41573-021-00284-4] [Citation(s) in RCA: 310] [Impact Index Per Article: 77.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Integrins are cell adhesion and signalling proteins crucial to a wide range of biological functions. Effective marketed treatments have successfully targeted integrins αIIbβ3, α4β7/α4β1 and αLβ2 for cardiovascular diseases, inflammatory bowel disease/multiple sclerosis and dry eye disease, respectively. Yet, clinical development of others, notably within the RGD-binding subfamily of αv integrins, including αvβ3, have faced significant challenges in the fields of cancer, ophthalmology and osteoporosis. New inhibitors of the related integrins αvβ6 and αvβ1 have recently come to the fore and are being investigated clinically for the treatment of fibrotic diseases, including idiopathic pulmonary fibrosis and nonalcoholic steatohepatitis. The design of integrin drugs may now be at a turning point, with opportunities to learn from previous clinical trials, to explore new modalities and to incorporate new findings in pharmacological and structural biology. This Review intertwines research from biological, clinical and medicinal chemistry disciplines to discuss historical and current RGD-binding integrin drug discovery, with an emphasis on small-molecule inhibitors of the αv integrins. Integrins are key signalling molecules that are present on the surface of subsets of cells and are therefore good potential therapeutic targets. In this Review, Hatley and colleagues discuss the development of integrin inhibitors, particularly the challenges in developing inhibitors for integrins that contain an αv-subunit, and suggest how these challenges could be addressed.
Collapse
Affiliation(s)
| | | | | | - R G Jenkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | | |
Collapse
|
7
|
El-Achkar TM, Eadon MT, Menon R, Lake BB, Sigdel TK, Alexandrov T, Parikh S, Zhang G, Dobi D, Dunn KW, Otto EA, Anderton CR, Carson JM, Luo J, Park C, Hamidi H, Zhou J, Hoover P, Schroeder A, Joanes M, Azeloglu EU, Sealfon R, Winfree S, Steck B, He Y, D’Agati V, Iyengar R, Troyanskaya OG, Barisoni L, Gaut J, Zhang K, Laszik Z, Rovin BH, Dagher PC, Sharma K, Sarwal MM, Hodgin JB, Alpers CE, Kretzler M, Jain S. A multimodal and integrated approach to interrogate human kidney biopsies with rigor and reproducibility: guidelines from the Kidney Precision Medicine Project. Physiol Genomics 2021; 53:1-11. [PMID: 33197228 PMCID: PMC7847045 DOI: 10.1152/physiolgenomics.00104.2020] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Comprehensive and spatially mapped molecular atlases of organs at a cellular level are a critical resource to gain insights into pathogenic mechanisms and personalized therapies for diseases. The Kidney Precision Medicine Project (KPMP) is an endeavor to generate three-dimensional (3-D) molecular atlases of healthy and diseased kidney biopsies by using multiple state-of-the-art omics and imaging technologies across several institutions. Obtaining rigorous and reproducible results from disparate methods and at different sites to interrogate biomolecules at a single-cell level or in 3-D space is a significant challenge that can be a futile exercise if not well controlled. We describe a "follow the tissue" pipeline for generating a reliable and authentic single-cell/region 3-D molecular atlas of human adult kidney. Our approach emphasizes quality assurance, quality control, validation, and harmonization across different omics and imaging technologies from sample procurement, processing, storage, shipping to data generation, analysis, and sharing. We established benchmarks for quality control, rigor, reproducibility, and feasibility across multiple technologies through a pilot experiment using common source tissue that was processed and analyzed at different institutions and different technologies. A peer review system was established to critically review quality control measures and the reproducibility of data generated by each technology before their being approved to interrogate clinical biopsy specimens. The process established economizes the use of valuable biopsy tissue for multiomics and imaging analysis with stringent quality control to ensure rigor and reproducibility of results and serves as a model for precision medicine projects across laboratories, institutions and consortia.
Collapse
Affiliation(s)
| | | | - Rajasree Menon
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Blue B. Lake
- 3Jacobs School of Engineering, University of California, San Diego, California
| | - Tara K. Sigdel
- 4University of California San Francisco School of Medicine, San Francisco, California
| | | | - Samir Parikh
- 6Ohio State University College of Medicine, Columbus, Ohio
| | - Guanshi Zhang
- 7UT-Health San Antonio School of Medicine, San Antonio, Texas
| | - Dejan Dobi
- 4University of California San Francisco School of Medicine, San Francisco, California
| | - Kenneth W. Dunn
- 1Indiana University School of Medicine, Indianapolis, Indiana
| | - Edgar A. Otto
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Christopher R. Anderton
- 7UT-Health San Antonio School of Medicine, San Antonio, Texas,8Pacific Northwest National Laboratory, Richland, Washington
| | - Jonas M. Carson
- 9Schools of Medicine and Public Health, University of Washington, Seattle, Washington
| | - Jinghui Luo
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Chris Park
- 9Schools of Medicine and Public Health, University of Washington, Seattle, Washington
| | - Habib Hamidi
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Jian Zhou
- 12Princeton University, Princeton, New Jersey,14Columbia University School of Medicine, New York City, New York
| | - Paul Hoover
- 10Harvard University School of Medicine, Boston Massachusetts
| | - Andrew Schroeder
- 4University of California San Francisco School of Medicine, San Francisco, California
| | - Marianinha Joanes
- 4University of California San Francisco School of Medicine, San Francisco, California
| | | | - Rachel Sealfon
- 12Princeton University, Princeton, New Jersey,14Columbia University School of Medicine, New York City, New York
| | - Seth Winfree
- 1Indiana University School of Medicine, Indianapolis, Indiana
| | - Becky Steck
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Yongqun He
- 2University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Vivette D’Agati
- 14Columbia University School of Medicine, New York City, New York
| | - Ravi Iyengar
- 11Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Olga G. Troyanskaya
- 12Princeton University, Princeton, New Jersey,14Columbia University School of Medicine, New York City, New York
| | - Laura Barisoni
- 15Duke University School of Medicine, Durham, North Carolina
| | - Joseph Gaut
- 16Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| | - Kun Zhang
- 3Jacobs School of Engineering, University of California, San Diego, California
| | - Zoltan Laszik
- 4University of California San Francisco School of Medicine, San Francisco, California
| | - Brad H. Rovin
- 6Ohio State University College of Medicine, Columbus, Ohio
| | | | - Kumar Sharma
- 7UT-Health San Antonio School of Medicine, San Antonio, Texas
| | - Minnie M. Sarwal
- 4University of California San Francisco School of Medicine, San Francisco, California
| | | | - Charles E. Alpers
- 9Schools of Medicine and Public Health, University of Washington, Seattle, Washington
| | | | - Sanjay Jain
- 16Washington University in Saint Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Bo C, Geng X, Zhang J, Sai L, Zhang Y, Yu G, Zhang Z, Liu K, Du Z, Peng C, Jia Q, Shao H. Comparative proteomic analysis of silica-induced pulmonary fibrosis in rats based on tandem mass tag (TMT) quantitation technology. PLoS One 2020; 15:e0241310. [PMID: 33119648 PMCID: PMC7595299 DOI: 10.1371/journal.pone.0241310] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022] Open
Abstract
Silicosis is a systemic disease characterized by chronic persistent inflammation and incurable pulmonary fibrosis with the underlying molecular mechanisms to be fully elucidated. In this study, we employed tandem mass tag (TMT) based on quantitative proteomics technology to detect differentially expressed proteins (DEPs) in lung tissues of silica-exposed rats. A total of 285 DEPs (145 upregulated and 140 downregulated) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the biological pathway and functional classification of the proteins. Results showed that these DEPs were mainly enriched in the phagosome, lysosome function, complement and the coagulation cascade, glutathione metabolism, focal adhesion and ECM-receptor interactions. To validate the proteomics data, we selected and analyzed the expression trends of six proteins including CD14, PSAP, GM2A, COL1A1, ITGA8 and CLDN5 using parallel reaction monitoring (PRM). The consistent result between PRM and TMT indicated the reliability of our proteomic data. These findings will help to reveal the pathogenesis of silicosis and provide potential therapeutic targets. Data are available via ProteomeXchange with identifier PXD020625.
Collapse
Affiliation(s)
- Cunxiang Bo
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Xiao Geng
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Juan Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Linlin Sai
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Yu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Gongchang Yu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Zhenling Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Kai Liu
- Department of Cardiovascular Surgery, Qilu Hospital of Shandong University, Ji’nan, Shandong, China
| | - Zhongjun Du
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
| | - Cheng Peng
- Queensland Alliance for Environmental Health Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Qiang Jia
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
- * E-mail: (QJ); (HS)
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan, Shandong, China
- * E-mail: (QJ); (HS)
| |
Collapse
|
9
|
Marek I, Hilgers KF, Rascher W, Woelfle J, Hartner A. A role for the alpha-8 integrin chain (itga8) in glomerular homeostasis of the kidney. Mol Cell Pediatr 2020; 7:13. [PMID: 33000355 PMCID: PMC7527396 DOI: 10.1186/s40348-020-00105-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/08/2020] [Indexed: 01/03/2023] Open
Abstract
Glomerulonephritis results in a dysregulation of glomerular cells and may end up in chronic alterations and subsequent loss of renal function. Therefore, understanding mechanisms, which contribute to maintain glomerular integrity, is a pivotal prerequisite for therapeutic interventions. The alpha-8 integrin chain seems to be an important player to maintain glomerular homeostasis by conferring mechanical stability and functional support for the renal capillary tuft.
Collapse
Affiliation(s)
- Ines Marek
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Loschgestrasse 15, 91054, Erlangen, Germany.
| | - Karl Friedrich Hilgers
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Wolfgang Rascher
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Joachim Woelfle
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Loschgestrasse 15, 91054, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Loschgestrasse 15, 91054, Erlangen, Germany
| |
Collapse
|
10
|
Menendez-Castro C, Cordasic N, Dambietz T, Veelken R, Amann K, Hartner A, Hilgers KF. Correlations Between Interleukin-11 Expression and Hypertensive Kidney Injury in a Rat Model of Renovascular Hypertension. Am J Hypertens 2020; 33:331-340. [PMID: 31840157 DOI: 10.1093/ajh/hpz194] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 10/10/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Interleukin-11 (IL-11) is a pleiotropic cytokine of the interleukin-6 family. Recent studies revealed its crucial role in the development of cardiovascular fibrosis. In this study we examined IL-11 expression levels in the heart and the kidney exposed to high blood pressure in renovascular hypertensive rats and their correlations to fibrotic markers and kidney injury. METHODS Two-kidney, one-clip renovascular hypertension (2K1C) was induced in rats. IL-11 expression was measured by real-time polymerase chain reaction in the left ventricle and the right kidney. The correlation of cardiac IL-11 expression with biomarkers of renal fibrosis was assessed. We further investigated IL-11 expression in 2K1C rats grouped into rats with malignant vs. nonmalignant hypertension (distinguishing criteria: weight loss, number of fibrinoid necrosis, and onion skin lesions). RESULTS Thirty-five days after clipping, mean arterial pressure was significantly increased in 2K1C. Renal IL-11 expression was elevated in 2K1C. In the heart there was only a trend toward higher IL-11 expression in 2K1C. IL-11 in the kidney in 2K1C correlated with the expression of transforming growth factor (TGF)-β1/2, collagens, fibronectin, osteopontin, as well as tissue inhibitors of metalloprotease 1/2. There were also correlations of IL-11 with tissue collagen expansion, number of activated fibroblasts and serum creatinine, but no correlation with mean arterial pressure. Renal expression of IL-11 was highest in rats with malignant hypertension. CONCLUSIONS Renal IL-11 expression of renovascular hypertensive rats is markedly increased and correlates with profibrotic markers and loss of function and might therefore serve as a biomarker for the severity of hypertensive nephrosclerosis.
Collapse
Affiliation(s)
- Carlos Menendez-Castro
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Nada Cordasic
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Thomas Dambietz
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Roland Veelken
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, University Hospital of Erlangen, Erlangen, Germany
| | - Andrea Hartner
- Department of Pediatrics and Adolescent Medicine, University Hospital of Erlangen, Erlangen, Germany
| | - Karl F Hilgers
- Department of Nephrology and Hypertension, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Effects of Acute and Chronic Exposure to Residual Level Erythromycin on Human Intestinal Epithelium Cell Permeability and Cytotoxicity. Microorganisms 2019; 7:microorganisms7090325. [PMID: 31489925 PMCID: PMC6780317 DOI: 10.3390/microorganisms7090325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/11/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022] Open
Abstract
Residual concentrations of erythromycin in food could result in gastrointestinal tract exposure that potentially poses a health-hazard to the consumer, affecting intestinal epithelial permeability, barrier function, microbiota composition, and antimicrobial resistance. We investigated the effects of erythromycin after acute (48 h single treatment with 0.03 μg/mL to 300 μg/mL) or chronic (repeated treatment with 0.3 µg/mL and 300 µg/mL erythromycin for five days) exposures on the permeability of human colonic epithelial cells, a model that mimics a susceptible intestinal surface devoid of commensal microbiota. Transepithelial electrical resistance (TER) measurements indicated that erythromycin above 0.3 µg/mL may compromise the epithelial barrier. Acute exposure increased cytotoxicity, while chronic exposure decreased the cytotoxicity. Quantitative PCR analysis revealed that only ICAM1 (intercellular adhesion molecule 1) was up-regulated during 0.3 μg/mL acute-exposure, while ICAM1, JAM3 (junctional adhesion molecule 3), and ITGA8 (integrin alpha 8), were over-expressed in the 300 μg/mL acute treatment group. However, during chronic exposure, no change in the mRNA expression was observed at 0.3 μg/mL, and only ICAM2 was significantly up-regulated after 300 μg/mL. ICAM1 and ICAM2 are known to be involved in the formation of extracellular matrices. These gene expression changes may be related to the immunoregulatory activity of erythromycin, or a compensatory mechanism of the epithelial cells to overcome the distress caused by erythromycin due to increased permeability.
Collapse
|
12
|
Li HZ, Lu HD. Transcriptome analyses identify key genes and potential mechanisms in a rat model of osteoarthritis. J Orthop Surg Res 2018; 13:319. [PMID: 30551734 PMCID: PMC6295024 DOI: 10.1186/s13018-018-1019-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/26/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most common degenerative diseases of the joints worldwide, but still the pathogenesis of OA is largely unknown. The purpose of our study is to clarify key candidate genes and relevant signaling pathways in a surgical-induced OA rat model. METHODS The microarray raw data of GSE8077 was downloaded from GEO datasets. GeoDiver were employed to screen differentially-expressed genes (DEGs). Enrichment analyses of DEGs were performed using Metascape. Construction of protein-protein interaction (PPI) network and identification of key genes were conducted using STRING, Cytoscape v3.6.0, and Centiscape2.2. Furthermore, miRDB and Cytoscape v3.6.0 were used for visualization of miRNA-mRNA regulatory network. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for predicted miRNAs was undertaken using DIANA-miRPath v3.0. RESULTS Several DEGs (188 in comparison between OA and sham-operated group and 160 in comparison between OA and contralateral group) were identified. DEGs mainly enriched in vasculature development, regulation of cell migration, response to growth factor (Gene ontology), and ECM-receptor interaction (KEGG). Two comparison cohorts shared 79 intersection genes, and of these, Ccl2, Col4a1, Col1a1, Aldh1a3, and Itga8 were defined as the hub genes. Predicted miRNAs of seven DEGs from sub-networks mainly enriched in MAPK signaling pathway. CONCLUSION The current study shows that some key genes and pathways, such as Ccl2, Col4a1, Col1a1, Aldh1a3, Itga8, ECM-receptor interaction, and MAPK signaling pathway may be associated with OA progression and act as potential biomarkers and therapeutic targets for OA.
Collapse
Affiliation(s)
- Hui-Zi Li
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China
| | - Hua-Ding Lu
- Department of Orthopaedics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong, China. .,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, Guangdong Province, China.
| |
Collapse
|
13
|
Pharmacological characterisation of a tool αvβ1 integrin small molecule RGD-mimetic inhibitor. Eur J Pharmacol 2018; 842:239-247. [PMID: 30389632 DOI: 10.1016/j.ejphar.2018.10.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 11/24/2022]
Abstract
Compound 8 is a selective αvβ1 small molecule inhibitor that has been used in pre-clinical studies to identify and characterise the αvβ1 integrin as a potential target in fibrotic disease. In this study we further investigated the selectivity and pharmacokinetics of compound 8 to determine a link between the levels of αvβ1 engagement required to achieve in vivo pharmacodynamic efficacy. The selectivity of compound 8 for the arginyl-glycinyl-aspartic acid and β1 integrins was measured using purified integrin protein preparations in radioligand binding studies with both labelled ([3H]compound 8) and unlabelled versions. The pharmacokinetic profile of compound 8 was completed in in vitro blood protein binding assays and in in vivo studies using male C57BL/6 mouse following i.v. dosing. The high selectivity of compound 8 for αvβ1 over the other αv integrins was confirmed, however a reduced selectivity was demonstrated for the β1 integrin family, with high affinity observed for α4β1 (comparable to αvβ1), moderate affinity for α2β1, α3β1 and α8β1, and low affinity for α5β1 and α9β1. Compound 8 was shown to be cleared quickly from the blood with a short half-life of 0.5 h. In conclusion, the data in this study suggest that compound 8 has the potential to engage a number of integrins in vivo beyond αvβ1, that raises a degree of uncertainty regarding its mechanism of action in models of fibrotic disease.
Collapse
|
14
|
Alpha8 Integrin (Itga8) Signalling Attenuates Chronic Renal Interstitial Fibrosis by Reducing Fibroblast Activation, Not by Interfering with Regulation of Cell Turnover. PLoS One 2016; 11:e0150471. [PMID: 26938996 PMCID: PMC4777439 DOI: 10.1371/journal.pone.0150471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/14/2016] [Indexed: 11/29/2022] Open
Abstract
The α8 integrin (Itga8) chain contributes to the regulation of cell proliferation and apoptosis in renal glomerular cells. In unilateral ureteral obstruction Itga8 is de novo expressed in the tubulointerstitium and a deficiency of Itga8 results in more severe renal fibrosis after unilateral ureteral obstruction. We hypothesized that the increased tubulointerstitial damage after unilateral ureteral obstruction observed in mice deficient for Itga8 is associated with altered tubulointerstitial cell turnover and apoptotic mechanisms resulting from the lack of Itga8 in cells of the tubulointerstitium. Induction of unilateral ureteral obstruction was achieved by ligation of the right ureter in mice lacking Itga8. Unilateral ureteral obstruction increased proliferation and apoptosis rates of tubuloepithelial and interstitial cells, however, no differences were observed in the tubulointerstitium of mice lacking Itga8 and wild type controls regarding fibroblast or proliferating cell numbers as well as markers of endoplasmic reticulum stress and apoptosis after unilateral ureteral obstruction. In contrast, unilateral ureteral obstruction in mice lacking Itga8 led to more pronounced tubulointerstitial cell activation i.e. to the appearance of more phospho-SMAD2/3-positive cells and more α-smooth muscle actin-positive cells in the tubulointerstitium. Furthermore, a more severe macrophage and T-cell infiltration was observed in these animals compared to controls. Thus, Itga8 seems to attenuate tubulointerstitial fibrosis in unilateral ureteral obstruction not via regulation of cell turnover, but via regulation of TGF-β signalling, fibroblast activation and/or immune cell infiltration.
Collapse
|