1
|
Giedraitienė N, Kizlaitienė R, Kaubrys G. New autoimmune disorder development after immune reconstitution therapy for multiple sclerosis. Sci Rep 2024; 14:30991. [PMID: 39730657 DOI: 10.1038/s41598-024-82196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Immune reconstitution therapy (IRT) is a relatively new and highly effective treatment option for multiple sclerosis (MS). Uncertainty regarding the development of autoimmune disorders (ADs) after some therapies remains. The aim of this study was to assess new AD development after IRT in MS patients and to describe the nature of those ADs and the time to onset. A total of 179 patients with relapsing multiple sclerosis (37 after autologous haematopoietic stem cell transplantation (AHSCT), 19 after alemtuzumab (ALE) and 123 after cladribine (CLA) treatment) over a ten year period were included in the study. ADs were observed in 6 patients (16.2%) after AHSCT, 8 patients (42.1%) after ALE and 2 patients (1.6%) after CLA treatment. ADs developed earlier after ALE infusions, but later after AHSCT except for cytopenias. Neurologists should be attentive to the development of secondary ADs after ALE and AHSCT in MS patients.
Collapse
Affiliation(s)
- Nataša Giedraitienė
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania.
| | - Rasa Kizlaitienė
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Gintaras Kaubrys
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
2
|
Wu J, Olsson T, Hillert JA, Alfredsson L, Hedström AK. Association Between Alcohol Consumption and Disability Accumulation in Multiple Sclerosis. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200289. [PMID: 39088840 PMCID: PMC11379438 DOI: 10.1212/nxi.0000000000200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
BACKGROUND AND OBJECTIVES Previous studies have indicated that alcohol consumption is associated with multiple sclerosis (MS) disease progression. We aimed to study the influence of alcohol consumption habits on disease progression and health-related quality of life in MS. METHODS We categorized patients from 2 population-based case-control studies by alcohol consumption habits at diagnosis and followed them up to 15 years after diagnosis through the Swedish MS registry regarding changes in the Expanded Disability Status Scale (EDSS) and Multiple Sclerosis Impact Scale 29 (MSIS-29). We used Cox regression models with 95% confidence intervals (CIs) using 24-week confirmed disability worsening, EDSS 3, EDSS 4, and physical and psychological worsening from the patient's perspective as end points. RESULTS Our study comprised 9,051 patients with MS, with a mean age of 37.5 years at baseline/diagnosis. Compared with nondrinking, low and moderate alcohol consumption was associated with reduced risk of EDSS-related unfavorable outcomes (hazard ratios between 0.81 and 0.90) and with reduced risk of physical worsening. The inverse association was confined to relapsing-remitting MS and was more pronounced among women. High alcohol consumption did not significantly affect disease progression. The inverse relationship between low-moderate alcohol consumption and disability progression became stronger when we only included those who had not changed their alcohol consumption during follow-up (hazard ratios between 0.63 and 0.71). There were no differences in measures of disability at baseline between drinkers who continued drinking alcohol after diagnosis and those who later discontinued. Our findings speak against bias due to reverse causation. DISCUSSION Low and moderate alcohol consumption was associated with more favorable outcomes in relapsing-remitting MS, compared with nondrinking, while there was no significant influence of high alcohol consumption on disease outcomes.
Collapse
Affiliation(s)
- Jing Wu
- From the Institute of Environmental Medicine (J.W., L.A.); Department of Clinical Neuroscience (T.O., J.A.H., L.A., A.K.H.), Karolinska Institutet; and Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm, Stockholm, Sweden
| | - Tomas Olsson
- From the Institute of Environmental Medicine (J.W., L.A.); Department of Clinical Neuroscience (T.O., J.A.H., L.A., A.K.H.), Karolinska Institutet; and Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm, Stockholm, Sweden
| | - Jan A Hillert
- From the Institute of Environmental Medicine (J.W., L.A.); Department of Clinical Neuroscience (T.O., J.A.H., L.A., A.K.H.), Karolinska Institutet; and Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm, Stockholm, Sweden
| | - Lars Alfredsson
- From the Institute of Environmental Medicine (J.W., L.A.); Department of Clinical Neuroscience (T.O., J.A.H., L.A., A.K.H.), Karolinska Institutet; and Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm, Stockholm, Sweden
| | - Anna Karin Hedström
- From the Institute of Environmental Medicine (J.W., L.A.); Department of Clinical Neuroscience (T.O., J.A.H., L.A., A.K.H.), Karolinska Institutet; and Centre for Occupational and Environmental Medicine (L.A.), Region Stockholm, Stockholm, Sweden
| |
Collapse
|
3
|
Grunwald C, Krętowska-Grunwald A, Adamska-Patruno E, Kochanowicz J, Kułakowska A, Chorąży M. The Role of Selected Interleukins in the Development and Progression of Multiple Sclerosis-A Systematic Review. Int J Mol Sci 2024; 25:2589. [PMID: 38473835 PMCID: PMC10932438 DOI: 10.3390/ijms25052589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple sclerosis is a disabling inflammatory disorder of the central nervous system characterized by demyelination and neurodegeneration. Given that multiple sclerosis remains an incurable disease, the management of MS predominantly focuses on reducing relapses and decelerating the progression of both physical and cognitive decline. The continuous autoimmune process modulated by cytokines seems to be a vital contributing factor to the development and relapse of multiple sclerosis. This review sought to summarize the role of selected interleukins in the pathogenesis and advancement of MS. Patients with MS in the active disease phase seem to exhibit an increased serum level of IL-2, IL-4, IL-6, IL-13, IL-17, IL-21, IL-22 and IL-33 compared to healthy controls and patients in remission, while IL-10 appears to have a beneficial impact in preventing the progression of the disease. Despite being usually associated with proinflammatory activity, several studies have additionally recognized a neuroprotective role of IL-13, IL-22 and IL-33. Moreover, selected gene polymorphisms of IL-2R, IL-4, IL-6, IL-13 and IL-22 were identified as a possible risk factor related to MS development. Treatment strategies of multiple sclerosis that either target or utilize these cytokines seem rather promising, but more comprehensive research is necessary to gain a clearer understanding of how these cytokines precisely affect MS development and progression.
Collapse
Affiliation(s)
- Cezary Grunwald
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Anna Krętowska-Grunwald
- Department of Pediatric Oncology and Hematology, Medical University of Bialystok, Jerzego Waszyngtona 17, 15-274 Białystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland;
| | - Jan Kochanowicz
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Alina Kułakowska
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| | - Monika Chorąży
- Department of Neurology, Medical University of Bialystok, Marii Skłodowskiej-Curie 24A, 15-276 Białystok, Poland; (J.K.); (A.K.)
| |
Collapse
|
4
|
Wu H, Fu Q, Teng Y, Mu P, Chen J, Chen X. The identification and expression of an interleukin-21 receptor in large yellow croaker (Larimichthys crocea). Mol Biol Rep 2023; 50:10121-10129. [PMID: 37921979 DOI: 10.1007/s11033-023-08827-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND We identified a homologue of IL-21R (LcIL-21R) in large yellow croaker (Larimichthys crocea, Lc). Our investigation focused on understanding the molecular structural features and immune function of LcIL-21R. METHODS We cloned the LcIL-21R gene from the genome of Larimichthys crocea by RT‒PCR, and the molecular and structural characteristics of LcIL-21R were analyzed by a series of protein analysis tools. We used real-time PCR to investigate the tissue distribution of LcIL-21R, and LcIL-21R gene expression regulation was also measured in head kidney leukocytes under trivalent bacterial vaccine or poly (I:C) stimulation. RESULTS The open reading frame (ORF) of the LcIL-21R gene is 1629 bp long and encodes a precursor protein of 542 amino acids (aa), with a 23-aa signal peptide and a 519-aa mature peptide containing four putative N-glycosylation sites. LcIL-21R has two fibronectin type III (FNIII)-like domains (D1 and D2), a transmembrane domain, and a cytoplasmic region. A conserved WSXWS motif was also found in the D2 domain. The predicted structure of the extracellular region of LcIL-21R (LcIL-21R-Ex) is highly similar to that of human IL-21R. LcIL-21R was constitutively expressed in all tissues examined, and LcIL-21R mRNA levels were increased in the head kidney and spleen upon inactivated trivalent bacterial vaccine or poly(I:C) stimulation. CONCLUSIONS Our results suggest that LcIL-21R shares structural and functional properties with IL-21Rs found in other vertebrates, indicating its potential involvement in the IL-21-mediated immune response to pathogenic infections. These findings contribute to our understanding of the evolutionary conservation of IL-21 signaling and its role in the immune system.
Collapse
Affiliation(s)
- Hanyu Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China
| | - Qiuling Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, 350013, China
| | - Yan Teng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China
| | - Pengfei Mu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China
| | - Jingjie Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Fuzhou, 350002, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
5
|
Yuan G, Zhao W, Zhang Y, Jia Z, Chen K, Wang J, Feng H, Zou J. The Biological Functions and Intestinal Inflammation Regulation of IL-21 in Grass Carp ( Ctenopharyngodon idella) during Infection with Aeromonas hydrophila. Cells 2023; 12:2276. [PMID: 37759501 PMCID: PMC10528265 DOI: 10.3390/cells12182276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Interleukin (IL) 21 is a pleiotropic cytokine that plays an important role in regulating innate and adaptive immune responses. In fish, the biological functions and cell source of IL-21 remain largely unknown. In this study, we performed qRT-PCR, Western blotting and immunofluorescent microscopy to examine the expression of IL-21 at the mRNA and protein levels. We found that il21 expression was induced in the primary head kidney leukocytes of grass carp (Ctenopharyngodon idella) by heat-inactivated Aeromonas hydrophila (A. hydrophila) and LPS and in tissues after infection with A. hydrophila. Recombinant IL-21 protein produced in the CHO-S cells was effective in elevating the expression of antibacterial genes, including β-defensin and lysozyme, and, interestingly, inhibited the NF-κB signaling pathway. Furthermore, we investigated the response of the IL-21 expressing cells to A. hydrophila infection. Immunofluorescent assay showed that IL-21 protein was detected in the CD3γ/δ T cells and was markedly accumulated in the anterior, middle and posterior intestine. Collectively, the results indicate that IL-21 plays an important role in regulating the intestinal inflammation induced by bacterial infection in grass carp.
Collapse
Affiliation(s)
- Gaoliang Yuan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Weihua Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yanwei Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, China;
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; (G.Y.); (W.Z.); (Y.Z.); (Z.J.); (K.C.); (J.W.)
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China
| |
Collapse
|
6
|
Hecker M, Fitzner B, Boxberger N, Putscher E, Engelmann R, Bergmann W, Müller M, Ludwig-Portugall I, Schwartz M, Meister S, Dudesek A, Winkelmann A, Koczan D, Zettl UK. Transcriptome alterations in peripheral blood B cells of patients with multiple sclerosis receiving immune reconstitution therapy. J Neuroinflammation 2023; 20:181. [PMID: 37533036 PMCID: PMC10394872 DOI: 10.1186/s12974-023-02859-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative disease that leads to irreversible damage to the brain and spinal cord. The goal of so-called "immune reconstitution therapies" (IRTs) is to achieve long-term disease remission by eliminating a pathogenic immune repertoire through intense short-term immune cell depletion. B cells are major targets for effective immunotherapy in MS. OBJECTIVES The aim of this study was to analyze the gene expression pattern of B cells before and during IRT (i.e., before B-cell depletion and after B-cell repopulation) to better understand the therapeutic effects and to identify biomarker candidates of the clinical response to therapy. METHODS B cells were obtained from blood samples of patients with relapsing-remitting MS (n = 50), patients with primary progressive MS (n = 13) as well as healthy controls (n = 28). The patients with relapsing MS received either monthly infusions of natalizumab (n = 29) or a pulsed IRT with alemtuzumab (n = 15) or cladribine (n = 6). B-cell subpopulation frequencies were determined by flow cytometry, and transcriptome profiling was performed using Clariom D arrays. Differentially expressed genes (DEGs) between the patient groups and controls were examined with regard to their functions and interactions. We also tested for differences in gene expression between patients with and without relapse following alemtuzumab administration. RESULTS Patients treated with alemtuzumab or cladribine showed on average a > 20% lower proportion of memory B cells as compared to before IRT. This was paralleled by profound transcriptome shifts, with > 6000 significant DEGs after adjustment for multiple comparisons. The top DEGs were found to regulate apoptosis, cell adhesion and RNA processing, and the most highly connected nodes in the network of encoded proteins were ESR2, PHB and RC3H1. Higher mRNA levels of BCL2, IL13RA1 and SLC38A11 were seen in patients with relapse despite IRT, though these differences did not pass the false discovery rate correction. CONCLUSIONS We show that B cells circulating in the blood of patients with MS undergoing IRT present a distinct gene expression signature, and we delineated the associated biological processes and gene interactions. Moreover, we identified genes whose expression may be an indicator of relapse risk, but further studies are needed to verify their potential value as biomarkers.
Collapse
Affiliation(s)
- Michael Hecker
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany.
| | - Brit Fitzner
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Nina Boxberger
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Elena Putscher
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Robby Engelmann
- Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematology Laboratory, Rostock University Medical Center, Ernst-Heydemann-Str. 6, 18057, Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | | | - Margit Schwartz
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Stefanie Meister
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Ales Dudesek
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Alexander Winkelmann
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | - Dirk Koczan
- Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 18057, Rostock, Germany
| | - Uwe Klaus Zettl
- Division of Neuroimmunology, Department of Neurology, Rostock University Medical Center, Gehlsheimer Str. 20, 18147, Rostock, Germany
| |
Collapse
|
7
|
Jahangir M, Kahrizi MS, Natami M, Moaref Pour R, Ghoreishizadeh S, Hemmatzadeh M, Mohammadi H, Shomali N, Sandoghchian Shotorbani S. MicroRNA-155 acts as a potential prognostic and diagnostic factor in patients with ankylosing spondylitis by modulating SOCS3. Mol Biol Rep 2023; 50:553-563. [PMID: 36350418 DOI: 10.1007/s11033-022-08033-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a progressive inflammatory disease. Our primary objective was to explore the role of miR-155 and its targeted factors in AS pathogenesis. METHODS AND RESULTS PBMCs were isolated from 30 AS patients and 30 healthy individuals using the Ficoll-hypaque isolation approach. The expression of miR-155 and its associated targets, including Suppressor Of Cytokine Signaling 3 (SOCS3), STAT3, and IL-21, were determined using qT-qPCR. Then, PBMCs were cultured, and the effect of miR-155, SOCS3 siRNA (to suppress its expression), pEFSOCS3 (enforced expression), and their combination were investigated by qRT-PCR and western blotting. We also treated the cultured PBMCs with Brefeldin A, a potent inhibitor of cytokine secretion, to determine its effect on IL-21 expression and secretion. In addition, the association between miR-155 and patients' clinicopathological features was examined. The results showed that miR-155, IL-21, and STAT3 were increased in patients with AS, while SOCS3 had decreasing expression trend. It was also determined that miR-155 alleviates SOCS3 expression and increases IL-21 and STAT3 expression; it had a prominent effect when combined with SOCS3 siRNA. Besides, we showed that simultaneous transfection of miR-155 and pEFSOCS3 had no significant effect on IL-21 and STAT3 expression, revealing that miR-155 could alleviate the enforced expression of SOCS3. It was also proven that Brefledine A led to IL-21 up-regulation or accumulation while relieving its secretion. Also, a significant correlation between miR-155 and pathological features of AS patients was found. CONCLUSION miR-155 acts as a potential prognostic and diagnostic biomarker. Its up-regulation leads to the down-regulation of SOCS3 and increased expression of IL-21 and STAT3 as characteristic of TH-17 lymphocytes, leading to worsening inflammatory conditions in patients with AS.
Collapse
Affiliation(s)
| | | | - Mohammad Natami
- Department of Urology, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raziyeh Moaref Pour
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Maryam Hemmatzadeh
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Nova A, Baldrighi GN, Fazia T, Graziano F, Saddi V, Piras M, Beecham A, McCauley JL, Bernardinelli L. Heritability Estimation of Multiple Sclerosis Related Plasma Protein Levels in Sardinian Families with Immunochip Genotyping Data. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071101. [PMID: 35888189 PMCID: PMC9317284 DOI: 10.3390/life12071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
This work aimed at estimating narrow-sense heritability, defined as the proportion of the phenotypic variance explained by the sum of additive genetic effects, via Haseman–Elston regression for a subset of 56 plasma protein levels related to Multiple Sclerosis (MS). These were measured in 212 related individuals (with 69 MS cases and 143 healthy controls) obtained from 20 Sardinian families with MS history. Using pedigree information, we found seven statistically significant heritable plasma protein levels (after multiple testing correction), i.e., Gc (h2 = 0.77; 95%CI: 0.36, 1.00), Plat (h2 = 0.70; 95%CI: 0.27, 0.95), Anxa1 (h2 = 0.68; 95%CI: 0.27, 1.00), Sod1 (h2 = 0.58; 95%CI: 0.18, 0.96), Irf8 (h2 = 0.56; 95%CI: 0.19, 0.99), Ptger4 (h2 = 0.45; 95%CI: 0.10, 0.96), and Fadd (h2 = 0.41; 95%CI: 0.06, 0.84). A subsequent analysis was performed on these statistically significant heritable plasma protein levels employing Immunochip genotyping data obtained in 155 healthy controls (92 related and 63 unrelated); we found a meaningful proportion of heritable plasma protein levels’ variability explained by a small set of SNPs. Overall, the results obtained, for these seven MS-related proteins, emphasized a high additive genetic variance component explaining plasma levels’ variability.
Collapse
Affiliation(s)
- Andrea Nova
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
- Correspondence:
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Teresa Fazia
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| | - Francesca Graziano
- Centre of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, 20900 Monza, Italy;
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valeria Saddi
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Marialuisa Piras
- Divisione di Neurologia, Presidio Ospedaliero S. Francesco, ASL Numero 3 Nuoro, 08100 Nuoro, Italy; (V.S.); (M.P.)
| | - Ashley Beecham
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jacob L. McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33146, USA; (A.B.); (J.L.M.)
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Luisa Bernardinelli
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (G.N.B.); (T.F.); (L.B.)
| |
Collapse
|
9
|
Agrawal S, Baulch JE, Madan S, Salah S, Cheeks SN, Krattli RP, Subramanian VS, Acharya MM, Agrawal A. Impact of IL-21-associated peripheral and brain crosstalk on the Alzheimer's disease neuropathology. Cell Mol Life Sci 2022; 79:331. [PMID: 35648273 PMCID: PMC9160131 DOI: 10.1007/s00018-022-04347-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022]
Abstract
Alzheimer’s disease (AD) is associated with dysregulated immune and inflammatory responses. Emerging evidence indicates that peripheral immune activation is linked to neuroinflammation and AD pathogenesis. The present study focuses on determining the role of IL-21 in the pathogenesis of AD using human samples and the 5xFAD mice model. We find that the levels of IL-21 are increased in the periphery of both humans and mice in AD. In addition, the proportions of IL-21 target cells, Tfh and B plasma cells as well as activation of monocytes is increased in PBMCs from AD and mild cognitively impaired (MCI) subjects as compared to age-matched controls, indicating immune activation. In contrast, the percentage of B1 cells that control inflammation is decreased. These changes are due to IL-21 as the expression of IL-21 receptor (IL-21R) is higher on all these cells in AD. Furthermore, treatment with recombinant IL-21 in AD mice also leads to similar alterations in Tfh, B, B1, and macrophages. The effect of IL-21 is not confined to the periphery since increased expression of IL-21R is also observed in both humans and mice hippocampus derived from the AD brains. In addition, mice injected with IL-21 display increased deposition of amyloid beta (Aβ) plaques in the brain which is reduced following anti-IL-21R antibody that blocks the IL-21 signaling. Moreover, activation of microglia was enhanced in IL-21-injected mice. In keeping with enhanced microglial activation, we also observed increased production of pro-inflammatory cytokines, IL-18 and IL-6 in IL-21-injected mice. The microglial activation and cytokines were both inhibited following IL-21R blockage. Altogether, IL-21 escalates AD pathology by enhancing peripheral and brain immune and inflammatory responses leading to increased Aβ plaque deposition.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Janet E Baulch
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Shreya Madan
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Seher Salah
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Samantha N Cheeks
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
| | - Robert P Krattli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Veedamali S Subramanian
- Division of Gastroenterology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, 92697, USA
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, 92697, USA
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
10
|
Doulabi H, Masoumi E, Rastin M, Foolady Azarnaminy A, Esmaeili SA, Mahmoudi M. The role of Th22 cells, from tissue repair to cancer progression. Cytokine 2021; 149:155749. [PMID: 34739898 DOI: 10.1016/j.cyto.2021.155749] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
CD4+ T helper (Th) cells play a significant role in modulating host defense. In the presence of lineage specific cytokine cocktail, Naive CD4+ T cells can differentiate into several categories with distinct cytokines profile and effector functions. Th22 cells are a recently identified subset of CD4+ T cell, which differentiate from Naive CD4+ T in the presence of IL-6 and TNF-α. Th22 characterized by the production of interleukin-22 (IL-22) and expression of aryl hydrocarbon receptor (AHR). The main function of Th22 cells is to participate in mucosal defense, tissue repair, and wound healing. However, controversial data have shown that overexpression of IL-22 can lead to pathological changes under inflammatory conditions and tumor progression. This review summarizes our knowledge about the role of Th22 and IL-22 cells in tumor progression through induction of inflammation.
Collapse
Affiliation(s)
- Hassan Doulabi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Masoumi
- Department of Immunology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Student Research Committee, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Maryam Rastin
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Hedström AK, Olsson T, Alfredsson L. The increased risk of multiple sclerosis associated with HLA-DRB1*15:01 and smoking is modified by alcohol consumption. Sci Rep 2021; 11:21237. [PMID: 34707149 PMCID: PMC8551162 DOI: 10.1038/s41598-021-00578-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/21/2021] [Indexed: 11/09/2022] Open
Abstract
Previous studies have observed an inverse association between alcohol consumption and multiple sclerosis (MS) risk. We aimed to investigate possible interactions between alcohol consumption, MS-associated human leukocyte antigen (HLA) genes and smoking regarding MS risk. We used a Swedish population-based case-control study (2059 incident cases, 2887 controls) matched by age, sex, and residential area. Subjects with different genotypes and alcohol consumption habits were compared regarding MS risk, by calculating odds ratios with 95% confidence intervals using logistic regression models. Interaction on the additive scale between non-drinking and both genotype and smoking were assessed by calculating the attributable proportion due to interaction (AP). There was a dose-dependent inverse association between alcohol consumption and MS risk (p for trend < 0.0001). A potentiating effect was observed between non-drinking and presence of DRB1*15:01 (AP 0.3, 95% CI 0.2-0.5) which was of similar magnitude irrespective of smoking habits. Non-drinking also interacted with smoking to increase MS risk (AP 0.2, 95% CI 0.06-0.4). Non-drinking interacts with DRB1*15:01 and smoking to increase the risk of MS. Better understanding of the mechanisms behind our findings may help to define ways to achieve protection against MS by other means than alcohol consumption.
Collapse
Affiliation(s)
- Anna Karin Hedström
- Department of Clinical Neuroscience, K8, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience and Center for Molecular Medicine, Karolinska Institutet at Karolinska University Hospital, Solna, Sweden
| | - Lars Alfredsson
- Department of Clinical Neuroscience and Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Zhang X, Ge R, Chen H, Ahiafor M, Liu B, Chen J, Fan X. Follicular Helper CD4 + T Cells, Follicular Regulatory CD4 + T Cells, and Inducible Costimulator and Their Roles in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis. Mediators Inflamm 2021; 2021:2058964. [PMID: 34552387 PMCID: PMC8452443 DOI: 10.1155/2021/2058964] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Follicular helper CD4+ T (TFH) cells are a specialized subset of effector T cells that play a central role in orchestrating adaptive immunity. TFH cells mainly promote germinal center (GC) formation, provide help to B cells for immunoglobulin affinity maturation and class-switch recombination of B cells, and facilitate production of long-lived plasma cells and memory B cells. TFH cells express the nuclear transcriptional repressor B cell lymphoma 6 (Bcl-6), the chemokine (C-X-C motif) receptor 5 (CXCR5), the CD28 family members programmed cell death protein-1 (PD-1) and inducible costimulator (ICOS) and are also responsible for the secretion of interleukin-21 (IL-21) and IL-4. Follicular regulatory CD4+ T (TFR) cells, as a regulatory counterpart of TFH cells, participate in the regulation of GC reactions. TFR cells not only express markers of TFH cells but also express markers of regulatory T (Treg) cells containing FOXP3, glucocorticoid-induced tumor necrosis factor receptor (GITR), cytotoxic T lymphocyte antigen 4 (CTLA-4), and IL-10, hence owing to the dual characteristic of TFH cells and Treg cells. ICOS, expressed on activated CD4+ effector T cells, participates in T cell activation, differentiation, and effector process. The expression of ICOS is highest on TFH and TFR cells, indicating it as a key regulator of humoral immunity. Multiple sclerosis (MS) is a severe autoimmune disease that affects the central nervous system and results in disability, mediated by autoreactive T cells with evolving evidence of a remarkable contribution from humoral responses. This review summarizes recent advances regarding TFH cells, TFR cells, and ICOS, as well as their functional characteristics in relation to MS.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Ruli Ge
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Hongliang Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Maxwell Ahiafor
- School of International Studies, Binzhou Medical University, Yantai, 264003 Shandong, China
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| | - Xueli Fan
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, 256603 Shandong, China
| |
Collapse
|
13
|
Constipation induced gut microbiota dysbiosis exacerbates experimental autoimmune encephalomyelitis in C57BL/6 mice. J Transl Med 2021; 19:317. [PMID: 34301274 PMCID: PMC8306367 DOI: 10.1186/s12967-021-02995-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Constipation is a common gastrointestinal dysfunction which has a potential impact on people's immune state and their quality of life. Here we investigated the effects of constipation on experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Methods Constipation was induced by loperamide in female C57BL/6 mice. The alternations of gut microbiota, permeability of intestinal barrier and blood–brain barrier, and histopathology of colon were assessed after constipation induction. EAE was induced in the constipation mice. Fecal microbiota transplantation (FMT) was performed from constipation mice into microbiota-depleted mice. Clinical scores, histopathology of inflammation and demyelination, Treg/Th17 and Treg17/Teff17 imbalance both in the peripheral lymphatic organs and central nervous system, cytokines include TGF-β, GM-CSF, IL-10, IL-17A, IL-17F, IL-21, IL-22, and IL-23 in serum were assessed in different groups. Results Compared with the vehicle group, the constipation mice showed gut microbiota dysbiosis, colon inflammation and injury, and increased permeability of intestinal barrier and blood–brain barrier. We found that the clinical and pathological scores of the constipation EAE mice were severer than that of the EAE mice. Compared with the EAE mice, the constipation EAE mice showed reduced percentage of Treg and Treg17 cells, increased percentage of Th17 and Teff17 cells, and decreased ratio of Treg/Th17 and Treg17/Teff17 in the spleen, inguinal lymph nodes, brain, and spinal cord. Moreover, the serum levels of TGF-β, IL-10, and IL-21 were decreased while the GM-CSF, IL-17A, IL-17F, IL-22, and IL-23 were increased in the constipation EAE mice. In addition, these pathological processes could be transferred via their gut microbiota. Conclusions Our results verified that constipation induced gut microbiota dysbiosis exacerbated EAE via aggravating Treg/Th17 and Treg17/Teff17 imbalance and cytokines disturbance in C57BL/6 mice. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02995-z.
Collapse
|
14
|
Xu J, Wang J, Min Q, Wang W, Qin Y, Lei L, Gao Q, Zou J. Characterisation of IL-21 and IL-21Rα in grass carp: IL-21-producing cells are upregulated during Flavobacterium columnare infection. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2021.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Jaime-Pérez JC, Turrubiates-Hernández GA, López-Silva LJ, Salazar-Riojas R, Gómez-Almaguer D. Early changes in IL-21, IL-22, CCL2, and CCL4 serum cytokines after outpatient autologous transplantation for multiple sclerosis: A proof of concept study. Clin Transplant 2020; 34:e14114. [PMID: 33048389 DOI: 10.1111/ctr.14114] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/18/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
Changes in serum cytokines after autologous hematopoietic stem cell transplantation (AHSCT) in multiple sclerosis (MS) patients were documented. Thirty-six consecutive MS patients who had their Expanded Disability Status Scale (EDSS) scored before AHSCT were prospectively enrolled. Cyclophosphamide (Cy) was infused at 200 mg/kg in two administrations given 10 days apart: the first dose for mobilization, the second as the conditioning regimen. Patients were mobilized with 10 µg/kg/day subcutaneous G-CSF. Serum was collected 14 days before and 14 after AHSCT. IL-6, IL-9, IL-10, IL 17-A, IL-21, IL-22, IL-23, TNF-A, CCL2, CCL3, and CCL4 were measured by magnetic bead-based immunoassay. t Test and Wilcoxon test were used to compare cytokine levels before and after AHSCT. There were 28 women and 8 men with a median age of 46 (15-62) years, median duration of MS was 9.5 (1-32) years, and EDSS score was 5.7 (1.5-8.0). Patients had a decrement of pro-inflammatory IL-21 and IL-22 (p = .003 and p = .028) and an increment of anti-inflammatory CCL2 and CCL4 (p < .001 and p = .039) after AHSCT. Decrease of IL-21 and IL-22 coupled with an increment of CCL2 and CCL4 could reflect the immunomodulatory effect of auto-HSCT and be an early indicator of its efficacy.
Collapse
Affiliation(s)
- José C Jaime-Pérez
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Grecia A Turrubiates-Hernández
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Leslie J López-Silva
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - Rosario Salazar-Riojas
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| | - David Gómez-Almaguer
- Department of Hematology, Internal Medicine Division, Dr. José Eleuterio González University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey, Mexico
| |
Collapse
|
16
|
Gonçalves MVM, Brandão WN, Longo C, Peron JPS, Dos Passos GR, Pagliarini GL, do Nascimento OJM, Marinowic DR, Machado DC, Becker J. Correlation between IL-31 and sCD40L plasma levels in Fingolimod-treated patients with Relapsing-Remitting Multiple Sclerosis (RRMS). J Neuroimmunol 2020; 350:577435. [PMID: 33189062 DOI: 10.1016/j.jneuroim.2020.577435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Multiple Sclerosis (MS) is a chronic, autoimmune, demyelinating disease of the central nervous system (CNS). Currently, several protocols are described for the different phases of MS. In this longitudinal study, we aim to quantify the concentration of plasma cytokines of MS patients treated with Fingolimod alone or after Glatiramer Acetate (GA) or Interferon-beta (IFN-β), in order to compeer both treatments and describes if it is possible to use them as biomarkers. OBJECTIVE Compare the two different types of drug treatment and describes possible immune biomarkers in RRMS patients treated with Fingolimod alone or after GA or IFN-β. MATERIALS AND METHODS This is a controlled, non-randomized clinical trial. Plasma concentrations of IL-31, sCD40L and nine others cytokines were evaluated in two groups of patients with a one-year follow-up. Group 1 (n = 12): RRMS patients treated with GA or IFN-β for at least six months before the study who changed therapy to Fingolimod after six months, and Group 2 (n = 12): naïve RRMS patients who started treatment with Fingolimod. We used ANOVA two-way to analyze the cytokines and Spearman coefficient to evaluate the correlation. RESULTS Although Group 2 started with a greater number of relapses per disease duration, Fingolimod treatment was effective in decreasing this parameter, as well as EDSS over 12 months. However, the treatment with GA or IFN-β on Group 1 showed a tendency to increase the number of relapses after 6 months of follow-up, which decrease when the therapy was changed to Fingolimod. After the evaluation of 11 cytokines in one year, we found that IL-31 and sCD40L were the biomarkers that demonstrated a more difference when compared to the classical ones, following the clinical pattern over the treatment period. CONCLUSIONS Our study describes the existence of two promising plasmatic biomarkers (IL-31 and sCD40L), which reduced plasmatic levels in RRMS patients followed the treatment time of Fingolimod, despite that more studies are needed to prove their efficiency.
Collapse
Affiliation(s)
| | - Wesley Nogueira Brandão
- Department of Immunology, Institute of Biological Sciences, Universidade de São Paulo (ICB-USP), São Paulo, Brazil
| | - Carla Longo
- Department of Immunology, Institute of Biological Sciences, Universidade de São Paulo (ICB-USP), São Paulo, Brazil
| | - Jean Pierre Schatzmann Peron
- Department of Immunology, Institute of Biological Sciences, Universidade de São Paulo (ICB-USP), São Paulo, Brazil
| | | | - Gabriela Löw Pagliarini
- School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Daniel Rodrigo Marinowic
- Cellular and Molecular Biology and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- Cellular and Molecular Biology and Neuroimmunology Lab, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jefferson Becker
- Department of Neurology, Universidade Federal Fluminense (UFF), Niterói, Brazil; School of Medicine, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil; Neuroimmunology Program, Brain Institute of Rio Grande do Sul (BraIns), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
17
|
Chiricosta L, Gugliandolo A, Bramanti P, Mazzon E. Could the Heat Shock Proteins 70 Family Members Exacerbate the Immune Response in Multiple Sclerosis? An in Silico Study. Genes (Basel) 2020; 11:genes11060615. [PMID: 32503176 PMCID: PMC7348765 DOI: 10.3390/genes11060615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system. It represents one of the main causes of neurological disability in young people. In MS, the autoimmune response is directed against myelin antigens but other possible bio-molecular markers are investigated. The aim of this work was, through an in silico study, the evaluation of the transcriptional modifications between healthy subjects and MS patients in six brain areas (corpus callosum, hippocampus, internal capsule, optic chiasm, frontal and parietal cortex) in order to identify genes representative of the disease. Our results show the upregulation of the Heat Shock Proteins (HSPs) HSPA1A, HSPA1B, HSPA7, HSPA6, HSPH1 and HSPA4L of the HSP70 family, among which HSPA1A and HSPA1B are upregulated in all the brain areas. HSP70s are molecular chaperones indispensable for protein folding, recently associated with immune system maintenance. The little overexpression of the HSPs protects the cells from stress but extreme upregulation can contribute to the MS pathogenesis. We also investigated the genes involved in the immune system that result in overall upregulation in the corpus callosum, hippocampus, internal capsule, optic chiasm and are absent in the cortex. Interestingly, the genes of the immune system and the HSP70s have comparable levels of expression.
Collapse
|
18
|
Herzberg D, Strobel P, Ramirez-Reveco A, Werner M, Bustamante H. Chronic Inflammatory Lameness Increases Cytokine Concentration in the Spinal Cord of Dairy Cows. Front Vet Sci 2020; 7:125. [PMID: 32185190 PMCID: PMC7058553 DOI: 10.3389/fvets.2020.00125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
Lameness in dairy cows is an extremely painful multifactorial condition that affects the welfare of animals and economically impacts the dairy industry worldwide. The aim of this study was to determine the profile of cytokines in the spinal cord dorsal horn of dairy cows with painful chronic inflammatory lameness. Concentrations of 10 cytokines were measured in the spinal cord of seven adult dairy cows with chronic lameness and seven adult dairy cows with no lameness. In all cows lameness was evaluated using a mobility scoring system and registered accordingly. Immediately after euthanasia the spinal cord was removed and 20 cm of lumbar segments (L2–L5) were obtained. After dorsal horn removal and processing, cytokine quantification of tumor necrosis factor-alpha (TNF-α), interleukin-1alpha (IL-1α), interleukin 13 (IL-13), chemokine-10 (CXCL10/IP-10), chemokine-9 (CXCL9/MIG), interferon-alpha (IFN-α), interferon-gamma (IFN-γ), interleukin-21 (IL-21), interleukin-36ra (IL-36ra), and macrophage inflammatory protein-1 beta (MIP-1β) was performed using a multiplex array. Lame cows had higher concentrations of TNF-α, IL-1-α, IL-13, CXCL10, CXCL9, IFN-α, and IFN-γ in their dorsal horn compared to non-lame cows, while IL-21 concentration was decreased. No differences in IL-36ra and MIP-1β concentrations between lame and non-lame cows were observed. Painful chronic inflammation of the hoof in dairy cows leads to a marked increase in cytokine concentration in the dorsal horn of the spinal cord, which could represent a state of neuroinflammation of the Central Nervous System (CNS).
Collapse
Affiliation(s)
- Daniel Herzberg
- Faculty of Veterinary Sciences, Graduate School, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Strobel
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Alfredo Ramirez-Reveco
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Marianne Werner
- Faculty of Veterinary Sciences, Animal Science Institute, Universidad Austral de Chile, Valdivia, Chile
| | - Hedie Bustamante
- Faculty of Veterinary Sciences, Veterinary Clinical Sciences Institute, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
19
|
Emerging role of innate B1 cells in the pathophysiology of autoimmune and neuroimmune diseases: Association with inflammation, oxidative and nitrosative stress and autoimmune responses. Pharmacol Res 2019; 148:104408. [PMID: 31454534 DOI: 10.1016/j.phrs.2019.104408] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
20
|
Mohd Jaya FN, Garcia SG, Borràs FE, Chan GC, Franquesa M. Paradoxical role of Breg-inducing cytokines in autoimmune diseases. J Transl Autoimmun 2019; 2:100011. [PMID: 32743499 PMCID: PMC7388338 DOI: 10.1016/j.jtauto.2019.100011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/30/2019] [Accepted: 08/08/2019] [Indexed: 12/17/2022] Open
Abstract
Regulatory B cells (Breg) are crucial immunoregulators that maintain peripheral tolerance and suppress inflammatory autoimmune responses. In recent years, our understanding on the nature and mechanism of action of Bregs has revealed the important role of cytokines in promoting the regulatory properties of this unique B cell subset, both in animal and human models. In this review, we compiled the cytokines that have been reported by multiple studies to induce the expansion of Breg. The Breg-inducing cytokines which are currently known include IL-21, IL-6, IL1β, IFNα, IL-33, IL-35, BAFF and APRIL. As cytokines are also known to play a pivotal role in the pathogenesis of autoimmune diseases, in parallel we reviewed the pattern of expression of the Breg-inducing cytokines in Systemic Lupus Erythematosus (SLE), Rheumatoid Arthritis (RA), Inflammatory Bowel Diseases (IBD) and Multiple Sclerosis (MS). We show here that Breg-inducing cytokines are commonly implicated in these inflammatory diseases where they typically have a higher expression than in healthy individuals, suggesting their paradoxical nature. Interestingly, despite the general overexpression of Breg-inducing cytokines, it is known that Breg cells are often numerically or functionally impaired in various autoimmune conditions. Considering these alterations, we explored the possible parameters that may influence the function of Breg-inducing cytokines in exhibiting either their regulatory or pro-inflammatory properties in the context of autoimmune conditions.
Collapse
Affiliation(s)
- Fatin N. Mohd Jaya
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
- Corresponding author.
| | - Sergio G. Garcia
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias I Pujol, Can Ruti Campus, 08916, Badalona, Spain
| | - Francesc E. Borràs
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias I Pujol, Can Ruti Campus, 08916, Badalona, Spain
| | - Godfrey C.F. Chan
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong
| | - Marcella Franquesa
- REMAR-IVECAT Group, Health Science Research Institute Germans Trias I Pujol, Can Ruti Campus, 08916, Badalona, Spain
| |
Collapse
|
21
|
Andhavarapu S, Mubariz F, Arvas M, Bever C, Makar TK. Interplay between ER stress and autophagy: A possible mechanism in multiple sclerosis pathology. Exp Mol Pathol 2019; 108:183-190. [DOI: 10.1016/j.yexmp.2019.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 02/07/2023]
|
22
|
Perfluorinated substances, risk factors for multiple sclerosis and cellular immune activation. J Neuroimmunol 2019; 330:90-95. [PMID: 30852181 DOI: 10.1016/j.jneuroim.2019.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 01/05/2023]
Abstract
Perfluorinated alkylated substances (PFASs) have immunomodulatory effects but the impact on multiple sclerosis (MS) and cellular immune functions is only sparsely described. In the present study, we found lower concentrations of the long chain PFAS perfluorooctane sulfonic acid (PFOS) in MS than in healthy controls (HC). In HC, we did not detect associations between PFOS concentrations and immune phenotypes. Analyzing the impact of known MS risk factors on cellular immune functions, we found that smoking and Epstein-Barr nuclear antigen 1 antibodies were associated with distinct circulating immune cell changes. In summary, current background PFAS exposure is not an important risk factor for MS.
Collapse
|
23
|
Shaker OG, Mahmoud RH, Abdelaleem OO, Ibrahem EG, Mohamed AA, Zaki OM, Abdelghaffar NK, Ahmed TI, Hemeda NF, Ahmed NA, Mansour DF. LncRNAs, MALAT1 and lnc-DC as potential biomarkers for multiple sclerosis diagnosis. Biosci Rep 2019; 39:BSR20181335. [PMID: 30514825 PMCID: PMC6331681 DOI: 10.1042/bsr20181335] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 12/27/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in gene regulation and show greater tissue specificity and complexity of biological functions. There is on-going research in their contribution in autoimmune diseases like multiple sclerosis (MS). Our study aimed at the evaluation of serum levels of lncRNAs, MALAT1 and lnc-DC in MS patients and the investigation of the association between these lncRNAs and the disease activity. Serum from 45 MS patients and 45 healthy controls was separated. MALAT1 and lnc-DC expression levels were assayed by qRT-PCR. MALAT1 and lnc-DC were significantly increased in MS patients (P=0.004 and P=0.006, respectively) in comparison with controls. There was a significant increase in expression of MALAT1 in secondary progressive MS (SPMS) subgroup compared with controls (P<0.0001); however, significant elevation of lnc-DC was demonstrated in relapsing remitting MS (RRMS) subtype (P=0.003) compared with normal controls. A positive association between the expression levels of MALAT1 and lnc-DC (r = 0.513, P < 0.0001) in MS patients was detected. Moreover, positive correlation was observed between MALAT1and lnc-DC in RRMS (r = 0.569, P = 0.001). Serum levels of MALAT1 and lnc-DC may serve as potential novel molecular biomarkers for MS diagnosis and may provide a new direction for its treatment.
Collapse
MESH Headings
- Adult
- Biomarkers/blood
- Case-Control Studies
- Female
- Humans
- Male
- Multiple Sclerosis, Chronic Progressive/blood
- Multiple Sclerosis, Chronic Progressive/diagnosis
- Multiple Sclerosis, Chronic Progressive/genetics
- Multiple Sclerosis, Chronic Progressive/pathology
- Multiple Sclerosis, Relapsing-Remitting/blood
- Multiple Sclerosis, Relapsing-Remitting/diagnosis
- Multiple Sclerosis, Relapsing-Remitting/genetics
- Multiple Sclerosis, Relapsing-Remitting/pathology
- RNA, Long Noncoding/blood
- RNA, Long Noncoding/genetics
- Severity of Illness Index
Collapse
Affiliation(s)
- Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania H Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Omayma O Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Enas G Ibrahem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Abdelrahmaan A Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Othman M Zaki
- Department of Clinical pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Noha K Abdelghaffar
- Department of Clinical pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Tarek I Ahmed
- Department of Internal medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nada F Hemeda
- Department of Genetics, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Naglaa A Ahmed
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig, Sharkea, Egypt
| | - Dina F Mansour
- Department of Neurology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
24
|
Göbel K, Ruck T, Meuth SG. Cytokine signaling in multiple sclerosis: Lost in translation. Mult Scler 2018; 24:432-439. [DOI: 10.1177/1352458518763094] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis (MS) is a common neurological disorder of putative autoimmune origin. Clinical studies delineate abnormal expression of specific cytokines over the course of disease. Preclinical studies using animal models of MS have yielded promising results in manipulating the activity of certain cytokines to improve the clinical outcome. However, the translation of these findings into the clinic is often disappointing. The reason for this might be the complex nature of cytokine networks and the pathogenesis of neuroinflammation, as well as an oversimplified interpretation of preclinical observations. This review presents an overview on cytokines that potentially contribute to the development of MS and provides examples of success and failure in translating basic science into clinical benefit for people with MS.
Collapse
Affiliation(s)
- Kerstin Göbel
- Department of Neurology, University of Münster, Münster, Germany
| | - Tobias Ruck
- Department of Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, University of Münster, Münster, Germany
| |
Collapse
|
25
|
Dolati S, Aghebati-Maleki L, Ahmadi M, Marofi F, Babaloo Z, Ayramloo H, Jafarisavari Z, Oskouei H, Afkham A, Younesi V, Nouri M, Yousefi M. Nanocurcumin restores aberrant miRNA expression profile in multiple sclerosis, randomized, double-blind, placebo-controlled trial. J Cell Physiol 2018; 233:5222-5230. [PMID: 29194612 DOI: 10.1002/jcp.26301] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/29/2017] [Indexed: 01/08/2023]
Abstract
In the current study, we aimed to identify nanocurcumin effects on microRNAs (miRNAs) in the peripheral blood of patients with relapsing-remitting multiple sclerosis (RRMS). We intended to investigate the expression pattern of these miRNAs in experimental settings in vivo. The expression levels of the selected 27 miRNAs known to be involved in the regulation of immune responses were analyzed in 50 RRMS patients and 35 healthy controls. The miRNA expression profiles were investigated by quantitative PCR (qPCR) at baseline and after 6 months of nanocurcumin therapy. Our data revealed that the expression of a number of microRNAs including miR-16, miR-17-92, miR-27, miR-29b, miR-126, miR-128, miR-132, miR-155, miR-326, miR-550, miR-15a, miR-19b, miR-106b, miR-320a, miR-363, miR-31, miR-150, and miR-340 is regulated by nanocurcumin. The results of the current work indicate that nanocurcumin is able to restore the expression pattern of dysregulated miRNAs in MS patients. We discovered that some miRNAs are deregulated in untreated patients compared with healthy controls and nanocurcumin-treated patients. This is a new finding that might represent the potential contribution of these miRNAs to MS pathogenesis. Taken together, these data provide novel insights into miRNA-dependent regulation of the function of B and T cells in MS disease and enrich our understanding of the effects mediated by a therapeutic approach that targets B and T cells.
Collapse
Affiliation(s)
- Sanam Dolati
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hormoz Ayramloo
- Faculty of Medicine, Departments of Neurology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Jafarisavari
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Oskouei
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Afkham
- Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Medicine, Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Dinesh P, Rasool M. Multifaceted role of IL‐21 in rheumatoid arthritis: Current understanding and future perspectives. J Cell Physiol 2017; 233:3918-3928. [DOI: 10.1002/jcp.26158] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Palani Dinesh
- Immunopathology LabSchool of Bio Sciences and TechnologyVIT UniversityVelloreTamil NaduIndia
| | | |
Collapse
|
27
|
Vaitaitis GM, Yussman MG, Waid DM, Wagner DH. Th40 cells (CD4+CD40+ Tcells) drive a more severe form of Experimental Autoimmune Encephalomyelitis than conventional CD4 T cells. PLoS One 2017; 12:e0172037. [PMID: 28192476 PMCID: PMC5305068 DOI: 10.1371/journal.pone.0172037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/30/2017] [Indexed: 12/31/2022] Open
Abstract
CD40-CD154 interaction is critically involved in autoimmune diseases, and CD4 T cells play a dominant role in the Experimental Autoimmune Encephalomyelitis (EAE) model of Multiple Sclerosis (MS). CD4 T cells expressing CD40 (Th40) are pathogenic in type I diabetes but have not been evaluated in EAE. We demonstrate here that Th40 cells drive a rapid, more severe EAE disease course than conventional CD4 T cells. Adoptively transferred Th40 cells are present in lesions in the CNS and are associated with wide spread demyelination. Primary Th40 cells from EAE-induced donors adoptively transfer EAE without further in-vitro expansion and without requiring the administration of the EAE induction regimen to the recipient animals. This has not been accomplished with primary, non-TCR-transgenic donor cells previously. If co-injection of Th40 donor cells with Freund's adjuvant (CFA) in the recipient animals is done, the disease course is more severe. The CFA component of the EAE induction regimen causes generalized inflammation, promoting expansion of Th40 cells and infiltration of the CNS, while MOG-antigen shapes the antigen-specific TCR repertoire. Those events are both necessary to precipitate disease. In MS, viral infections or trauma may induce generalized inflammation in susceptible individuals with subsequent disease onset. It will be important to further understand the events leading up to disease onset and to elucidate the contributions of the Th40 T cell subset. Also, evaluating Th40 levels as predictors of disease onset would be highly useful because if either the generalized inflammation event or the TCR-honing can be interrupted, disease onset may be prevented.
Collapse
Affiliation(s)
- Gisela M. Vaitaitis
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Martin G. Yussman
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Dan M. Waid
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - David H. Wagner
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- Webb-Waring Center, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
28
|
|