1
|
Bowman WS, Schmidt RJ, Sanghar GK, Thompson GR, Ji H, Zeki AA, Haczku A. "Air That Once Was Breath" Part 1: Wildfire-Smoke-Induced Mechanisms of Airway Inflammation - "Climate Change, Allergy and Immunology" Special IAAI Article Collection: Collegium Internationale Allergologicum Update 2023. Int Arch Allergy Immunol 2024; 185:600-616. [PMID: 38452750 PMCID: PMC11487202 DOI: 10.1159/000536578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Wildfires are a global concern due to their wide-ranging environmental, economic, and public health impacts. Climate change contributes to an increase in the frequency and intensity of wildfires making smoke exposure a more significant and recurring health concern for individuals with airway diseases. Some of the most prominent effects of wildfire smoke exposure are asthma exacerbations and allergic airway sensitization. Likely due to the delayed recognition of its health impacts in comparison with cigarette smoke and industrial or traffic-related air pollution, research on the composition, the mechanisms of toxicity, and the cellular/molecular pathways involved is poor or non-existent. SUMMARY This review discusses potential underlying pathological mechanisms of wildfire-smoke-related allergic airway disease and asthma. We focused on major gaps in understanding the role of wildfire smoke composition in the development of airway disease and the known and potential mechanisms involving cellular and molecular players of oxidative injury at the epithelial barrier in airway inflammation. We examine how PM2.5, VOCs, O3, endotoxin, microbes, and toxic gases may affect oxidative stress and inflammation in the respiratory mucosal barrier. We discuss the role of AhR in mediating smoke's effects in alarmin release and IL-17A production and how glucocorticoid responsiveness may be impaired by IL-17A-induced signaling and epigenetic changes leading to steroid-resistant severe airway inflammation. KEY MESSAGE Effective mitigation of wildfire-smoke-related respiratory health effects would require comprehensive research efforts aimed at a better understanding of the immune regulatory effects of wildfire smoke in respiratory health and disease.
Collapse
Affiliation(s)
- Willis S. Bowman
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, Sacramento, CA, USA
| | - Gursharan K. Sanghar
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - George R. Thompson
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Hong Ji
- UC Davis Lung Center, University of California, Davis, CA, USA
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, Davis, CA, USA
| | - Amir A. Zeki
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
2
|
Olivo CR, Castro TBP, Riane A, Regonha T, Rivero DHRF, Vieira RP, Saraiva-Romanholo BM, Lopes FDTQS, Tibério IFLC, Martins MA, Prado CM. The effects of exercise training on the lungs and cardiovascular function of animals exposed to diesel exhaust particles and gases. ENVIRONMENTAL RESEARCH 2022; 203:111768. [PMID: 34339693 DOI: 10.1016/j.envres.2021.111768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Air pollution has been identified as one of the main environmental risks to health. Since exercise training seems to act as an anti-inflammatory modulator, our hypothesis is that exercise training prevents damage to respiratory and cardiovascular function caused by diesel exhaust particle (DEP) exposure. This study aimed to evaluate whether aerobic exercise training prior to DEP exposure prevents inflammatory processes in the pulmonary and cardiovascular systems. Therefore, BALB/C male mice were or were not submitted to a 10-week exercise training protocol (5×/week, 1 h/d), and after four weeks, they were exposed to DEP in a chamber with 24 μg/m3 PM2.5 or filtered air. Heart rate variability, lung mechanics and bronchoalveolar lavage fluid, cytokines and polymorphonuclear cells in the lung parenchyma were evaluated. Exposure to DEPs reduced heart rate variability and the elastance of the respiratory system and increased the number of cells in bronchoalveolar lavage fluid, as well as macrophages, neutrophils and lymphocytes, the density of polymorphonuclear cells and the proportion of collagen fibres in the lung parenchyma. Additionally, DEP-exposed animals showed increased expression of IL-23 and IL-12p40 (proinflammatory cytokines) and inducible nitric oxide synthase. Exercise training avoided the increases in all these inflammatory parameters, except the elastance of the respiratory system, the amount of collagen fibres and the expression of inducible nitric oxide synthase. Additionally, trained animals showed increased expression of the anti-inflammatory cytokine IL-1ra. Although our data showed a reduction in proinflammatory markers and an increase in markers of the anti-inflammatory pathway, these changes were not sufficient to prevent damage to the lung and cardiovascular function induced by DEPs. Based on these data, we propose that aerobic exercise training prevents the lung inflammatory process induced by DEPs, although it was not sufficient to avoid chronic damage, such as a loss of lung function or cardiovascular events.
Collapse
Affiliation(s)
- C R Olivo
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil; University City of Sao Paulo (UNICID), Sao Paulo, Brazil; Department of Bioscience, Universidade Federal de São Paulo, São Paulo, 11015-020, Brazil.
| | - T B P Castro
- Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil
| | - A Riane
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - T Regonha
- University City of Sao Paulo (UNICID), Sao Paulo, Brazil
| | - D H R F Rivero
- Department of Clinical Medicine (LIM 05), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - R P Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (LABPEI), Sao Jose dos Campos, SP, Brazil
| | - B M Saraiva-Romanholo
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Institute of Medical Assistance to the State Public Servant (IAMSPE), Sao Paulo, Brazil; University City of Sao Paulo (UNICID), Sao Paulo, Brazil
| | - F D T Q S Lopes
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - I F L C Tibério
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - M A Martins
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - C M Prado
- Department of Clinical Medicine (LIM 20), School of Medicine, University of Sao Paulo, Sao Paulo, Brazil; Department of Bioscience, Universidade Federal de São Paulo, São Paulo, 11015-020, Brazil
| |
Collapse
|
3
|
Enweasor C, Flayer CH, Haczku A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front Immunol 2021; 12:631092. [PMID: 33717165 PMCID: PMC7952990 DOI: 10.3389/fimmu.2021.631092] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to the wide variability of treatment responsiveness and complex clinical phenotypes driven by distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying mechanisms point to a central role of oxidative stress pathways. The primary data source for this review consisted of peer-reviewed publications on the impact of ozone on airway inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search strategy focused on cross-referencing "asthma and glucocorticoid resistance" against "ozone, oxidative stress, alarmins, innate lymphoid, NK and γδ T cells, dendritic cells and alveolar type II epithelial cells, glucocorticoid receptor and transcription factors". Recent work was placed in the context from articles in the last 10 years and older seminal research papers and comprehensive reviews. We excluded papers that did not focus on respiratory injury in the setting of oxidative stress. The pathways discussed here have however wide clinical implications to pathologies associated with inflammation and oxidative stress and in which glucocorticoid treatment is essential.
Collapse
Affiliation(s)
- Chioma Enweasor
- UC Davis Lung Center, University of California, Davis, CA, United States
| | - Cameron H. Flayer
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, United States
| |
Collapse
|
4
|
Osgood RS, Kasahara DI, Tashiro H, Cho Y, Shore SA. Androgens augment pulmonary responses to ozone in mice. Physiol Rep 2019; 7:e14214. [PMID: 31544355 PMCID: PMC6755142 DOI: 10.14814/phy2.14214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Ozone causes airway hyperresponsiveness, a defining feature of asthma, and is an asthma trigger. In mice, ozone-induced airway hyperresponsiveness is greater in males than in females, suggesting a role for sex hormones in the response to ozone. To examine the role of androgens in these sex differences, we castrated 4-week-old mice. Controls underwent sham surgery. At 8 weeks of age, mice were exposed to ozone (2ppm, 3 h) or room air. Twenty-four hours later, mice were anesthetized and measurements of airway responsiveness to inhaled aerosolized methacholine were made. Mice were then euthanized and bronchoalveolar lavage was performed. Castration attenuated ozone-induced airway hyperresponsiveness and reduced bronchoalveolar lavage cells. In intact males, flutamide, an androgen receptor inhibitor, had similar effects to castration. Bronchoalveolar lavage concentrations of several cytokines were reduced by either castration or flutamide treatment, but only IL-1α was reduced by both castration and flutamide. Furthermore, an anti-IL-1α antibody reduced bronchoalveolar lavage neutrophils in intact males, although it did not alter ozone-induced airway hyperresponsiveness. Our data indicate that androgens augment pulmonary responses to ozone and that IL-1α may contribute to the effects of androgens on ozone-induced cellular inflammation but not airway hyperresponsiveness.
Collapse
Affiliation(s)
- Ross S. Osgood
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - David I. Kasahara
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - Hiroki Tashiro
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - Youngji Cho
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - Stephanie A. Shore
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| |
Collapse
|
5
|
Cho Y, Abu-Ali G, Tashiro H, Kasahara DI, Brown TA, Brand JD, Mathews JA, Huttenhower C, Shore SA. The Microbiome Regulates Pulmonary Responses to Ozone in Mice. Am J Respir Cell Mol Biol 2018; 59:346-354. [PMID: 29529379 PMCID: PMC6189641 DOI: 10.1165/rcmb.2017-0404oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/04/2018] [Indexed: 12/28/2022] Open
Abstract
Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water. Mice were then exposed to room air or ozone. In air-exposed mice, airway responsiveness did not differ between antibiotic- and control water-treated mice. Ozone caused airway hyperresponsiveness, the magnitude of which was decreased in antibiotic cocktail-treated mice versus water-treated mice. Except for neomycin, single antibiotics had effects similar to those observed with the cocktail. Compared with conventional mice, germ-free mice also had attenuated airway responsiveness after ozone. 16S ribosomal RNA gene sequencing of fecal DNA to characterize the gut microbiome indicated that bacterial genera that were decreased in mice with reduced ozone-induced airway hyperresponsiveness after antibiotic treatment were short-chain fatty acid producers. Serum analysis indicated reduced concentrations of the short-chain fatty acid propionate in cocktail-treated mice but not in neomycin-treated mice. Dietary enrichment with pectin, which increased serum short-chain fatty acids, also augmented ozone-induced airway hyperresponsiveness. Furthermore, propionate supplementation of the drinking water augmented ozone-induced airway hyperresponsiveness in conventional mice. Our data indicate that the microbiome contributes to ozone-induced airway hyperresponsiveness, likely via its ability to produce short-chain fatty acids.
Collapse
Affiliation(s)
| | - Galeb Abu-Ali
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | |
Collapse
|