1
|
Bone marrow MR perfusion imaging and potential for tumor evaluation. Skeletal Radiol 2023; 52:477-491. [PMID: 36271181 DOI: 10.1007/s00256-022-04202-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 02/02/2023]
Abstract
The physiology of bone perfusion is reviewed outlining how it can be measured with dynamic contrast-enhanced MRI as well as intravoxel incoherent imaging. Evaluation of bone perfusion provides a potential means of assessing tumor activity and treatment response beyond that possible with standard MR imaging.
Collapse
|
2
|
Peng YW, Chi CH, Yu PH. Relationship Between Arterial and Intraosseous Pressure in African Grey Parrots (Psittacus erithacus). J Avian Med Surg 2022; 35:402-411. [DOI: 10.1647/20-00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
3
|
Sun Y, Yuan Y, Wu W, Lei L, Zhang L. The effects of locomotion on bone marrow mesenchymal stem cell fate: insight into mechanical regulation and bone formation. Cell Biosci 2021; 11:88. [PMID: 34001272 PMCID: PMC8130302 DOI: 10.1186/s13578-021-00601-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) refer to a heterogeneous population of cells with the capacity for self-renewal. BMSCs have multi-directional differentiation potential and can differentiate into chondrocytes, osteoblasts, and adipocytes under specific microenvironment or mechanical regulation. The activities of BMSCs are closely related to bone quality. Previous studies have shown that BMSCs and their lineage-differentiated progeny (for example, osteoblasts), and osteocytes are mechanosensitive in bone. Thus, a goal of this review is to discuss how these ubiquious signals arising from mechanical stimulation are perceived by BMSCs and then how the cells respond to them. Studies in recent years reported a significant effect of locomotion on the migration, proliferation and differentiation of BMSCs, thus, contributing to our bone mass. This regulation is realized by the various intersecting signaling pathways including RhoA/Rock, IFG, BMP and Wnt signalling. The mechanoresponse of BMSCs also provides guidance for maintaining bone health by taking appropriate exercises. This review will summarize the regulatory effects of locomotion/mechanical loading on BMSCs activities. Besides, a number of signalling pathways govern MSC fate towards osteogenic or adipocytic differentiation will be discussed. The understanding of mechanoresponse of BMSCs makes the foundation for translational medicine.
Collapse
Affiliation(s)
- Yuanxiu Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yu Yuan
- School of Sport and Health, Guangzhou Sport University, Guangzhou, 510500, Guangdong, China
| | - Wei Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Le Lei
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Lingli Zhang
- School of Physical Education & Sports Science, South China Normal University, 55 Zhongshan Road West, Tianhe District, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
4
|
Aparisi Gómez MP, Ayuso Benavent C, Simoni P, Aparisi F, Guglielmi G, Bazzocchi A. Fat and bone: the multiperspective analysis of a close relationship. Quant Imaging Med Surg 2020; 10:1614-1635. [PMID: 32742956 DOI: 10.21037/qims.2020.01.11] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The study of bone has for many years been focused on the study of its mineralized component, and one of the main objects of study as radiology developed as a medical specialty. The assessment has until recently been almost limited to its role as principal component of the scaffolding of the human body. Bone is a very active tissue, in continuous cross-talk with other organs and systems, with functions that are endocrine and paracrine and that have an important involvement in metabolism, ageing and health in general. Bone is also the continent for the bone marrow, in the form of "yellow marrow" (mainly adipocytes) or "red marrow" (hematopoietic cells and adipocytes). Recently, numerous studies have focused on these adipocytes contained in the bone marrow, often referred to as marrow adipose tissue (MAT). Bone marrow adipocytes do not only work as storage tissue, but are also endocrine and paracrine cells, with the potential to contribute to local bone homeostasis and systemic metabolism. Many metabolic disorders (osteoporosis, obesity, diabetes) have a complex and still not well-established relationship with MAT. The development of imaging methods, in particular the development of cross-sectional imaging has helped us to understand how much more laid beyond our classical way to look at bone. The impact on the mineralized component of bone in some cases (e.g., osteoporosis) is well-established, and has been extensively analyzed and quantified through different radiological methods. The application of advanced magnetic resonance techniques has unlocked the possibility to access the detailed study, characterization and quantification of the bone marrow components in a non-invasive way. In this review, we will address what is the evidence on the physiological role of MAT in normal skeletal health (interaction with the other bone components), during the process of normal aging and in the context of some metabolic disorders, highlighting the role that imaging methods play in helping with quantification and diagnosis.
Collapse
Affiliation(s)
- Maria Pilar Aparisi Gómez
- Department of Radiology, Auckland City Hospital, Auckland, New Zealand.,Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | | | - Paolo Simoni
- Department of Radiology, "Reine Fabiola" Children's University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Francisco Aparisi
- Department of Radiology, Hospital Vithas Nueve de Octubre, Valencia, Spain
| | - Giuseppe Guglielmi
- Department of Radiology, University of Foggia, Foggia, Italy.,Department of Radiology, Hospital San Giovanni Rotondo, Foggia, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
5
|
The Effects of Hypoxia on the Immune-Modulatory Properties of Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:2509606. [PMID: 31687031 PMCID: PMC6800910 DOI: 10.1155/2019/2509606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
The therapeutic repertoire for life-threatening inflammatory conditions like sepsis, graft-versus-host reactions, or colitis is very limited in current clinical practice and, together with chronic ones, like the osteoarthritis, presents growing economic burden in developed countries. This urges the development of more efficient therapeutic modalities like the mesenchymal stem cell-based approaches. Despite the encouraging in vivo data, however, clinical trials delivered ambiguous results. Since one of the typical features of inflamed tissues is decreased oxygenation, the success of cellular therapy in inflammatory pathologies seems to be affected by the impact of oxygen depletion on transplanted cells. Here, we examine our current knowledge on the effect of hypoxia on the physiology of bone marrow-derived mesenchymal stromal cells, one of the most popular tools of practical cellular therapy, in the context of their immune-modulatory capacity.
Collapse
|
6
|
Nguyen DC, Garimalla S, Xiao H, Kyu S, Albizua I, Galipeau J, Chiang KY, Waller EK, Wu R, Gibson G, Roberson J, Lund FE, Randall TD, Sanz I, Lee FEH. Factors of the bone marrow microniche that support human plasma cell survival and immunoglobulin secretion. Nat Commun 2018; 9:3698. [PMID: 30209264 PMCID: PMC6135805 DOI: 10.1038/s41467-018-05853-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/12/2018] [Indexed: 01/10/2023] Open
Abstract
Human antibody-secreting cells (ASC) in peripheral blood are found after vaccination or infection but rapidly apoptose unless they migrate to the bone marrow (BM). Yet, elements of the BM microenvironment required to sustain long-lived plasma cells (LLPC) remain elusive. Here, we identify BM factors that maintain human ASC > 50 days in vitro. The critical components of the cell-free in vitro BM mimic consist of products from primary BM mesenchymal stromal cells (MSC), a proliferation-inducing ligand (APRIL), and hypoxic conditions. Comparative analysis of protein-protein interactions between BM-MSC proteomics with differential RNA transcriptomics of blood ASC and BM LLPC identify two major survival factors, fibronectin and YWHAZ. The MSC secretome proteins and hypoxic conditions play a role in LLPC survival utilizing mechanisms that downregulate mTORC1 signaling and upregulate hypoxia signatures. In summary, we identify elements of the BM survival niche critical for maturation of blood ASC to BM LLPC.
Collapse
Affiliation(s)
- Doan C Nguyen
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Swetha Garimalla
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Haopeng Xiao
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuya Kyu
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Igor Albizua
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jacques Galipeau
- Department of Medicine & University of Wisconsin Carbone Cancer Center, University of Wisconsin in Madison, Madison, WI, USA
| | - Kuang-Yueh Chiang
- Division of Hematology & Oncology, University of Toronto, Toronto, ON, Canada
| | - Edmund K Waller
- Pediatrics & Hematology/Oncology, Emory University, Atlanta, GA, USA
| | - Ronghu Wu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Greg Gibson
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - James Roberson
- Department of Orthopedics, Emory University, Atlanta, GA, USA
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D Randall
- Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iñaki Sanz
- Division of Rheumatology, Emory University, Atlanta, GA, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care & Sleep Medicine, Emory University, Atlanta, GA, USA.
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Park SH, Eber MR, Widner DB, Shiozawa Y. Role of the Bone Microenvironment in the Development of Painful Complications of Skeletal Metastases. Cancers (Basel) 2018; 10:cancers10050141. [PMID: 29747461 PMCID: PMC5977114 DOI: 10.3390/cancers10050141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023] Open
Abstract
Cancer-induced bone pain (CIBP) is the most common and painful complication in patients with bone metastases. It causes a significant reduction in patient quality of life. Available analgesic treatments for CIBP, such as opioids that target the central nervous system, come with severe side effects as well as the risk of abuse and addiction. Therefore, alternative treatments for CIBP are desperately needed. Although the exact mechanisms of CIBP have not been fully elucidated, recent studies using preclinical models have demonstrated the role of the bone marrow microenvironment (e.g., osteoclasts, osteoblasts, macrophages, mast cells, mesenchymal stem cells, and fibroblasts) in CIBP development. Several clinical trials have been performed based on these findings. CIBP is a complex and challenging condition that currently has no standard effective treatments other than opioids. Further studies are clearly warranted to better understand this painful condition and develop more effective and safer targeted therapies.
Collapse
Affiliation(s)
- Sun H Park
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Matthew R Eber
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - D Brooke Widner
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| | - Yusuke Shiozawa
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
8
|
De Lorenzo RA, Ward JA, Jordan BS, Hanson CE. Relationships of intraosseous and systemic pressure waveforms in a Swine model. Acad Emerg Med 2014; 21:899-904. [PMID: 25154326 DOI: 10.1111/acem.12432] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/13/2014] [Accepted: 03/15/2014] [Indexed: 12/01/2022]
Abstract
BACKGROUND Despite some focus on the use of intraosseous (IO) catheters to obtain laboratory samples, very little is known about the potential for obtaining other forms of clinical data. Largely unstudied is the relationship between IO pressures (IOPs) and systemic hemodynamic pressures such as mean arterial pressure (MAP) and central venous pressures (CVP). OBJECTIVES The objective was to explore the relationship between hemodynamic parameters (blood pressures) measured through an IO catheter and intravascular catheters placed in the arterial and central venous circulation. METHODS Eight pigs (Sus scrofa) weighing 30 to 45 kg were sedated with a short-acting agent, intubated with a cuffed endotracheal tube, and anesthetized with 2% to 3% isoflurane. Intravascular catheters were placed into the femoral or carotid artery and the femoral or jugular vein for MAP and CVP measurements. IO catheters, 15 mm for the sternum and 25 mm for the long bones, were placed percutaneously into the proximal tibia, proximal femur, proximal humerus, right proximal ulna, and/or sternum. Pressures were recorded during normotension, hypotension, and hypertension. RESULTS Averaged across all eight animals, the means (ranges) for baseline systemic pressures were as follows: MAP = 66.5 (55.6 to 76.7) mm Hg, tibia IOP = 17.4 (9.3 to 34.5) mm Hg, femur IOP =18.4 (3.3 to 33.1) mm Hg, humerus IOP = 15.7 (2.8 to 28.9) mm Hg, ulna IOP = 16.0 (7.9 to 25.6) mm Hg, sternum IOP = 5.7 (-0.5 to 47.9) mm Hg, and CVP = 2.7 mm Hg (-3.3 to 7.9) mm Hg. The best median correlation occurred between femur IOP and mean MAP (r = 0.65). The four highest correlations between IOP and MAP were associated with mean femur IOP. Only one IO site had a correlation coefficient over 0.50 for CVP. The long bones tended to correlate better with the MAP and the sternum tended to correlate better with the CVP. Nonlinearity was observed in the actively rising pressure phases, which can be explained by a hysteresis model. CONCLUSIONS The relationship between IOP and MAP or CVP is variable by site, with the MAP and CVP tending to be estimated by the femur and sternum, respectively. The relationship to actively rising pressures is nonlinear and a hysteresis model is proposed to explain the phase change. Further experimentation is needed to refine the IOP relationship to the MAP and CVP and assess the potential of these measurements to provide clinically relevant information.
Collapse
Affiliation(s)
- Robert A. De Lorenzo
- U.S. Army Institute for Surgical Research; Tactical Combat Casualty Care Research Program; Fort Sam Houston TX
| | - John A. Ward
- Department of Clinical Investigation Brooke Army Medical Center; Fort Sam Houston TX
| | - Bryan S. Jordan
- U.S. Army Institute for Surgical Research; Tactical Combat Casualty Care Research Program; Fort Sam Houston TX
| | - Chris E. Hanson
- Department of Defense Veterinary Service Activity; Fort Sam Houston TX
| |
Collapse
|
9
|
Abstract
Abstract
Intraosseous vascular access is a time-tested procedure which has been incorporated into the 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation. Intravenous access is often difficult to achieve in shock patients, and central line placement can be time consuming. Intraosseous vascular access, however, can be achieved quickly with minimal disruption of chest compressions. Newer insertion devices are easy to use, making the intraosseous route an attractive alternative for venous access during a resuscitation event. It is critical that anesthesiologists, who are often at the forefront of patient resuscitation, understand how to properly use this potentially life-saving procedure.
Collapse
|
10
|
Hu J, Van Valckenborgh E, Menu E, De Bruyne E, Vanderkerken K. Understanding the hypoxic niche of multiple myeloma: therapeutic implications and contributions of mouse models. Dis Model Mech 2013; 5:763-71. [PMID: 23115205 PMCID: PMC3484859 DOI: 10.1242/dmm.008961] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy and is characterized by the clonal expansion of plasma cells in the bone marrow. Recently, hypoxia has received increased interest in the context of MM, in both basic and translational research. In this review, we describe the discovery of the hypoxic niche in MM and how it can be targeted therapeutically. We also discuss mouse models that closely mimic human MM, highlighting those that allow preclinical research into new therapies that exploit the hypoxic niche in MM.
Collapse
Affiliation(s)
- Jinsong Hu
- Department of Genetics and Molecular Biology, Medical School of Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
11
|
Martin SK, Diamond P, Gronthos S, Peet DJ, Zannettino ACW. The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma. Leukemia 2011; 25:1533-42. [PMID: 21637285 DOI: 10.1038/leu.2011.122] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hypoxia is an imbalance between oxygen supply and demand, which deprives cells or tissues of sufficient oxygen. It is well-established that hypoxia triggers adaptive responses, which contribute to short- and long-term pathologies such as inflammation, cardiovascular disease and cancer. Induced by both microenvironmental hypoxia and genetic mutations, the elevated expression of the hypoxia-inducible transcription factor-1 (HIF-1) and HIF-2 is a key feature of many human cancers and has been shown to promote cellular processes, which facilitate tumor progression. In this review, we discuss the emerging role of hypoxia and the HIFs in the pathogenesis of multiple myeloma (MM), an incurable hematological malignancy of BM PCs, which reside within the hypoxic BM microenvironment. The need for current and future therapeutic interventions to target HIF-1 and HIF-2 in myeloma will also be discussed.
Collapse
Affiliation(s)
- S K Martin
- Division of Haematology, Centre for Cancer Biology, SA Pathology, CSCR, University of Adelaide, Adelaide, South Australia
| | | | | | | | | |
Collapse
|
12
|
Garcia P, Schwenzer S, Slotta JE, Scheuer C, Tami AE, Holstein JH, Histing T, Burkhardt M, Pohlemann T, Menger MD. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation - role of a local renin-angiotensin system. Br J Pharmacol 2010; 159:1672-80. [PMID: 20233225 DOI: 10.1111/j.1476-5381.2010.00651.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND PURPOSE The renin-angiotensin system (RAS) regulates blood pressure and electrolyte homeostasis. In addition, 'local' tissue-specific RAS have been identified, regulating regeneration, cell growth, apoptosis, inflammation and angiogenesis. Although components of the RAS are expressed in osteoblasts and osteoclasts, a local RAS in bone has not yet been described and there is no information on whether the RAS is involved in fracture healing. Therefore, we studied the expression and function of the key RAS component, angiotensin-converting enzyme (ACE), during fracture healing. EXPERIMENTAL APPROACH In a murine femur fracture model, animals were treated with the ACE inhibitor perindopril or vehicle only. Fracture healing was analysed after 2, 5 and 10 weeks using X-ray, micro-CT, histomorphometry, immunohistochemistry, Western blotting and biomechanical testing. KEY RESULTS ACE was expressed in osteoblasts and hypertrophic chondrocytes in the periosteal callus during fracture healing, accompanied by expression of the angiotensin type-1 and type-2 receptors. Perindopril treatment reduced blood pressure and bone mineral density in unfractured femora. However, it improved periosteal callus formation, bone bridging of the fracture gap and torsional stiffness. ACE inhibition did not affect cell proliferation, but reduced apoptotic cell death. After 10 week treatment, a smaller callus diameter and bone volume after perindopril treatment indicated an advanced stage of bone remodelling. CONCLUSIONS Our study provides evidence for a local RAS in bone that influenced the process of fracture healing. We show for the first time that inhibition of ACE is capable of accelerating bone healing and remodelling.
Collapse
Affiliation(s)
- P Garcia
- Department of Trauma-, Hand- and Reconstructive Surgery, University of Saarland, Homburg/Saar, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
|
15
|
|
16
|
Gurkan UA, Akkus O. The mechanical environment of bone marrow: a review. Ann Biomed Eng 2008; 36:1978-91. [PMID: 18855142 DOI: 10.1007/s10439-008-9577-x] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
Abstract
Bone marrow is a viscous tissue that resides in the confines of bones and houses the vitally important pluripotent stem cells. Due to its confinement by bones, the marrow has a unique mechanical environment which has been shown to be affected from external factors, such as physiological activity and disuse. The mechanical environment of bone marrow can be defined by determining hydrostatic pressure, fluid flow induced shear stress, and viscosity. The hydrostatic pressure values of bone marrow reported in the literature vary in the range of 10.7-120 mmHg for mammals, which is generally accepted to be around one fourth of the systemic blood pressure. Viscosity values of bone marrow have been reported to be between 37.5 and 400 cP for mammals, which is dependent on the marrow composition and temperature. Marrow's mechanical and compositional properties have been implicated to be changing during common bone diseases, aging or disuse. In vitro experiments have demonstrated that the resident mesenchymal stem and progenitor cells in adult marrow are responsive to hydrostatic pressure, fluid shear or to local compositional factors such as medium viscosity. Therefore, the changes in the mechanical and compositional microenvironment of marrow may affect the fate of resident stem cells in vivo as well, which in turn may alter the homeostasis of bone. The aim of this review is to highlight the marrow tissue within the context of its mechanical environment during normal physiology and underline perturbations during disease.
Collapse
Affiliation(s)
- Umut Atakan Gurkan
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907-2032, USA
| | | |
Collapse
|
17
|
Kiaer T, Grønlund J, Jensen B, Svalastoga E. Effects of variation in systemic blood pressure on intraosseous pressure, PO2, and PCO2. J Orthop Res 1990; 8:618-22. [PMID: 2113096 DOI: 10.1002/jor.1100080419] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several regulatory mechanisms have been shown to influence the intraosseous circulation. The influence of general hypovolemia on bone circulation and possible regulatory effects were investigated by recording the intraosseous pressure and PO2 and PCO2 continuously by mass spectrometry in rabbits. Hypovolemia was induced by repeated bleedings. The intraosseous and arterial pressures were found to be linearly related. The intraosseous PO2 already decreased after the first step of bleeding and decreased more than 50% of the initial value after an average blood loss of 40 ml. The intraosseous PCO2 showed an opposite pattern. The experimental PO2 vs. arterial pressure curves were similar to curves obtained by a computer simulation that assumes the blood flow to be proportional to the intraosseous pressure.
Collapse
Affiliation(s)
- T Kiaer
- Department of Physiology, Odense University, Denmark
| | | | | | | |
Collapse
|
18
|
Tøndevold E, Bülow J. Bone blood flow in conscious dogs at rest and during exercise. ACTA ORTHOPAEDICA SCANDINAVICA 1983; 54:53-7. [PMID: 6829282 DOI: 10.3109/17453678308992869] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Using the microsphere technique bone blood flow was measured in different anatomical and functional regions in long bones in conscious dogs. The measurements were performed during physical exercise upon a treadmill, and the bone blood flow values were obtained as prework resting values after 1 and 2 hours of exercise and after 1 hour of rest. The perfusion rates increased 50 per cent from 1.6 to 2.5 ml X 100 g tissue-1 X min-1 in the femoral and tibial cortical bones during work. In the cancellous bone of the femoral head an increase from 12.6 to 20.6 ml X 100 g tissue-1 X min-1 was found. Equal flow responses were determined in the fat-filled tibia-condylar and femoral supracondylar bone. The increase took place after 2 hours' exercise, but nonstatistically verified increased perfusion was found after 1 hour's work. The alternation in bone blood flow suggests that bone has a capability of physical vasodilation during muscular work but the flow response is slow and therefore the vasodilatation seems mediated by a metabolically induced stimulus.
Collapse
|
19
|
Tøndevold E, Eliasen P. Blood flow rates in canine cortical and cancellous bone measured with 99Tcm-labelled human albumin microspheres. ACTA ORTHOPAEDICA SCANDINAVICA 1982; 53:7-11. [PMID: 6461160 DOI: 10.3109/17453678208992171] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Regional differences in bone blood flow rates in the femur and the tibia of dogs were measured with 99Tcm-labelled microspheres. The measurements show an average flow rate of 3.7 ml (100 g)-1 x min-1 in cortical bone. A more rapid pace was found in red marrow containing areas, with an average flow rate in the femoral head of 19.7 ml blood (100g)-1 x min-1, and in the femoral neck of 50.3 ml blood (100 g)-1 x min-1. In the calcar femorale the average flow rate was 9.0 ml (100 g)-1 x min-1, and compared to cortical flow a positive correlation between strain and perfusion seems obvious. No difference between cortical bone in tibia and femur was found. The flow rates in the red marrow of the femoral neck are remarkably high, but the flow in the cortical bone is relatively low. It is concluded that handling of fragments of cortical bone and the associated soft tissue is presumably critical, and that the surgical technique has to be quite gentle to obtain optimal conditions for fracture healing.
Collapse
|
20
|
Tøndevold E, Eriksen J, Jansen E. Observations on long bone medullary pressures in relation to arterial PO2, PCO2 and pH in the anaesthetized dog. ACTA ORTHOPAEDICA SCANDINAVICA 1979; 50:645-51. [PMID: 43659 DOI: 10.3109/17453677908991287] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To investigate the influence of variations in arterial oxygen tensions (PaO2), arterial carbon dioxide tensions (PaCO2), and arterial pH on long bone medullary pressures, seven anaesthetized dogs were investigated. Comparing the control medullary pressures, i.e. the mean medullary pressures obtained at the normal range of PaO2 (75--110 mmHg) with the mean medullary pressures corresponding to the range of PaO2 of less than 75 mmHg, statistically significant (P less than 0.05) decreases were seen in both epiphyseal, metaphyseal and diaphyseal medullary pressures, from 27.6 +/- 5.0 to 15.5 +/- 3.6 mmHg, from 23.5 +/- 2.9 to 13.9 +/- 2.3 mmHg and from 27.7 +/- 3.9 to 18.3 +/- 2.5 mmHg (all mean values +/- s.e. mean), respectively. Hyperoxia, hypocapnia, hypercapnia or metabolic acidosis had no effect on medullary pressures in any of the regions studied.
Collapse
|