1
|
Wu HM, Chen LH, Chiu WJ, Tsai CL. Kisspeptin Regulates Cell Invasion and Migration in Endometrial Cancer. J Endocr Soc 2024; 8:bvae001. [PMID: 38264268 PMCID: PMC10805434 DOI: 10.1210/jendso/bvae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Indexed: 01/25/2024] Open
Abstract
Kisspeptin (a product of the KISS1 gene and its receptor) plays an important role in obstetrics, gynecology, and cancer cell metastasis and behavior. In hypothalamic-pituitary-gonadal axis and placentation, Kisspeptin/Kisspeptin receptor affects hormone release and represses trophoblast invasion into maternal deciduae. Endometrial cancer is one of the common gynecological cancers and is usually accompanied by metastasis, the risk factor that causes death. Recently, research has demonstrated that Kisspeptin/Kisspeptin receptor expression in aggressive-stage endometrial cancer tissues. However, the detailed mechanism of Kisspeptin/Kisspeptin receptor in regulating the motility of endometrial cancers is not well understood. In this study, we use endometrial cancer cell lines RL95-2, Ishikawa, HEC-1-A, and HEC-1-B as models to explore the molecular mechanism of Kisspeptin on cell motility. First, we discovered that Kisspeptin/Kisspeptin receptor was expressed in endometrial cancer cells, and Kisspeptin significantly regulated the migration and invasion of endometrial cancer cells. Furthermore, we explored the epithelial-mesenchymal transition marker expression and the underlying signals were regulated on Kisspeptin treatment. In conclusion, we suggest that Kisspeptin regulates endometrial cancer cell motility via FAK and Src expression and the ERK1/2, N-Cadherin, E-Cadherin, beta-Catenin, Twist, and matrix metalloproteinase signaling pathways. We expect these molecules could be candidates for the development of new approaches and therapeutic targets.
Collapse
Affiliation(s)
- Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Wei-Jung Chiu
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| | - Chia-Lung Tsai
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 333, Taiwan R.O.C
| |
Collapse
|
2
|
Dworsky-Fried M, Tchida JA, Krnel R, Ismail N. Enduring sex-dependent implications of pubertal stress on the gut-brain axis and mental health. Front Behav Neurosci 2024; 17:1285475. [PMID: 38274549 PMCID: PMC10808663 DOI: 10.3389/fnbeh.2023.1285475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
The gut-brain axis (GBA) is a network responsible for the bidirectional communication between the central nervous system and the gastrointestinal tract. This multifaceted system is comprised of a complex microbiota, which may be altered by both intrinsic and extrinsic factors. During critical periods of development, these intrinsic and extrinsic factors can cause long-lasting sex-dependent changes in the GBA, which can affect brain structure and function. However, there is limited understanding of how the GBA is altered by stress and how it may be linked to the onset of mental illness during puberty. This article reviews current literature on the relationships between the GBA, the effects of stress during puberty, and the implications for mental health.
Collapse
Affiliation(s)
| | - Jessica A. Tchida
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Rebecca Krnel
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- LIFE Research Institute, Ottawa, ON, Canada
| |
Collapse
|
3
|
Shamhari A‘A, Abd Hamid Z, Budin SB, Shamsudin NJ, Taib IS. Bisphenol A and Its Analogues Deteriorate the Hormones Physiological Function of the Male Reproductive System: A Mini-Review. Biomedicines 2021; 9:1744. [PMID: 34829973 PMCID: PMC8615890 DOI: 10.3390/biomedicines9111744] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 02/06/2023] Open
Abstract
BPA is identified as an endocrine-disrupting chemical that deteriorates the physiological function of the hormones of the male reproductive system. Bisphenol F (BPF), bisphenol S (BPS), and bisphenol AF (BPAF) are actively explored as substitutes for BPA and are known as BPA analogues in most manufacturing industries. These analogues may demonstrate the same adverse effects as BPA on the male reproductive system; however, toxicological data explaining the male reproductive hormones' physiological functions are still limited. Hence, this mini-review discusses the effects of BPA and its analogues on the physiological functions of hormones in the male reproductive system, focusing on the hypothalamus-pituitary-gonad (HPG) axis, steroidogenesis, and spermatogenesis outcomes. The BPA analogues mainly show a similar negative effect on the hormones' physiological functions, proven by alterations in the HPG axis and steroidogenesis via activation of the aromatase activity and reduction of spermatogenesis outcomes when compared to BPA in in vitro and in vivo studies. Human biomonitoring studies also provide significant adverse effects on the physiological functions of hormones in the male reproductive system. In conclusion, BPA and its analogues deteriorate the physiological functions of hormones in the male reproductive system as per in vitro, in vivo, and human biomonitoring studies.
Collapse
Affiliation(s)
- Asma’ ‘Afifah Shamhari
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Zariyantey Abd Hamid
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Siti Balkis Budin
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| | - Nurul Jehan Shamsudin
- Centre for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Izatus Shima Taib
- Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia; (A.‘A.S.); (Z.A.H.); (S.B.B.)
| |
Collapse
|
4
|
Affiliation(s)
- Wen-Ling Lee
- Department of Medicine, Cheng-Hsin General Hospital, Taipei, Taiwan, ROC
- Department of Nursing, Oriental Institute of Technology, New Taipei City, Taiwan, ROC
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Fa-Kung Lee
- Department of Obstetrics and Gynecology, Cathy General Hospital, Taipei, Taiwan, ROC
| | - Peng-Hui Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, ROC
- Female Cancer Foundation, Taipei, Taiwan, ROC
| |
Collapse
|
5
|
Tahir MS, Porto-Neto LR, Gondro C, Shittu OB, Wockner K, Tan AWL, Smith HR, Gouveia GC, Kour J, Fortes MRS. Meta-Analysis of Heifer Traits Identified Reproductive Pathways in Bos indicus Cattle. Genes (Basel) 2021; 12:768. [PMID: 34069992 PMCID: PMC8157873 DOI: 10.3390/genes12050768] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Fertility traits measured early in life define the reproductive potential of heifers. Knowledge of genetics and biology can help devise genomic selection methods to improve heifer fertility. In this study, we used ~2400 Brahman cattle to perform GWAS and multi-trait meta-analysis to determine genomic regions associated with heifer fertility. Heifer traits measured were pregnancy at first mating opportunity (PREG1, a binary trait), first conception score (FCS, score 1 to 3) and rebreeding score (REB, score 1 to 3.5). The heritability estimates were 0.17 (0.03) for PREG1, 0.11 (0.05) for FCS and 0.28 (0.05) for REB. The three traits were highly genetically correlated (0.75-0.83) as expected. Meta-analysis was performed using SNP effects estimated for each of the three traits, adjusted for standard error. We identified 1359 significant SNPs (p-value < 9.9 × 10-6 at FDR < 0.0001) in the multi-trait meta-analysis. Genomic regions of 0.5 Mb around each significant SNP from the meta-analysis were annotated to create a list of 2560 positional candidate genes. The most significant SNP was in the vicinity of a genomic region on chromosome 8, encompassing the genes SLC44A1, FSD1L, FKTN, TAL2 and TMEM38B. The genomic region in humans that contains homologs of these genes is associated with age at puberty in girls. Top significant SNPs pointed to additional fertility-related genes, again within a 0.5 Mb region, including ESR2, ITPR1, GNG2, RGS9BP, ANKRD27, TDRD12, GRM1, MTHFD1, PTGDR and NTNG1. Functional pathway enrichment analysis resulted in many positional candidate genes relating to known fertility pathways, including GnRH signaling, estrogen signaling, progesterone mediated oocyte maturation, cAMP signaling, calcium signaling, glutamatergic signaling, focal adhesion, PI3K-AKT signaling and ovarian steroidogenesis pathway. The comparison of results from this study with previous transcriptomics and proteomics studies on puberty of the same cattle breed (Brahman) but in a different population identified 392 genes in common from which some genes-BRAF, GABRA2, GABR1B, GAD1, FSHR, CNGA3, PDE10A, SNAP25, ESR2, GRIA2, ORAI1, EGFR, CHRNA5, VDAC2, ACVR2B, ORAI3, CYP11A1, GRIN2A, ATP2B3, CAMK2A, PLA2G, CAMK2D and MAPK3-are also part of the above-mentioned pathways. The biological functions of the positional candidate genes and their annotation to known pathways allowed integrating the results into a bigger picture of molecular mechanisms related to puberty in the hypothalamus-pituitary-ovarian axis. A reasonable number of genes, common between previous puberty studies and this study on early reproductive traits, corroborates the proposed molecular mechanisms. This study identified the polymorphism associated with early reproductive traits, and candidate genes that provided a visualization of the proposed mechanisms, coordinating the hypothalamic, pituitary, and ovarian functions for reproductive performance in Brahman cattle.
Collapse
Affiliation(s)
- Muhammad S. Tahir
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Laercio R. Porto-Neto
- Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD 4072, Australia;
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Olasege B. Shittu
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Kimberley Wockner
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Andre W. L. Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Hugo R. Smith
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Gabriela C. Gouveia
- Animal Science Department, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Jagish Kour
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| | - Marina R. S. Fortes
- School of Chemistry and Molecular Bioscience, The University of Queensland Australia, Brisbane, QLD 4072, Australia; (M.S.T.); (O.B.S.); (K.W.); (A.W.L.T.); (H.R.S.); (J.K.)
| |
Collapse
|
6
|
Moustafa A. Hindlimb unloading-induced reproductive suppression via Downregulation of hypothalamic Kiss-1 expression in adult male rats. Reprod Biol Endocrinol 2021; 19:37. [PMID: 33663539 PMCID: PMC7931529 DOI: 10.1186/s12958-021-00694-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 01/08/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Spaceflights-induced microgravity can alter various physiological processes in human's body including the functional status of the reproductive system. Rodent model of tail-suspension hindlimb unloading is extensively used to stimulate the organs responses to the microgravity condition. This study explores the potential effects of hindlimb unloading on testicular functions and spermatogenesis in adult male rats and the underlying mechanism/s. METHODS Twenty Sprague-Dawley rats were allotted into two groups: normally loaded group (control; all arms were in touch with the grid floor) and hindlimb unloaded group (HU; only the forearms were in contact with the grid floor). RESULTS Following 30 days of exposure, the HU group saw a decline in body weight, testicular and epidydimal weights, and all semen parameters. The circulating concentrations of gonadotropin-releasing hormone (GnRH), follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone significantly decreased, while levels of kisspeptin, corticosterone, inhibin, prolactin and estradiol (E2) increased in the HU group. Intratesticular levels of 5α-reductase enzyme and dihydrotestosterone (DHT) were suppressed, while the levels of aromatase and kisspeptin were significantly elevated in the HU group. Hypothalamic kisspeptin (Kiss1) mRNA expression levels were downregulated while its receptors (Kiss1R) were upregulated in the HU group. On the contrary, the mRNA expression levels of testicular Kiss1 were upregulated while Kiss1R were downregulated. The pituitary mRNA expression levels of FSHβ and LHβ decreased in the HU group. The levels of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and nitric oxide (NO) concentrations, and total antioxidant capacity (TAC) were elevated while malondialdehyde (MDA) concentrations declined in the testes of HU group. The testes of the HU rats showed positive immunostaining of caspase-3, heat shock protein 70 (HSP70) and Bcl2. CONCLUSIONS Altogether, these results revealed an inhibitory effect of hindlimb unloading on kisspeptin signaling in the hypothalamic-pituitary-testicular axis with impaired spermatogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
7
|
Olvera-Juárez E, Silva CC, Flores A, Arrieta-Cruz I, Mendoza-Garcés L, Martínez-Coria H, López-Valdés HE, Cárdenas M, Domínguez R, Gutiérrez-Juárez R, Cruz ME. The content of gonadotropin-releasing hormone (GnRH), kisspeptin, and estrogen receptors (ERα/ERβ) in the anteromedial hypothalamus displays daily variations throughout the rat estrous cycle. Cell Tissue Res 2020; 381:451-460. [PMID: 32710274 DOI: 10.1007/s00441-020-03258-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The content of gonadotropin-releasing hormone (GnRH), its mRNA, and estrogen receptor alpha (ERα) and beta (ERβ) in the hypothalamus varies throughout the estrous cycle. Furthermore, the abundance of these molecules displays asymmetry between the right and left side. In the present study, we investigated the changes in the content of ERα, ERβ, kisspeptin, and GnRH by western blot in the left and right anteromedial hypothalamus, at four different times during each stage of the rat estrous cycle. The serum levels of the follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were also measured. ERα and ERβ levels changed depending on the stage of the estrous cycle, meanwhile that of kisspeptin was modified according to both the hour of the day and the stage of the cycle. Except in estrus day, ERβ was higher in the right hypothalamus, while ERα was similar in both sides. During both proestrus and estrus, the content of kisspeptin and GnRH was higher in the right hypothalamus. The highest levels of FSH and LH occurred at 17:00 h of proestrus. But at estrus, the highest FSH levels were observed at 08:00 h and the lowest at 17:00 h. Thus, the current results show that the content of ERα, ERβ, kisspeptin, and GnRH in the anteromedial hypothalamus are regulated as a function of the stage of the estrous cycle and the hour of the day. Furthermore, the content of these proteins is regularly higher in the right anteromedial hypothalamus, regardless of the stage of the cycle or time of the day.
Collapse
Affiliation(s)
- Esteban Olvera-Juárez
- Neuroendocrinology Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Carlos-Camilo Silva
- Chronobiology of Reproduction Research Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Angélica Flores
- Neuroendocrinology Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Department of Basic Research, National Institute of Geriatrics, Ministry of Health, 10200, Mexico City, Mexico.
| | - Luciano Mendoza-Garcés
- Department of Basic Research, National Institute of Geriatrics, Ministry of Health, 10200, Mexico City, Mexico
| | - Hilda Martínez-Coria
- Division of Research, Faculty of Medicine, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Héctor E López-Valdés
- Division of Research, Faculty of Medicine, National Autonomous University of Mexico, 04510, Mexico City, Mexico
| | - Mario Cárdenas
- Department of Reproductive Biology, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Ministry of Health, 14080, Mexico City, Mexico
| | - Roberto Domínguez
- Neuroendocrinology Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
- Chronobiology of Reproduction Research Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Roger Gutiérrez-Juárez
- Department of Biomedical Sciences, School of Medicine, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - María-Esther Cruz
- Neuroendocrinology Laboratory, Reproductive Biology Research Unit, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| |
Collapse
|
8
|
Delanoue R, Romero NM. Growth and Maturation in Development: A Fly's Perspective. Int J Mol Sci 2020; 21:E1260. [PMID: 32070061 PMCID: PMC7072963 DOI: 10.3390/ijms21041260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/02/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In mammals like humans, adult fitness is improved due to resource allocation, investing energy in the developmental growth process during the juvenile period, and in reproduction at the adult stage. Therefore, the attainment of their target body height/size co-occurs with the acquisition of maturation, implying a need for coordination between mechanisms that regulate organismal growth and maturation timing. Insects like Drosophila melanogaster also define their adult body size by the end of the juvenile larval period. Recent studies in the fly have shown evolutionary conservation of the regulatory pathways controlling growth and maturation, suggesting the existence of common coordinator mechanisms between them. In this review, we will present an overview of the significant advancements in the coordination mechanisms ensuring developmental robustness in Drosophila. We will include (i) the characterization of feedback mechanisms between maturation and growth hormones, (ii) the recognition of a relaxin-like peptide Dilp8 as a central processor coordinating juvenile regeneration and time of maturation, and (iii) the identification of a novel coordinator mechanism involving the AstA/KISS system.
Collapse
Affiliation(s)
- Renald Delanoue
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Nuria M. Romero
- University Côte d’Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
- Universitey Côte d’Azur, INRA, CNRS, Institut Sophia Agrobiotech, 06900 Sophia Antipolis, France
| |
Collapse
|
9
|
Abdel-Fadeil MR, Abd Allah ES, Iraqy HM, Elgamal DA, Abdel-Ghani MA. Experimental obesity and diabetes reduce male fertility: Potential involvement of hypothalamic Kiss-1, pituitary nitric oxide, serum vaspin and visfatin. PATHOPHYSIOLOGY 2019; 26:181-189. [DOI: 10.1016/j.pathophys.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022] Open
|
10
|
Effect of kisspeptin antagonist on goat in vitro Leydig cell steroidogenesis. Theriogenology 2018; 121:134-140. [DOI: 10.1016/j.theriogenology.2018.07.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 02/05/2023]
|
11
|
Ye X, Pan W, Zhao Y, Zhao S, Zhu Y, Liu W, Liu J. Association of pyrethroids exposure with onset of puberty in Chinese girls. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:606-612. [PMID: 28501319 DOI: 10.1016/j.envpol.2017.04.035] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/14/2017] [Accepted: 04/14/2017] [Indexed: 06/07/2023]
Abstract
Pyrethroids, a class of ubiquitous insecticides, have been considered as endocrine-disrupting chemicals (EDCs). Female animal studies suggested that early-life pyrethroids exposure might delay puberty onset. However, it remains unclear whether this association applies to human populations. A total of 305 girls at the ages of 9-15 years old were recruited in Hangzhou, China in this study. The concentration of the common metabolite of pyrethroids, 3-phenoxybenzoic acid (3-PBA), was analyzed in urine samples to reflect the exposure level of pyrethroids. The associations of 3-PBA with pubertal stages were evaluated using a multinomial logistic regression model. The geometric mean level of 3-PBA was 1.11 μg/L (1.42 μg/g for creatinine-adjusted concentration). There was a significant 45% reduction in odds of being in breast stage 3 (B3) per one-unit increase in the log-transformed 3-PBA levels [OR = 0.55 (95%CI: 0.31-0.98), p = 0.042]. A similar negative association was found between urinary 3-PBA levels with later onset by pubic hair stage 2 (P2) [OR = 0.56 (95%CI: 0.36-0.90), p = 0.015]. Similar negative association was also observed between urinary 3-PBA levels and pubertal onset indicated by menarche [OR = 0.51 (95%CI: 0.28-0.93), p = 0.029]. For the first time to our knowledge, this work reveals that pyrethroids exposure may increase the risk of delayed pubertal onset in girls.
Collapse
Affiliation(s)
- Xiaoqing Ye
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wuye Pan
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuehao Zhao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shilin Zhao
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yimin Zhu
- School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Weiping Liu
- Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
12
|
Abstract
Kisspeptins (KPs) and their receptor (GPR54 or KiSS1R) play a key-role in regulation of the hypothalamic-pituitary-gonadal axis and are therefore interesting targets for therapeutic interventions in the field of reproductive endocrinology. As dogs show a rapid and robust LH response after the administration of KP10, they can serve as a good animal model for research concerning KP signaling. The aims of the present study were to test the antagonistic properties of KP analogs p234, p271, p354, and p356 in vitro, by determining the intracellular Ca2+ response of CHEM1 cells that stably express human GPR54, and to study the in vivo effects of these peptides on basal plasma LH concentration and the KP10-induced LH response in female dogs. Exposure of the CHEM1 cells to KP-10 resulted in a clear Ca2+ response. P234, p271, p354, and p356 did not prevent or lower the KP10-induced Ca2+ response. Moreover, the in vivo studies in the dogs showed that none of these supposed antagonists lowered the basal plasma LH concentration and none of the peptides lowered the KP10-induced LH response. In conclusion, p234, p271, p354, and p356 had no antagonistic effects in vitro nor any effect on basal and kisspeptin-stimulated plasma LH concentration in female dogs.
Collapse
|
13
|
Aytürk N, Firat T, Kükner A, Özoğul C, Töre F, Kandirali İE, Yilmaz B. The effect of kisspeptin on spermatogenesis and apoptosis in rats. Turk J Med Sci 2017; 47:334-342. [PMID: 28263511 DOI: 10.3906/sag-1505-69] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 04/21/2016] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND/AIM To study the effect of kisspeptin, a gonadotropin release stimulator, on the testicular tissue of the rat. MATERIALS AND METHODS Four groups were formed as follows: control, Kiss-10 501397645907nmol administration for 1 day, Kiss-10 administration for 13 days, and one last group kept for 7 days following Kiss-10 applied for 13 days. Testicular tissues were stained with hematoxylin-eosin, periodic acid Schiff, Masson trichrome staining, terminal deoxynucleotidyl transferased UTP nick-end labeling, and Ki-67 immune staining. Serum testosterone levels were determined. RESULTS Serum testosterone level increased following acute application, while it was reduced by chronic treatment. Spermatogenic cells as stained by Ki-67 and TUNEL increased in the treated groups compared to the controls. Following a 7-day rest after treatment, a decrease in testosterone levels and Ki-67-stained cell numbers and an increase in TUNEL-stained cells were observed. Leydig cells showed increased vacuolization in the Kiss-1 group. Leydig cell vacuolization continued in the Kiss (13) group and was reduced in the Kiss (13 + 7) group. CONCLUSION Kiss-10 increased spermatogenic cell proliferation, while testosterone level and proliferation decreased and apoptosis increased during the waiting period.
Collapse
Affiliation(s)
- Nilüfer Aytürk
- Department of Histology and Embryology, Faculty of Medicine, Medipol University, İstanbul, Turkey
| | - Tülin Firat
- Department of Histology and Embryology, Faculty of Medicine, Abant İzzet Baysal University, Bolu, Turkey
| | - Aysel Kükner
- Department of Histology and Embryology, Faculty of Medicine, Abant İzzet Baysal University, Bolu, Turkey
| | - Candan Özoğul
- Department of Histology and Embryology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Fatma Töre
- Department of Physiology, Faculty of Medicine, SANKO University, Gaziantep, Turkey
| | - İsmail Engin Kandirali
- Department of Urology Clinics, Bağcılar Education and Research Hospital, İstanbul, Turkey
| | - Bayram Yilmaz
- Department of Physiology, Faculty of Medicine, İstanbul Yeditepe University, İstanbul, Turkey
| |
Collapse
|
14
|
Öztin H, Çağıltay E, Çağlayan S, Kaplan M, Akpak YK, Karaca N, Tığlıoğlu M. Kisspeptin levels in idiopathic hypogonadotropic hypogonadism diagnosed male patients and its relation with glucose-insulin dynamic. Gynecol Endocrinol 2016; 32:991-994. [PMID: 27616469 DOI: 10.1080/09513590.2016.1214258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Male hypogonadism is defined as the deficiency of testosterone or sperm production synthesized by testicles or the deficiency of both. The reasons for hypogonadism may be primary, meaning testicular or secondary, meaning hypothalamohypophyseal. In hypogonadotropic hypogonadism (HH), there is indeficiency in gonadotropic hormones due to hypothalamic or hypophyseal reasons. Gonadotropin-releasing hormone (GnRH) is an important stimulant in releasing follicular stimulant hormone (FSH), mainly luteinizing hormone (LH). GnRH omitted is under the effect of many hormonal or stimulating factors. Kisspeptin is present in many places of the body, mostly in hypothalamic anteroventral periventricular nucleus and arcuate nucleus. Kisspeptin has a suppressor effect on the metastasis of many tumors such as breast cancer and malign melanoma metastases, and is called "metastin" for this reason. Kisspeptin is a strong stimulant of GnRH. In idiopathic hypogonadotropic hypogonadism (IHH) etiology, there is gonadotropic hormone release indeficiency which cannot be clearly described. A total of 30 male hypogonatropic hypogonadism diagnosed patients over 30 years of age who have applied to Haydarpasa Education Hospital Endocrinology and Metabolic Diseases Service were included in the study. Compared to the control group, the effect of kisspeptin on male patients with hypogonatropic hypogonadism and on insulin resistance developing in hypogonadism patients was investigated in our study. A statistically significant difference was detected between average kisspeptin measurements of the groups (p < 0.01). Kisspeptin measurement of the cases in the patient group were detected significantly high. No statistically significant relation was detected among kisspeptin and LH/FSH levels. Although a positive low relation was detected between kisspeptin measurements of patient group cases and homeostasis model assessment of insulin resistance (HOMA-IR) measurements, this relation was statistically insignificant. When the patient and control groups were compared for HOMA-IR, no statistically significant difference was detected. The reason for high kisspeptin levels in the patient group compared to the control group makes us consider that there may be a GPR54 resistance or GnRH neuronal transfer pathway defect. When patients and control groups were compared for HOMA-IR, the difference was not statistically significant. It is considered that kisspeptin is one of the reasons for hypogonatropic hypogonadism and has less effect on insulin resistance.
Collapse
Affiliation(s)
- Hasan Öztin
- a Internal Diseases Department , Gülhane Military Medical Academy Military Faculty of Medicine Hospital, Geriatrics Clinic , Ankara , Turkey
| | - Eylem Çağıltay
- b İzmir Military Hospital, Internal Diseases Clinic , Izmir , Turkey
| | - Sinan Çağlayan
- c Medipol University Hospital, Endocrinology and Metabolic Diseases Clinic , Istanbul , Turkey
| | - Mustafa Kaplan
- d Gülhane Military Medical Academy, Haydarpaşa Education Hospital, Internal Diseases Clinic , Istanbul , Turkey
| | - Yaşam Kemal Akpak
- e Ankara Mevki Military Hospital, Gynecology and Obstetrics Clinic , Ankara , Turkey
| | - Nilay Karaca
- f Bezmialem University Hospital, Gynecology and Obstetrics Clinic , Istanbul , Turkey , and
| | - Mesut Tığlıoğlu
- g Çanakkale Military Hospital, Internal Diseases Clinic , Çanakkale , Turkey
| |
Collapse
|
15
|
Validation of a noninvasive diagnostic tool to verify neuter status in dogs: The urinary FSH to creatinine ratio. Theriogenology 2016; 86:1376-81. [PMID: 27242177 DOI: 10.1016/j.theriogenology.2016.04.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 11/23/2022]
Abstract
Determining the presence of functional gonadal tissue in dogs can be challenging, especially in bitches during anestrus or not known to have been ovariectomized, or in male dogs with nonscrotal testes. Furthermore, in male dogs treated with deslorelin, a slow-release GnRH agonist implant for reversible chemical castration, the verification of complete downregulation of the hypothalamic-pituitary-gonadal (HPG) axis can be difficult, especially if pretreatment parameters such as the size of the testes or prostate gland are not available. The aims of this study were to validate an immunoradiometric assay for measurement of FSH in canine urine, to determine if the urinary FSH to creatinine ratio can be used to verify the neuter status in bitches and male dogs, as an alternative to the plasma FSH concentration, and to determine if downregulation of the HPG axis is achieved in male dogs during deslorelin treatment. Recovery of added canine FSH and serial dilutions of urine reported that the immunoradiometric assay measures urinary FSH concentration accurately and with high precision. Plasma FSH concentrations (the mean of two samples, taken 40 minutes apart) and the urinary FSH to creatinine ratio were determined before gonadectomy and 140 days (median, range 121-225 days) and 206 days (median, range 158-294 days) after gonadectomy of 13 bitches and five male dogs, respectively, and in 13 male dogs before and 132 days (median, range 117-174 days) after administration of a deslorelin implant. In both bitches and male dogs, the plasma FSH concentration and the urinary FSH to creatinine ratio were significantly higher after gonadectomy, with no overlapping of their ranges. Receiver operating characteristic analysis of the urinary FSH to creatinine ratio revealed a cut-off value of 2.9 in bitches and 6.5 in males to verify the presence or absence of functional gonadal tissue. In male dogs treated with deslorelin, the plasma FSH concentrations and urinary FSH to creatinine ratios were significantly lower after administration of the implant, but their ranges overlapped. We conclude that the urinary FSH to creatinine ratio can be used to verify the neuter status of bitches and male dogs. However, it cannot be used for the assessment of complete downregulation of the HPG axis after administration of a deslorelin implant. The urinary FSH to creatinine ratio is preferable over the plasma FSH concentration because it involves only one sample that can be collected relatively easy and noninvasively.
Collapse
|
16
|
Yang R, Wang YM, Zhang L, Zhao ZM, Zhao J, Peng SQ. Prepubertal exposure to T-2 toxin advances pubertal onset and development in female rats via promoting the onset of hypothalamic–pituitary–gonadal axis function. Hum Exp Toxicol 2016; 35:1276-1285. [DOI: 10.1177/0960327116629529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
T-2 toxin, a naturally produced Type A trichothecene mycotoxin, has been shown to damage the reproductive and developmental functions in livestocks. However, whether T-2 toxin can disturb the pubertal onset and development following prepubertal exposure remains unclear. To clarify this point, infantile female Sprague–Dawley rats were given a daily intragastric administration of vehicle or T-2 toxin at a dose of 375 μg/kg body weight for 5 consecutive days from postnatal day (PND) 15–19 (PND15–PND19). The days of vaginal opening, first diestrus, and first estrus in regular estrous cycle were advanced following T-2 toxin treatment, indicating prepubertal exposure to T-2 toxin induced the advancement of puberty onset. The relative weights of uterus and ovaries and the incidence of corpora lutea were all increased in T-2 toxin-treated rats; serum hormone levels of luteinizing hormone and estradiol and the messenger RNA expressions of gonadotropin-releasing hormone (GnRH) and GnRH receptor also displayed marked increases following exposure to T-2 toxin, all of which were well consistent with the manifestations of the advanced puberty onset. In conclusion, the present study reveals that prepubertal exposure to a high level of T-2 toxin promotes puberty onset in infantile female rats by advancing the initiation of hypothalamic–pituitary–gonadal axis function in female rats.
Collapse
Affiliation(s)
| | | | | | | | | | - S-Q Peng
- Evaluation and Research Center for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Albers-Wolthers CHJ, de Gier J, Rutten VPMG, van Kooten PJS, Leegwater PAJ, Schaefers-Okkens AC, Kooistra HS. The effects of kisspeptin agonist canine KP-10 and kisspeptin antagonist p271 on plasma LH concentrations during different stages of the estrous cycle and anestrus in the bitch. Theriogenology 2016; 86:589-95. [PMID: 27020879 DOI: 10.1016/j.theriogenology.2016.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022]
Abstract
Kisspeptin (KP) plays a key role in the regulation of the hypothalamic-pituitary-gonadal axis via the release of GnRH. As normal KP signaling is essential for reproductive function, it could be an interesting new target for therapeutic interventions, e.g., nonsurgical contraception in dogs. The aims of the present study were to investigate the effect of KP-10 administration on plasma LH concentration in different stages of the reproductive cycle and to investigate the suitability of p271 as KP antagonist in the bitch. Two groups of six adult Beagle bitches were used. In one group, plasma LH concentration was determined before (40 and 0 minutes) and 10, 20, 40, and 60 minutes after the intravenous administration of 0.5-μg/kg body weight (BW) canine KP-10. In the other group, the bitches received a continuous intravenous infusion with p271 (50 μg/kg BW/h) for 3 hours, and 0.5-μg/kg BW canine KP-10 was administered intravenously 2 hours after the start of the p271 infusion. Their plasma LH concentration was determined before (-40 and 0 minutes) and 30, 60, 90, 120, 130, 140, 160, and 180 minutes after the start of the p271 infusion. In both groups, the experiments were performed during the follicular phase, the first and second half of the luteal phase, and during anestrus. Canine KP-10 induced an increase of plasma LH concentration during all estrous cycle stages and anestrus. There was no difference in LH response between the two groups. The lowest LH response was seen during the follicular phase and the highest response during anestrus. The area under the curve (AUC) for LH and LH increment in the follicular phase were lower than those in anestrus. The AUC LH and LH increment in the first half of the luteal phase were lower than those in the second half of the luteal phase and anestrus. The AUC LH and LH increment in the second half of the luteal phase were not different from those in anestrus. Continuous administration of the antagonist p271 did not alter basal plasma LH concentration and could not prevent or lower the LH response to KP-10 in any of the cycle stages and anestrus. It can be concluded that the LH response to KP-10 is dependent on estrous cycle stage and that peripheral administrated p271 cannot be used as KP antagonist in the dog. This provides new insight in reproductive endocrinology of the bitch, which is important when KP signaling is considered for therapeutic interventions, such as for estrus induction or nonsurgical contraception in the bitch.
Collapse
Affiliation(s)
- C H J Albers-Wolthers
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3584 CM, The Netherlands.
| | - J de Gier
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3584 CM, The Netherlands
| | - V P M G Rutten
- Faculty of Veterinary Medicine, Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, 3584 CL, The Netherlands; Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, 0110, Republic of South Africa
| | - P J S van Kooten
- Faculty of Veterinary Medicine, Division of Immunology, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, 3584 CL, The Netherlands
| | - P A J Leegwater
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3584 CM, The Netherlands
| | - A C Schaefers-Okkens
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3584 CM, The Netherlands
| | - H S Kooistra
- Faculty of Veterinary Medicine, Department of Clinical Sciences of Companion Animals, Utrecht University, Utrecht, 3584 CM, The Netherlands
| |
Collapse
|
18
|
Delay of the onset of puberty in female rats by prepubertal exposure to T-2 toxin. Toxins (Basel) 2015; 7:4668-83. [PMID: 26569305 PMCID: PMC4663527 DOI: 10.3390/toxins7114668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/06/2015] [Accepted: 10/23/2015] [Indexed: 01/31/2023] Open
Abstract
Growing evidence has revealed the deleterious influence of environmental and food contaminants on puberty onset and development in both animals and children, provoking an increasing health concern. T-2 toxin, a naturally-produced Type A trichothecene mycotoxin which is frequently found in cereal grains and products intended for human and animal consumption, has been shown to impair the reproduction and development in animals. Nevertheless, whether this trichothecene mycotoxin can disturb the onset of puberty in females remains unclear. To clarify this point, infantile female rats were given a daily intragastric administration of vehicle or 187.5 μg/kg body weight of T-2 toxin for five consecutive days from postnatal day 15 to 19, and the effects on puberty onset were evaluated in the present study. The results revealed that the days of vaginal opening, first dioestrus, and first estrus in regular estrous cycle were delayed following prepubertal exposure to T-2 toxin. The relative weights of reproductive organs uterus, ovaries, and vagina, and the incidence of corpora lutea were all diminished in T-2 toxin-treated rats. Serum levels of gonadotropins luteinizing hormone, follicle-stimulating hormone, and estradiol were also reduced by T-2 toxin treatment. The mRNA expressions of hypothalamic gonadotropin-releasing hormone (GnRH) and pituitary GnRH receptor displayed significant reductions following exposure to T-2 toxin, which were consistent with the changes of serum gonadotropins, delayed reproductive organ development, and delayed vaginal opening. In conclusion, the present study reveals that prepubertal exposure to T-2 toxin delays the onset of puberty in immature female rats, probably by the mechanism of disturbance of hypothalamic-pituitary-gonadal (HPG) axis function. Considering the vulnerability of developmental children to food contaminants and the relative high level of dietary intake of T-2 toxin in children, we think the findings of the present study provide valuable information for the health risk assessment in children.
Collapse
|
19
|
Zmora N, Stubblefield JD, Wong TT, Levavi-Sivan B, Millar RP, Zohar Y. Kisspeptin Antagonists Reveal Kisspeptin 1 and Kisspeptin 2 Differential Regulation of Reproduction in the Teleost, Morone saxatilis. Biol Reprod 2015; 93:76. [PMID: 26246220 DOI: 10.1095/biolreprod.115.131870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/03/2015] [Indexed: 11/01/2022] Open
Abstract
The importance of kisspeptin in regulating vertebrate reproduction has been well established, but the exact mechanism continues to unfold. Unlike mammals, many lower vertebrates possess a dual kisspeptin system, Kiss1 and Kiss2. To decipher the roles of the kisspeptins in fish, we identified two potential kisspeptin antagonists, pep 234 and pep 359, by screening analogs for their ability to inactivate striped bass Kiss1 and Kiss2 receptors expressed in COS7 cells. Pep 234 (a mammalian KISS1 antagonist) antagonizes Kiss1r signaling activated by Kiss1 and Kiss2, and pep 359 (a novel analog) antagonizes Kiss2 activation of both receptors. In vitro studies using brain slices demonstrated that only Kiss2 can upregulate the expression of the hypophysiotropic gnrh1, which was subsequently diminished by pep 234 and pep 359. In primary pituitary cell cultures, the two antagonists revealed a complex network of putative endogenous and exogenous regulation by kisspeptin. While both kisspeptins stimulate Fsh expression and secretion, Kiss2 predominately induces Lh secretion. Pep 234 and 359 treatment of spawning males hindered sperm production. This effect was accompanied with decreased brain gnrh1 and gnrh2 mRNA levels and peptide content in the pituitary, and increased levels of pituitary Lh, probably due to attenuation of Lh release. Strikingly, the mRNA levels of arginine-vasotocin, the neurons of which in the preoptic area coexpress kiss2r, were dramatically reduced by the antagonists. Our results demonstrate differential actions of Kiss1 and Kiss2 systems along the hypothalamic-pituitary axis and interactions with other neuropeptides, and further reinforce the importance of kisspeptin in the execution of spawning.
Collapse
Affiliation(s)
- Nilli Zmora
- Insitute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland
| | - John David Stubblefield
- Insitute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland
| | - Ten-Tsao Wong
- Insitute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, the Hebrew University, Rehobot, Israel
| | - Robert Peter Millar
- Mammal Research Institute, Department of Zoology, University of Pretoria, Pretoria, South Africa University of Cape Town/Medical Research Council Receptor Biology Unit, Institute for Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Yonathan Zohar
- Insitute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland
| |
Collapse
|
20
|
Xu X, Chiung YM, Lu F, Qiu S, Ji M, Huo X. Associations of cadmium, bisphenol A and polychlorinated biphenyl co-exposure in utero with placental gene expression and neonatal outcomes. Reprod Toxicol 2015; 52:62-70. [PMID: 25687722 DOI: 10.1016/j.reprotox.2015.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 02/05/2023]
Abstract
In utero co-exposure to endocrine disrupting compounds can perturb fetal development. However, the effect of co-exposure on pivotal regulatory genes has seldom been investigated. We explored the effects of in utero co-exposure to cadmium (Cd), bisphenol A (BPA) and polychlorinated biphenyls (PCBs) on master regulator genes. We recruited 284 healthy pregnant women, of whom 262 provided both cord blood and placenta samples, and 200 had all measurements taken. Placental Cd, cord blood BPA and total PCBs in the exposed group were higher than a reference group. KISS1 expression level in placental tissue was threefold higher in the exposed group than in the reference, and was positively associated with all toxicants. Leptin and leptin receptor expression were also significantly higher, but were only associated with BPA. From our findings, we conclude that lower birth weight is correlated with Cd and PCBs, and may result from the increased KISS1 mRNA expression.
Collapse
Affiliation(s)
- Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, China
| | - Yin Mei Chiung
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Fangfang Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Shaoshan Qiu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Minhui Ji
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, and Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
21
|
Yang YU, Xiong XY, Yang LI, Xie L, Huang H. Testing of kisspeptin levels in girls with idiopathic central precocious puberty and its significance. Exp Ther Med 2015; 9:2369-2373. [PMID: 26136989 DOI: 10.3892/etm.2015.2398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 03/03/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of this study was to explore the significance of plasma kisspeptin levels in diagnosis and therapeutic evaluation through the analysis of the kisspeptin levels of girls diagnosed with idiopathic central precocious puberty (ICPP) prior to treatment and after 6-months of treatment and those with simple premature thelarche (PT). A total of 70 girls including 24 girls diagnosed with ICPP, 21 girls with PT and 25 normal girls were enrolled in the study. ELISA analysis was conducted to detect the plasma levels of kisspeptin. The kisspeptin level of the ICPP group prior to treatment (1.80±0.13 ng/ml) was significantly higher than those of the other two groups. The kisspeptin level of the ICPP group after 6 months of treatment (1.49±0.21 ng/ml) was significantly lower than that prior to treatment (P<0.05). It may be concluded that the plasma level of kisspeptin is associated with the initiation of pubertal development, and it may serve as an important parameter in the diagnosis of ICPP and the evaluation of therapeutic effects.
Collapse
Affiliation(s)
- Y U Yang
- Department of Endocrinology, The Children's Hospital of Jiangxi, Nanchang, Jiangxi 330006, P.R. China
| | - Xiang-Yu Xiong
- Department of Endocrinology, The Children's Hospital of Jiangxi, Nanchang, Jiangxi 330006, P.R. China
| | - L I Yang
- Department of Endocrinology, The Children's Hospital of Jiangxi, Nanchang, Jiangxi 330006, P.R. China
| | - Liling Xie
- Department of Endocrinology, The Children's Hospital of Jiangxi, Nanchang, Jiangxi 330006, P.R. China
| | - Hui Huang
- Department of Endocrinology, The Children's Hospital of Jiangxi, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
22
|
Demirbilek H, Ozbek MN, Demir K, Kotan LD, Cesur Y, Dogan M, Temiz F, Mengen E, Gurbuz F, Yuksel B, Topaloglu AK. Normosmic idiopathic hypogonadotropic hypogonadism due to a novel homozygous nonsense c.C969A (p.Y323X) mutation in the KISS1R gene in three unrelated families. Clin Endocrinol (Oxf) 2015; 82:429-38. [PMID: 25262569 DOI: 10.1111/cen.12618] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/19/2014] [Accepted: 09/13/2014] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The spectrum of genetic alterations in cases of hypogonadotropic hypogonadism continue to expand. However, KISS1R mutations remain rare. The aim of this study was to understand the molecular basis of normosmic idiopathic hypogonadotropic hypogonadism. METHODS Clinical characteristics, hormonal studies and genetic analyses of seven cases with idiopathic normosmic hypogonadotropic hypogonadism (nIHH) from three unrelated consanguineous families are presented. RESULTS One male presented with absence of pubertal onset and required surgery for severe penoscrotal hypospadias and cryptorchidism, while other two males had absence of pubertal onset. Two of four female cases required replacement therapy for pubertal onset and maintenance, whereas the other two had spontaneous pubertal onset but incomplete maturation. In sequence analysis, we identified a novel homozygous nonsense (p.Y323X) mutation (c.C969A) in the last exon of the KISS1R gene in all clinically affected cases. CONCLUSIONS We identified a homozygous nonsense mutation in the KISS1R gene in three unrelated families with nIHH, which enabled us to observe the phenotypic consequences of this rare condition. Escape from nonsense-mediated decay, and thus production of abnormal proteins, may account for the variable severity of the phenotype. Although KISS1R mutations are extremely rare and can cause a heterogeneous phenotype, analysis of the KISS1R gene should be a part of genetic analysis of patients with nIHH, to allow better understanding of phenotype-genotype relationship of KISS1R mutations and the underlying genetic basis of patients with nIHH.
Collapse
Affiliation(s)
- Huseyin Demirbilek
- Division of Pediatric Endocrinology, Children's State Hospital, Diyarbakir, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xiong X, Zhong A, Xu H. Effect of cyanotoxins on the hypothalamic-pituitary-gonadal axis in male adult mouse. PLoS One 2014; 9:e106585. [PMID: 25375936 PMCID: PMC4222826 DOI: 10.1371/journal.pone.0106585] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/04/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Microcystins LR (MC-LR) are hepatotoxic cyanotoxins that have been shown to induce reproductive toxicity, and Hypothalamic-Pituitary-Gonadal Axis (HPG) is responsible for the control of reproductive functions. However, few studies have been performed to evaluate the effects of MC-LR on HPG axis. This study aimed to investigate the MC-LR-induced toxicity in the reproductive system of mouse and focus on the HPG axis. METHODS Adult male C57BL/6 mice were exposed to various concentrations of MC-LR (0, 3.75, 7.50, 15.00 and 30.00 µg/kg body weight per day) for 1 to 14 days, and it was found that exposure to different concentrations of MC-LR significantly disturbed sperm production in the mice testes in a dose- and time-dependent manner. To elucidate the associated possible mechanisms, the serum levels of testosterone, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) were assessed. Meanwhile, PCR assays were employed to detect alterations in a series of genes involved in HPG axis, such as FSH, LH, gonadotropin-releasing hormone (GnRH) and their complement receptors. Furthermore, the effect of MC-LR on the viability and testosterone production of Leydig cells were tested in vitro. RESULTS MC-LR significantly impaired the spermatogenesis of mice possibly through the direct or indirect inhibition of GnRH synthesis at the hypothalamic level, which resulted in reduction of serum levels of LH that lead to suppression of testosterone production in the testis of mice. CONCLUSIONS MC-LR may be a GnRH toxin that would disrupt the reproductive system of mice.
Collapse
Affiliation(s)
- Xiaolu Xiong
- Department of Endocrinology, the Affiliated Drum Tower Hospital, Nanjing Medical University, Nanjing, China
| | - Anyuan Zhong
- Department of Respiratory Diseases, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Huajun Xu
- Department of Otolaryngology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Mathias FT, Romano RM, Kizys MML, Kasamatsu T, Giannocco G, Chiamolera MI, Dias-da-Silva MR, Romano MA. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology 2014; 9:64-70. [PMID: 24533579 DOI: 10.3109/17435390.2014.889237] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As silver nanoparticles (AgNPs) have antimicrobial properties and potentiate the activity of some antibiotics, they are broadly used in both medical and nonmedical applications. In this study, prepubertal male Wistar rats were orally treated with 15 or 30 µg/kg/day AgNPs from postnatal day 23 (PND23) to PND58 and sacrificed at PND102. The acrosome integrity, plasma membrane integrity, mitochondrial activity and morphological alterations of the sperm were analyzed. Sexual partner preference, sexual behavior and the serum concentrations of FSH, LH, testosterone and estradiol were also recorded. The results were evaluated following the appropriate statistical analyses, and differences among the groups were considered significant when p < 0.05. AgNPs reduced the acrosome and plasma membrane integrities, reduced the mitochondrial activity and increased the abnormalities of the sperm in both treatment groups. AgNP exposure also delayed the onset of puberty, although no changes in body growth were observed in either treatment group. The animals did not show changes in sexual behavior or serum hormone concentrations. This study shows for the first time that prepubertal exposure to AgNPs causes alterations in adult sperm parameters. Importantly, the sperm appeared to be more sensitive to the toxic effects of AgNPs and demonstrated adverse effects following exposure to lower doses. Consequently, the effects of AgNPs on sperm should be considered in order to establish safety limits for the use of these particles.
Collapse
|
25
|
Yapura MJ, Mapletoft RJ, Pierson RA, Singh J, Adams GP. Effect of vehicle and route of administration of letrozole on ovarian function in a bovine model. Reprod Fertil Dev 2014; 26:1198-205. [DOI: 10.1071/rd13100] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 10/01/2013] [Indexed: 11/23/2022] Open
Abstract
The objective of this study was to determine the effects of vehicle and route of administration of letrozole on ovarian function in sexually mature beef heifers. On Day 3 (Day 0 = ovulation), heifers were assigned randomly to four treatment groups and given 1 mg kg–1 letrozole intravenously (iv, n = 10) or intramuscularly (im, n = 10) or given a placebo iv (control iv, n = 5) or im (control im, n = 5). The interwave interval was longer in heifers treated with letrozole im than in im and iv controls (11.7 ± 0.30 vs 9.5 ± 0.50 and 10 ± 0.43, respectively; P < 0.05). Corpus luteum diameter profiles and plasma progesterone concentrations were greater (P < 0.03 and P < 0.05, respectively) in heifers treated with letrozole im compared with control im. Plasma oestradiol concentrations were lower in both letrozole-treated groups compared with controls (P ≤ 0.03). Plasma LH concentrations tended to be elevated at the time of wave emergence in heifers treated with letrozole im compared with other groups (group-by-day interaction, P = 0.06) and plasma FSH concentrations tended to be greater (P < 0.09) in heifers treated with letrozole by either route compared with a single control group. We conclude that intramuscular administration of letrozole in oil is a feasible route and vehicle for the development of a letrozole-based treatment protocol for herd synchronisation in cattle.
Collapse
|
26
|
Asarian L, Geary N. Sex differences in the physiology of eating. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1215-67. [PMID: 23904103 DOI: 10.1152/ajpregu.00446.2012] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hypothalamic-pituitary-gonadal (HPG) axis function fundamentally affects the physiology of eating. We review sex differences in the physiological and pathophysiological controls of amounts eaten in rats, mice, monkeys, and humans. These controls result from interactions among genetic effects, organizational effects of reproductive hormones (i.e., permanent early developmental effects), and activational effects of these hormones (i.e., effects dependent on hormone levels). Male-female sex differences in the physiology of eating involve both organizational and activational effects of androgens and estrogens. An activational effect of estrogens decreases eating 1) during the periovulatory period of the ovarian cycle in rats, mice, monkeys, and women and 2) tonically between puberty and reproductive senescence or ovariectomy in rats and monkeys, sometimes in mice, and possibly in women. Estrogens acting on estrogen receptor-α (ERα) in the caudal medial nucleus of the solitary tract appear to mediate these effects in rats. Androgens, prolactin, and other reproductive hormones also affect eating in rats. Sex differences in eating are mediated by alterations in orosensory capacity and hedonics, gastric mechanoreception, ghrelin, CCK, glucagon-like peptide-1 (GLP-1), glucagon, insulin, amylin, apolipoprotein A-IV, fatty-acid oxidation, and leptin. The control of eating by central neurochemical signaling via serotonin, MSH, neuropeptide Y, Agouti-related peptide (AgRP), melanin-concentrating hormone, and dopamine is modulated by HPG function. Finally, sex differences in the physiology of eating may contribute to human obesity, anorexia nervosa, and binge eating. The variety and physiological importance of what has been learned so far warrant intensifying basic, translational, and clinical research on sex differences in eating.
Collapse
Affiliation(s)
- Lori Asarian
- Institute of Veterinary Physiology and Center for Integrated Human Physiology, University of Zurich, Zurich, Switzerland; and
| | | |
Collapse
|
27
|
Telegdy G, Adamik Á. The action of kisspeptin-13 on passive avoidance learning in mice. Involvement of transmitters. Behav Brain Res 2013; 243:300-5. [PMID: 23348107 DOI: 10.1016/j.bbr.2013.01.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 12/17/2012] [Accepted: 01/14/2013] [Indexed: 10/27/2022]
Abstract
Kisspeptins are G protein-coupled receptor ligands originally identified as human metastasis suppressor gene products that have the ability to suppress melanoma and breast cancer metastasis and recently found to play an important role in initiating the secretion of gonadotropin-releasing hormone at puberty. Kisspeptin-13 is an endogenous isoform that consists of 13 amino acids. The action of kisspeptin in the regulation of gonadal function has been widely studied, but little is known as concerns its function in limbic brain structures. In the brain, the gene is transcribed within the hippocampal dentate gyrus. This paper reports on a study the effects of kisspeptin-13 on passive avoidance learning and the involvement of the adrenergic, serotonergic, cholinergic, dopaminergic and GABA-A-ergic, opiate receptors and nitric oxide in its action in mice. Mice were pretreated with a nonselective α-adrenergic receptor antagonist, phenoxybenzamine, an α2-adrenergic receptor antagonist, yohimbine, a β-adrenergic receptor antagonist, propranolol, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a nonselective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a nonselective muscarinic acetylcholine receptor antagonist, atropine, D2, D3, D4 dopamine receptor antagonist, haloperidol, a γ-aminobutyric acid subunit A (GABAA) receptor antagonist, bicuculline, naloxone, a nonselective opioid receptor antagonist and nitro-l-arginine, a nitric oxide synthase inhibitor. Kisspeptin-13 facilitated learning and memory consolidation in a passive avoidance paradigm. Phenoxybenzamine, yohimbine, propranolol, methysergide, cyproheptadine, atropine, bicuculline and nitro-l-arginine prevented the action of kisspeptin-13 on passive avoidance learning, but haloperidol and naloxone did not block the effects of kisspeptin-13. The results demonstrated that the action of kisspeptin-13 on the facilitation of passive avoidance learning and memory consolidation is mediated, at least in part, through interactions of the α2-adrenergic, beta-adrenergic, 5-HT2 serotonergic, muscarinic cholinergic and GABA-A-ergic receptor systems and nitric oxide.
Collapse
Affiliation(s)
- Gyula Telegdy
- Department of Pathophysiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.
| | | |
Collapse
|
28
|
Humblet O, Korrick SA, Williams PL, Sergeyev O, Emond C, Birnbaum LS, Burns JS, Altshul LM, Patterson DG, Turner WE, Lee MM, Revich B, Hauser R. Genetic modification of the association between peripubertal dioxin exposure and pubertal onset in a cohort of Russian boys. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:111-117. [PMID: 23060366 PMCID: PMC3546349 DOI: 10.1289/ehp.1205278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Exposure to dioxins has been associated with delayed pubertal onset in both epidemiologic and animal studies. Whether genetic polymorphisms may modify this association is currently unknown. Identifying such genes could provide insight into mechanistic pathways. This is one of the first studies to assess genetic susceptibility to dioxins. OBJECTIVES We evaluated whether common polymorphisms in genes affecting either molecular responses to dioxin exposure or pubertal onset influence the association between peripubertal serum dioxin concentration and male pubertal onset. METHODS In this prospective cohort of Russian adolescent boys (n = 392), we assessed gene-environment interactions for 337 tagging single-nucleotide polymorphisms (SNPs) from 46 candidate genes and two intergenic regions. Dioxins were measured in the boys' serum at age 8-9 years. Pubertal onset was based on testicular volume and on genitalia staging. Statistical approaches for controlling for multiple testing were used, both with and without prescreening for marginal genetic associations. RESULTS After accounting for multiple testing, two tag SNPs in the glucocorticoid receptor (GR/NR3C1) gene and one in the estrogen receptor-α (ESR1) gene were significant (q < 0.2) modifiers of the association between peripubertal serum dioxin concentration and male pubertal onset defined by genitalia staging, although not by testicular volume. The results were sensitive to whether multiple comparison adjustment was applied to all gene-environment tests or only to those with marginal genetic associations. CONCLUSIONS Common genetic polymorphisms in the glucocorticoid receptor and estrogen receptor-α genes may modify the association between peripubertal serum dioxin concentration and pubertal onset. Further studies are warranted to confirm these findings.
Collapse
Affiliation(s)
- Olivier Humblet
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Garcia-Garcia RM. Integrative control of energy balance and reproduction in females. ISRN VETERINARY SCIENCE 2012; 2012:121389. [PMID: 23762577 PMCID: PMC3671732 DOI: 10.5402/2012/121389] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/04/2012] [Indexed: 11/23/2022]
Abstract
There is a strong association between nutrition and reproduction. Chronic dietary energy deficits as well as energy surpluses can impair reproductive capacity. Metabolic status impacts reproductive function at systemic level, modulating the hypothalamic GnRH neuronal network and/or the pituitary gonadotropin secretion through several hormones and neuropeptides, and at the ovarian level, acting through the regulation of follicle growth and steroidogenesis by means of the growth hormone-IGF-insulin system and local ovarian mediators. In the past years, several hormones and neuropeptides have been emerging as important mediators between energy balance and reproduction. The present review goes over the main sites implicated in the control of energy balance linked to reproductive success and summarizes the most important metabolic and neuroendocrine signals that participate in reproductive events with special emphasis on the role of recently discovered neuroendocrine peptides. Also, a little overview about the effects of maternal nutrition, affecting offspring reproduction, has been presented.
Collapse
Affiliation(s)
- R M Garcia-Garcia
- Physiology Department (Animal Physiology), Complutense University, Avenida Puerta de Hierro S/N, 28040 Madrid, Spain
| |
Collapse
|