1
|
Kim G, Siprashvili Z, Yang X, Meyers JM, Ji A, Khavari PA, Ducoli L. In vivo CRISPRi screen identified lncRNA portfolio crucial for cutaneous squamous cell carcinoma tumor growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618774. [PMID: 39464078 PMCID: PMC11507908 DOI: 10.1101/2024.10.16.618774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Cutaneous squamous cell carcinoma (cSCC) accounts for 20% of all skin cancer deaths globally, making it the second-highest subtype of skin cancer. The prevalence of cSCC in humans, as well as the poor capacity for an efficient prognosis, highlights the need to uncover alternative actors and mechanisms at the foundation of skin cancer development. Significant advances have been made to better understand some key factors in cSCC progression. However, little is known about the role of noncoding RNAs, particularly of a specific category called long noncoding RNA (lncRNA). By performing pseudobulk analysis of single-cell sequencing data from normal and cSCC human skin tissues, we determined a global portfolio of lncRNAs specifically expressed in keratinocyte subpopulations. Integration of CRISPR interference screens in vitro and the xenograft model identified several lncRNAs impacting the growth of cSCC cancer lines both in vitro and in vivo. Among these, we further validated LINC00704 and LINC01116 as proliferation-regulating lncRNAs in cSCC lines and potential biomarkers of cSCC progression. Taken together, our study provides a comprehensive signature of lncRNAs with roles in regulating cSCC progression.
Collapse
|
2
|
Lluch A, Latorre J, Oliveras-Cañellas N, Fernández-Sánchez A, Moreno-Navarrete JM, Castells-Nobau A, Comas F, Buxò M, Rodríguez-Hermosa JI, Ballester M, Espadas I, Martín-Montalvo A, Zhang B, Zhou Y, Burkhardt R, Höring M, Liebisch G, Castellanos-Rubio A, Santin I, Kar A, Laakso M, Pajukanta P, Olkkonen VM, Fernández-Real JM, Ortega FJ. A novel long non-coding RNA connects obesity to impaired adipocyte function. Mol Metab 2024; 90:102040. [PMID: 39362599 PMCID: PMC11544081 DOI: 10.1016/j.molmet.2024.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) can perform tasks of key relevance in fat cells, contributing, when defective, to the burden of obesity and its sequelae. Here, scrutiny of adipose tissue transcriptomes before and after bariatric surgery (GSE53378) granted identification of 496 lncRNAs linked to the obese phenotype. Only expression of linc-GALNTL6-4 displayed an average recovery over 2-fold and FDR-adjusted p-value <0.0001 after weight loss. The aim of the present study was to investigate the impact on adipocyte function and potential clinical value of impaired adipose linc-GALNTL6-4 in obese subjects. METHODS We employed transcriptomic analysis of public dataset GSE199063, and cross validations in two large transversal cohorts to report evidence of a previously unknown association of adipose linc-GALNTL6-4 with obesity. We then performed functional analyses in human adipocyte cultures, genome-wide transcriptomics, and untargeted lipidomics in cell models of loss and gain of function to explore the molecular implications of its associations with obesity and weight loss. RESULTS The expression of linc-GALNTL6-4 in human adipose tissue is adipocyte-specific and co-segregates with obesity, being normalized upon weight loss. This co-segregation is demonstrated in two longitudinal weight loss studies and two cross-sectional samples. While compromised expression of linc-GALNTL6-4 in obese subjects is primarily due to the inflammatory component in the context of obesity, adipogenesis requires the transcriptional upregulation of linc-GALNTL6-4, the expression of which reaches an apex in terminally differentiated adipocytes. Functionally, we demonstrated that the knockdown of linc-GALNTL6-4 impairs adipogenesis, induces alterations in the lipidome, and leads to the downregulation of genes related to cell cycle, while propelling in adipocytes inflammation, impaired fatty acid metabolism, and altered gene expression patterns, including that of apolipoprotein C1 (APOC1). Conversely, the genetic gain of linc-GALNTL6-4 ameliorated differentiation and adipocyte phenotype, putatively by constraining APOC1, also contributing to the metabolism of triglycerides in adipose. CONCLUSIONS Current data unveil the unforeseen connection of adipocyte-specific linc-GALNTL6-4 as a modulator of lipid homeostasis challenged by excessive body weight and meta-inflammation.
Collapse
Affiliation(s)
- Aina Lluch
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Jèssica Latorre
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| | - Núria Oliveras-Cañellas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | | | - José M Moreno-Navarrete
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Anna Castells-Nobau
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain
| | - Ferran Comas
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - Maria Buxò
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain
| | - José I Rodríguez-Hermosa
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; School of Medicine, University of Girona (UdG), Girona, Spain
| | - María Ballester
- Animal Breeding and Genetics Programme, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, Caldes de Montbui, Spain
| | - Isabel Espadas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain
| | - Alejandro Martín-Montalvo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), University Pablo de Olavide, Seville, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Birong Zhang
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Ainara Castellanos-Rubio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Izortze Santin
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Bizkaia, Spain; Instituto de Investigación Sanitaria Biocruces Bizkaia, Bizkaia, Spain
| | - Asha Kar
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Markku Laakso
- Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Päivi Pajukanta
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles (CA), USA; Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA; Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles (CA), USA
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, University of Helsinki, Helsinki, Finland
| | - José M Fernández-Real
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain; School of Medicine, University of Girona (UdG), Girona, Spain.
| | - Francisco J Ortega
- Institut d'Investigació Biomèdica de Girona (IDIBGI) - Girona, Spain; CIBER de la Fisiología de la Obesidad y la Nutrición (CIBEROBN), Madrid, Spain.
| |
Collapse
|
3
|
Hu D, Zhao T, Xu C, Pan X, Zhou Z, Wang S. Epigenetic Modifiers in Cancer Metastasis. Biomolecules 2024; 14:916. [PMID: 39199304 PMCID: PMC11352731 DOI: 10.3390/biom14080916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Metastasis is the primary cause of cancer-related death, with the dissemination and colonization of primary tumor cells at the metastatic site facilitated by various molecules and complex pathways. Understanding the biological mechanisms underlying the metastatic process is critical for the development of effective interventions. Several epigenetic modifications have been identified that play critical roles in regulating cancer metastasis. This review aims to provide a comprehensive summary of recent advances in understanding the role of epigenetic modifiers, including histone modifications, DNA methylation, non-coding RNAs, enhancer reprogramming, chromatin accessibility, and N6-methyladenosine, in metastasis-associated processes, such as epithelial-mesenchymal transition (EMT), cancer cell migration, and invasion. In particular, this review provides a detailed and in-depth description of the role of crosstalk between epigenetic regulators in tumor metastasis. Additionally, we explored the potential and limitations of epigenetics-related target molecules in the diagnosis, treatment, and prognosis of cancer metastasis.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Tianci Zhao
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang 110122, China;
| | - Chenxing Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Xinyi Pan
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
| | - Zhengyu Zhou
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shengjie Wang
- Key Laboratory of Molecular Genetics between Kangda College of Nanjing Medical University and Suzhou Medical College of Soochow University, Suzhou 215123, China;
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000, China; (C.X.); (X.P.)
- Laboratory Animal Center, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Heydari R, Karimi P, Meyfour A. Long non-coding RNAs as pathophysiological regulators, therapeutic targets and novel extracellular vesicle biomarkers for the diagnosis of inflammatory bowel disease. Biomed Pharmacother 2024; 176:116868. [PMID: 38850647 DOI: 10.1016/j.biopha.2024.116868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing disease of the gastrointestinal (GI) system that includes two groups, Crohn's disease (CD) and ulcerative colitis (UC). To cope with these two classes of IBD, the investigation of pathogenic mechanisms and the discovery of new diagnostic and therapeutic approaches are crucial. Long non-coding RNAs (lncRNAs) which are non-coding RNAs with a length of longer than 200 nucleotides have indicated significant association with the pathology of IBD and strong potential to be used as accurate biomarkers in diagnosing and predicting responses to the IBD treatment. In the current review, we aim to investigate the role of lncRNAs in the pathology and development of IBD. We first describe recent advances in research on dysregulated lncRNAs in the pathogenesis of IBD from the perspective of epithelial barrier function, intestinal immunity, mitochondrial function, and intestinal autophagy. Then, we highlight the possible translational role of lncRNAs as therapeutic targets, diagnostic biomarkers, and predictors of therapeutic response in colon tissues and plasma samples. Finally, we discuss the potential of extracellular vesicles and their lncRNA cargo in the pathophysiology, diagnosis, and treatment of IBD.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Padideh Karimi
- CRTD/Center for Regenerative Therapies Dresden, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden 01307, Germany
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Hu Y, Lu Y, Fang Y, Zhang Q, Zheng Z, Zheng X, Ye X, Chen Y, Ding J, Yang J. Role of long non-coding RNA in inflammatory bowel disease. Front Immunol 2024; 15:1406538. [PMID: 38895124 PMCID: PMC11183289 DOI: 10.3389/fimmu.2024.1406538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of recurrent chronic inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD has been extensively studied for decades, its cause and pathogenesis remain unclear. Existing research suggests that IBD may be the result of an interaction between genetic factors, environmental factors and the gut microbiome. IBD is closely related to non-coding RNAs (ncRNAs). NcRNAs are composed of microRNA(miRNA), long non-coding RNA(lnc RNA) and circular RNA(circ RNA). Compared with miRNA, the role of lnc RNA in IBD has been little studied. Lnc RNA is an RNA molecule that regulates gene expression and regulates a variety of molecular pathways involved in the pathbiology of IBD. Targeting IBD-associated lnc RNAs may promote personalized treatment of IBD and have therapeutic value for IBD patients. Therefore, this review summarized the effects of lnc RNA on the intestinal epithelial barrier, inflammatory response and immune homeostasis in IBD, and summarized the potential of lnc RNA as a biomarker of IBD and as a predictor of therapeutic response to IBD in the future.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yifan Lu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Qizhe Zhang
- Department of Geriatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Zhuoqun Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaojuan Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Rajendran P, Sekar R, Abdallah BM, Fathima JH S, Ali EM, Jayaraman S, Abdelsalam SA, Veeraraghavan V. Epigenetic modulation of long noncoding RNA H19 in oral squamous cell carcinoma-A narrative review. Noncoding RNA Res 2024; 9:602-611. [PMID: 38532798 PMCID: PMC10963247 DOI: 10.1016/j.ncrna.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 03/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) showed a seemingly increasing incidence in the last decade. In India, despite the use of tobacco decreased rapidly, in the past five years, the incidence pattern of OSCC over gender and age showed a drastic shift. About 51 % of the head and neck cancers are not associated with habits. Studies exploring various contributing factors in the incidence of this malignancy have documented. Recently, the epigenetic factors associated with the induction and progression of OSCC were explored. More than 90 % of the human genome is made up of non-coding transcriptome, which believed to be noises. However, these non-coding RNAs were identified to be the major epigenetic modulators, which raises concern over incidence of carcinoma in non-habit patients. H19 is a long non coding RNA which proved to be an effective biomarker in various carcinoma. Its role in oral squamous cell cancer was not investigated in depth. This review discusses in detail the various epigenetic role of H19 in inducing oral carcinogenesis.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Department of Oral Pathology & Microbiology, Meenakshi Ammal Dental College & Hospital, Alapakkam Main Road, Maduravoyal, Chennai, 95, TN, India
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Shazia Fathima JH
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
- Department of Oral Pathology and Microbiology, Ragas Dental College and Hospitals, Chennai, 600119, Tamil Nadu, India
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Selvaraj Jayaraman
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
7
|
Varela-Martínez E, Luigi-Sierra MG, Guan D, López-Béjar M, Casas E, Olvera-Maneu S, Gardela J, Palomo MJ, Osuagwuh UI, Ohaneje UL, Mármol-Sánchez E, Amills M. The landscape of long noncoding RNA expression in the goat brain. J Dairy Sci 2024; 107:4075-4091. [PMID: 38278299 DOI: 10.3168/jds.2023-23966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/22/2023] [Indexed: 01/28/2024]
Abstract
The brain regulates multiple metabolic processes, such as food intake, energy expenditure, insulin secretion, hepatic glucose production, and glucose and fatty acid metabolism in adipose tissue, which are fundamental for the maintenance of energy and glucose homeostasis during lactation and pregnancy. In addition, brain expression has a fundamental impact on the development of maternal behavior. Although brain functions are partly regulated by long noncoding RNAs (lncRNAs), their expression profiles have not been characterized in depth in any ruminant species. We have sequenced the transcriptome of 12 brain tissues from 3 goats that were 1 mo pregnant and 4 nonpregnant goats to investigate their lncRNA expression patterns. Between 4,363 (adenohypophysis) and 4,604 (olfactory bulb) lncRNAs were expressed in brain tissues, leading us to establish a set of 794 already annotated lncRNAs and 5,098 novel lncRNA candidates. The detected lncRNAs shared features with those of other mammals, and tissue-specific lncRNAs were enriched in brain development-related terms. Differential expression analyses between goats that were 1 mo pregnant and nonpregnant goats showed that the lncRNA expression profiles of certain brain regions experience substantial changes associated with early pregnancy (238 lncRNAs are differentially expressed in the olfactory bulb), but others do not. Enrichment analysis showed that differentially expressed lncRNAs from the olfactory bulb are co-expressed with genes previously linked to behavioral changes related to pregnancy. These findings provide a first characterization of the landscape of lncRNA expression in the goat brain and provides valuable clues to understand the molecular events triggered by early pregnancy in the central nervous system.
Collapse
Affiliation(s)
- Endika Varela-Martínez
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), B. Sarriena, Leioa 48940, Spain; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - María Gracia Luigi-Sierra
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Dailu Guan
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Encarna Casas
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Sergi Olvera-Maneu
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, 2414 Nicosia, Cyprus
| | - Jaume Gardela
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Maria Jesús Palomo
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Uchebuchi Ike Osuagwuh
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Uchechi Linda Ohaneje
- Department of Animal Medicine and Surgery, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Emilio Mármol-Sánchez
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra 08193, Spain; Department de Ciència Animal I dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain.
| |
Collapse
|
8
|
Zhang Z, Yi Y, Wang Z, Zhang H, Zhao Y, He R, Luo Y, Cui Z. LncRNA MAGI2-AS3-Encoded Polypeptide Restrains the Proliferation and Migration of Breast Cancer Cells. Mol Biotechnol 2024; 66:1409-1423. [PMID: 37358745 DOI: 10.1007/s12033-023-00801-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
Accumulating articles have reported the coding potential of long non-coding RNAs (lncRNAs). However, only a few lncRNAs-encoded peptides have been studied. Breast cancer (BRCA) progression-related gene modules were determined by weighted gene co-expression network analysis (WGCNA). Cell viability, proliferation, and migration capacities were assessed by Cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays. Immunofluorescence (IF) assay was implemented to observe protein expression. Co-immunoprecipitation (Co-IP) and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) were employed to analyze MAGI2 antisense RNA 3 (MAGI2-AS3)-ORF5-interacted proteins. WGCNA identified that MEpurple and MEblack modules were significantly negatively correlated with T stage in BRCA patients. MAGI2-AS3 was screened as one of the differentially expressed (DE) lncRNAs with translational potential in MEblack and MEpurple modules in BRCA. The data in The Cancer Genome Atlas (TCGA) uncovered that MAGI2-AS3 abundance was significantly decreased in invasive BRCA patients, and it had high diagnostic and prognostic values. MAGI2-AS3-ORF5 notably restrained BRCA cell viability, proliferation, and migration. Mechanically, MAGI2-AS3-ORF5 might affect the progression of BRCA cells by binding to extracellular matrix (ECM)-related proteins. MAGI2-AS3-ORF5 played an anti-tumor role by inhibiting BRCA cell viability, proliferation, and migration. MAGI2-AS3-ORF5 might modulate BRCA cell migration through ECM-associated proteins.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Department of Oncology, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanli Yi
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Zai Wang
- Science and Education Division, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Haoyun Zhang
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yanchun Zhao
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Ruijing He
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China
| | - Yan Luo
- Department of Reproductive Genetic, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Zhiqiang Cui
- Department of Breast Surgery, Affiliated Hospital of Hebei University of Engineering, Handan, 056000, Hebei, China.
| |
Collapse
|
9
|
Pokorná M, Černá M, Boussios S, Ovsepian SV, O’Leary VB. lncRNA Biomarkers of Glioblastoma Multiforme. Biomedicines 2024; 12:932. [PMID: 38790894 PMCID: PMC11117901 DOI: 10.3390/biomedicines12050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) are RNA molecules of 200 nucleotides or more in length that are not translated into proteins. Their expression is tissue-specific, with the vast majority involved in the regulation of cellular processes and functions. Many human diseases, including cancer, have been shown to be associated with deregulated lncRNAs, rendering them potential therapeutic targets and biomarkers for differential diagnosis. The expression of lncRNAs in the nervous system varies in different cell types, implicated in mechanisms of neurons and glia, with effects on the development and functioning of the brain. Reports have also shown a link between changes in lncRNA molecules and the etiopathogenesis of brain neoplasia, including glioblastoma multiforme (GBM). GBM is an aggressive variant of brain cancer with an unfavourable prognosis and a median survival of 14-16 months. It is considered a brain-specific disease with the highly invasive malignant cells spreading throughout the neural tissue, impeding the complete resection, and leading to post-surgery recurrences, which are the prime cause of mortality. The early diagnosis of GBM could improve the treatment and extend survival, with the lncRNA profiling of biological fluids promising the detection of neoplastic changes at their initial stages and more effective therapeutic interventions. This review presents a systematic overview of GBM-associated deregulation of lncRNAs with a focus on lncRNA fingerprints in patients' blood.
Collapse
Affiliation(s)
- Markéta Pokorná
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK;
- Faculty of Medicine, Health, and Social Care, Canterbury Christ Church University, Canterbury CT2 7PB, UK
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Saak V. Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent ME4 4TB, UK;
- Faculty of Medicine, Tbilisi State University, Tbilisi 0177, Georgia
| | - Valerie Bríd O’Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, Vinohrady, 10000 Prague, Czech Republic; (M.Č.); (V.B.O.)
| |
Collapse
|
10
|
Fenton CG, Ray MK, Paulssen RH. Challenges in Defining a Reference Set of Differentially Expressed lncRNAs in Ulcerative Colitis by Meta-Analysis. Curr Issues Mol Biol 2024; 46:3164-3174. [PMID: 38666928 PMCID: PMC11049510 DOI: 10.3390/cimb46040198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
The study aimed to identify common differentially expressed lncRNAs from manually curated ulcerative colitis (UC) gene expression omnibus (GEO) datasets. Nine UC transcriptomic datasets of clearly annotated human colonic biopsies were included in the study. The datasets were manually curated to select active UC samples and controls. R packages geneknitR, gprofiler, clusterProfiler were used for gene symbol annotation. The R EdgeR package was used to analyze differential expression. This resulted in a total of nineteen lncRNAs that were differentially expressed in at least three datasets of the nine GEO datasets. Several of the differentially expressed lncRNAs found in UC were associated with promoting colorectal cancer (CRC) through regulating gene expression, epithelial to mesenchymal transition (EMT), cell cycle progression, and by promoting tumor proliferation, invasion, and migration. The expression of several lncRNAs varied between disease states and tissue locations within the same disease state. The identified differentially expressed lncRNAs may function as general markers for active UC independent of biopsy location, age, gender, or treatment, thereby representing a comparative resource for future comparisons using available GEO UC datasets.
Collapse
Affiliation(s)
- Christopher G. Fenton
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway; (C.G.F.); (M.K.R.)
- Genomic Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Mithlesh Kumar Ray
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway; (C.G.F.); (M.K.R.)
| | - Ruth H. Paulssen
- Clinical Bioinformatics Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway; (C.G.F.); (M.K.R.)
- Genomic Support Centre Tromsø (GSCT), Department of Clinical Medicine, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
11
|
Ghahramani Almanghadim H, Karimi B, Poursalehi N, Sanavandi M, Atefi Pourfardin S, Ghaedi K. The biological role of lncRNAs in the acute lymphocytic leukemia: An updated review. Gene 2024; 898:148074. [PMID: 38104953 DOI: 10.1016/j.gene.2023.148074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The cause of leukemia, a common malignancy of the hematological system, is unknown. The structure of long non-coding RNAs (lncRNAs) is similar to mRNA but no ability to encode proteins. Numerous malignancies, including different forms of leukemia, are linked to Lnc-RNAs. It is verified that the carcinogenesis and growth of a variety of human malignancies are significantly influenced by aberrant lncRNA expression. The body of evidence linking various types of lncRNAs to the etiology of leukemia has dramatically increased during the past ten years. Some lncRNAs are therefore anticipated to function as novel therapeutic targets, diagnostic biomarkers, and clinical outcome predictions. Additionally, these lncRNAs may provide new therapeutic options and insight into the pathophysiology of diseases, particularly leukemia. Thus, this review outlines the present comprehension of leukemia-associated lncRNAs.
Collapse
Affiliation(s)
| | - Bahareh Karimi
- Department of Cellular and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Negareh Poursalehi
- Department of Medical Biotechnology, School of Medicine Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar Jerib Ave., Azadi Sq., 81746-73441 Isfahan, Iran.
| |
Collapse
|
12
|
Backofen R, Gorodkin J, Hofacker IL, Stadler PF. Comparative RNA Genomics. Methods Mol Biol 2024; 2802:347-393. [PMID: 38819565 DOI: 10.1007/978-1-0716-3838-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Over the last quarter of a century it has become clear that RNA is much more than just a boring intermediate in protein expression. Ancient RNAs still appear in the core information metabolism and comprise a surprisingly large component in bacterial gene regulation. A common theme with these types of mostly small RNAs is their reliance of conserved secondary structures. Large-scale sequencing projects, on the other hand, have profoundly changed our understanding of eukaryotic genomes. Pervasively transcribed, they give rise to a plethora of large and evolutionarily extremely flexible non-coding RNAs that exert a vastly diverse array of molecule functions. In this chapter we provide a-necessarily incomplete-overview of the current state of comparative analysis of non-coding RNAs, emphasizing computational approaches as a means to gain a global picture of the modern RNA world.
Collapse
Affiliation(s)
- Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ivo L Hofacker
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria
- Bioinformatics and Computational Biology research group, University of Vienna, Vienna, Austria
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University of Leipzig, Leipzig, Germany.
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany.
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany.
- Universidad National de Colombia, Bogotá, Colombia.
- Institute for Theoretical Chemistry, University of Vienna, Wien, Austria.
- Center for Non-coding RNA in Technology and Health, University of Copenhagen, Frederiksberg, Denmark.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
13
|
Danilevicz MF, Gill M, Fernandez CGT, Petereit J, Upadhyaya SR, Batley J, Bennamoun M, Edwards D, Bayer PE. DNABERT-based explainable lncRNA identification in plant genome assemblies. Comput Struct Biotechnol J 2023; 21:5676-5685. [PMID: 38058296 PMCID: PMC10696397 DOI: 10.1016/j.csbj.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023] Open
Abstract
Long non-coding ribonucleic acids (lncRNAs) have been shown to play an important role in plant gene regulation, involving both epigenetic and transcript regulation. LncRNAs are transcripts longer than 200 nucleotides that are not translated into functional proteins but can be translated into small peptides. Machine learning models have predominantly used transcriptome data with manually defined features to detect lncRNAs, however, they often underrepresent the abundance of lncRNAs and can be biased in their detection. Here we present a study using Natural Language Processing (NLP) models to identify plant lncRNAs from genomic sequences rather than transcriptomic data. The NLP models were trained to predict lncRNAs for seven model and crop species (Zea mays, Arabidopsis thaliana, Brassica napus, Brassica oleracea, Brassica rapa, Glycine max and Oryza sativa) using publicly available genomic references. We demonstrated that lncRNAs can be accurately predicted from genomic sequences with the highest accuracy of 83.4% for Z. mays and the lowest accuracy of 57.9% for B. rapa, revealing that genome assembly quality might affect the accuracy of lncRNA identification. Furthermore, we demonstrated the potential of using NLP models for cross-species prediction with an average of 63.1% accuracy using target species not previously seen by the model. As more species are incorporated into the training datasets, we expect the accuracy to increase, becoming a more reliable tool for uncovering novel lncRNAs. Finally, we show that the models can be interpreted using explainable artificial intelligence to identify motifs important to lncRNA prediction and that these motifs frequently flanked the lncRNA sequence.
Collapse
Affiliation(s)
| | - Mitchell Gill
- School of Biological Sciences, University of Western Australia, Australia
| | | | - Jakob Petereit
- School of Biological Sciences, University of Western Australia, Australia
| | | | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Australia
| | - Mohammed Bennamoun
- School of Physics, Mathematics and Computing, University of Western Australia, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Australia
| | - Philipp E. Bayer
- School of Biological Sciences, University of Western Australia, Australia
| |
Collapse
|
14
|
Cao T, Zhang S, Chen Q, Zeng C, Wang L, Jiao S, Chen H, Zhang B, Cai H. Long non-coding RNAs in schizophrenia: Genetic variations, treatment markers and potential targeted signaling pathways. Schizophr Res 2023; 260:12-22. [PMID: 37543007 DOI: 10.1016/j.schres.2023.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
Schizophrenia (SZ), a complex and debilitating spectrum of psychiatric disorders, is now mainly attributed to multifactorial etiology that includes genetic and environmental factors. Long non-coding RNAs (lncRNAs) are gaining popularity as a way to better understand the comprehensive mechanisms beneath the clinical manifestation of SZ. Only in recent years has it been elucidated that mammalian genomes encode thousands of lncRNAs. Strikingly, roughly 30-40% of these lncRNAs are extensively expressed in different regions across the brain, which may be closely associated with SZ. The therapeutic and adverse effects of atypical antipsychotic drugs (AAPDs) are partially reflected by their role in the regulation of lncRNAs. This begs the question directly, do any lncRNAs exist as biomarkers for AAPDs treatment? Furthermore, we comprehend a range of mechanistic investigations that have revealed the regulatory roles for lncRNAs both involved in the brain and the periphery of SZ. More crucially, we also combine insights from a variety of signaling pathways to argue that lncRNAs probably play critical roles in SZ via their interactive downstream factors. This review provides a thorough understanding regarding dysregulation of lncRNAs, corresponding genetic alternations, as well as their potential regulatory roles in the pathology of SZ, which might help reveal useful therapeutic targets in SZ.
Collapse
Affiliation(s)
- Ting Cao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - ShuangYang Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - CuiRong Zeng
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - LiWei Wang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShiMeng Jiao
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Chen
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - BiKui Zhang
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - HuaLin Cai
- Department of Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Institute of Clinical Pharmacy, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Wang P, Paquet ÉR, Robert C. Comprehensive transcriptomic analysis of long non-coding RNAs in bovine ovarian follicles and early embryos. PLoS One 2023; 18:e0291761. [PMID: 37725621 PMCID: PMC10508637 DOI: 10.1371/journal.pone.0291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been the subject of numerous studies over the past decade. First thought to come from aberrant transcriptional events, lncRNAs are now considered a crucial component of the genome with roles in multiple cellular functions. However, the functional annotation and characterization of bovine lncRNAs during early development remain limited. In this comprehensive analysis, we review lncRNAs expression in bovine ovarian follicles and early embryos, based on a unique database comprising 468 microarray hybridizations from a single platform designed to target 7,724 lncRNA transcripts, of which 5,272 are intergenic (lincRNA), 958 are intronic, and 1,524 are antisense (lncNAT). Compared to translated mRNA, lncRNAs have been shown to be more tissue-specific and expressed in low copy numbers. This analysis revealed that protein-coding genes and lncRNAs are both expressed more in oocytes. Differences between the oocyte and the 2-cell embryo are also more apparent in terms of lncRNAs than mRNAs. Co-expression network analysis using WGCNA generated 25 modules with differing proportions of lncRNAs. The modules exhibiting a higher proportion of lncRNAs were found to be associated with fewer annotated mRNAs and housekeeping functions. Functional annotation of co-expressed mRNAs allowed attribution of lncRNAs to a wide array of key cellular events such as meiosis, translation initiation, immune response, and mitochondrial related functions. We thus provide evidence that lncRNAs play diverse physiological roles that are tissue-specific and associated with key cellular functions alongside mRNAs in bovine ovarian follicles and early embryos. This contributes to add lncRNAs as active molecules in the complex regulatory networks driving folliculogenesis, oogenesis and early embryogenesis all of which are necessary for reproductive success.
Collapse
Affiliation(s)
- Pengmin Wang
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, Québec, Canada
| | - Éric R. Paquet
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, Québec, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
16
|
Chen B, Lu X, Zhou Q, Chen Q, Zhu S, Li G, Liu H. PAXIP1-AS1 is associated with immune infiltration and predicts poor prognosis in ovarian cancer. PLoS One 2023; 18:e0290031. [PMID: 37582104 PMCID: PMC10426951 DOI: 10.1371/journal.pone.0290031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
The long non-coding RNA (LncRNA) PAXIP1 antisense RNA 1 (PAXIP1-AS1) was found to promote proliferation, migration, EMT, and apoptosis of ovarian cancer (OC) cells in OC cell lines, but the relationship between PAXIP1-AS1 expression and clinical characteristics, prognosis, and immune infiltration of OC patients and its regulatory network are unclear. 379 OC tissues were collected from The Cancer Genome Atlas (TCGA) database. 427 OC tissues and 88 normal ovarian tissues were collected from GTEx combined TCGA database. 130 OC samples were collected from GSE138866. Kruskal-Wallis test, Wilcoxon sign-rank test, logistic regression, Kaplan-Meier method, Cox regression analysis, Gene set enrichment analysis (GSEA), and immuno-infiltration analysis were used to evaluate the relationship between clinical characteristics and PAXIP1-AS1 expression, prognostic factors, and determine the significant involvement of PAXIP1-AS1 in function. QRT-PCR was used to validate the expression of PAXIP1-AS1 in OC cell lines. Low PAXIP1-AS1 expression in OC was associated with age (P = 0.045), histological grade (P = 0.011), and lymphatic invasion (P = 0.004). Low PAXIP1-AS1 expression predicted a poorer overall survival (OS) (HR: 0.71; 95% CI: 0.55-0.92; P = 0.009), progression free interval (PFS) (HR: 1.776; 95% CI: 1.067-2.955; P = 0.001) and disease specific survival (DSS) (HR: 0.67; 95% CI: 0.51-0.89; P = 0.006). PAXIP1-AS1 expression (HR: 0.711; 95% CI: 0.542-0.934; P = 0.014) was independently correlated with PFS in OC patients. GSEA demonstrated that neutrophil degranulation, signaling by Interleukins, GPCR-ligand binding, G alpha I signaling events, VEGFAVEGFR-2 signaling pathway, naba secreted factors, Class A 1 Rhodopsin-Like Receptors, PI3K-Akt signaling pathway, and Focal Adhesion-PI3K-Akt-mTOR-signaling pathway were differentially enriched in PAXIP1-AS1 high expression phenotype. PAXIP1-AS1 was significantly downregulated in OC cell lines compared with IOSE29 cell line. The expression of PAXIP1-AS1 was associated with immune infiltration. low expression of PAXIP1-AS1 was correlated with poor OS (HR: 0.52; 95% CI: 0.34-0.80; P = 0.003) from GSE138866. There were some genomic variations between the PAXIP1-AS1 high and low expression groups. Low expression of PAXIP1-AS1 was significantly associated with poor survival and immune infiltration in OC. PAXIP1-AS1 could be a promising prognosis biomarker and response to immunotherapy for OC.
Collapse
Affiliation(s)
- Buze Chen
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Xiaoyuan Lu
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Xuzhou Medical University, Xuzhou, China
| | - Qingmei Zhou
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qing Chen
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Siyan Zhu
- Department of Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guilin Li
- Department of Gynecology, Maternal and Child Health Care Hospital Affiliated to Xuzhou Medical University, Xuzhou, China
| | - Hui Liu
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
17
|
Fellah S, Larrue R, Truchi M, Vassaux G, Mari B, Cauffiez C, Pottier N. Pervasive role of the long noncoding RNA DNM3OS in development and diseases. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1736. [PMID: 35491542 DOI: 10.1002/wrna.1736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 11/08/2022]
Abstract
Thousands of unique noncoding RNAs (ncRNAs) are expressed in human cells, some are tissue or cell type specific whereas others are considered as house-keeping molecules. Studies over the last decade have modified our perception of ncRNAs from transcriptional noise to functional regulatory transcripts that influence a variety of molecular processes such as chromatin remodeling, transcription, post-transcriptional modifications, or signal transduction. Consequently, aberrant expression of many ncRNAs plays a causative role in the initiation and progression of various diseases. Since the identification of its developmental role, the long ncRNA DNM3OS (Dynamin 3 Opposite Strand) has attracted attention of researchers in distinct fields including oncology, fibroproliferative diseases, or bone disorders. Mechanistic studies have in particular revealed the multifaceted nature of DNM3OS and its important pathogenic role in several human disorders. In this review, we summarize the current knowledge of DNM3OS functions in diseases, with an emphasis on its potential as a novel therapeutic target. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Sandy Fellah
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| | - Romain Larrue
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| | - Marin Truchi
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Georges Vassaux
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Bernard Mari
- Université Côte d'Azur, CNRS UMR7275, IPMC, Valbonne, France
| | - Christelle Cauffiez
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| | - Nicolas Pottier
- University of Lille, CNRS, Inserm, CHU Lille, UMR9020-UMR-S 1277, Lille, France
| |
Collapse
|
18
|
Expression analysis of novel long non-coding RNAs for invasive ductal and invasive lobular breast carcinoma cases. Pathol Res Pract 2023; 244:154391. [PMID: 36868097 DOI: 10.1016/j.prp.2023.154391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
AIM Long non-coding RNAs (LncRNAs) serve as important regulatory molecules of gene expression and protein functionality at multiple biological levels, and their deregulation plays a key role in tumorigenesis including in breast cancer metastasis. Therefore, in this study, we aim to compare the expression of novel lncRNAs in the landscape of invasive ductal carcinoma (IDC) and invasive lobular (ILC) carcinoma of breast. MAIN METHODS We have designed an in-silico approach to find the lncRNAs that regulate the breast cancer. Then, we used the clinical samples to carry out the verification of our in silico finding. In the present study, the tissues of breast cancer were deparaffinized. RNA was extracted by the TRIzole method. After synthesizing cDNA from the extracted RNA, expression levels of lncRNAs were analyzed by qPCR using primers specifically designed and validated for the targeted lncRNAs. In this study, breast biopsy materials from 41 female patients with IDC and 10 female patients with ILC were examined histopathological and expression changes of candidate lncRNAs were investigated in line with the findings. The results were analyzed using IBM SPSS Statistics 25 version. RESULTS The mean age of the cases was 53.78 ± 14.96. The minimum age was 29, while the maximum age was 87. While 27 of the cases were pre-menopausal, 24 cases were post-menopausal. The number of hormone receptor-positive cases was found to be 40, 35, and 27 for ER, PR, and cerb2/neu, respectively. While the expressions of LINC00501, LINC00578, LINC01209, LINC02015, LINC02584, ABCC5-AS1, PEX5L-AS2, SHANK2-AS3 and SOX2-OT showed significant differences (p < 0.05), the expressions of LINC01206, LINC01994, SHANK2-AS1, and TPRG1-AS2 showed no significant differences (p > 0.05). In addition, it was determined that the regulation of all lncRNAs could be able to involve in the development of cancer such as the NOTCH1, NFKB, and estrogen receptor signalings. CONCLUSION As a result, it was thought that the discovery of novel lncRNAs might be an important player in the diagnosis, prognosis and therapeutic development of breast cancer.
Collapse
|
19
|
Lohani N, Golicz AA, Allu AD, Bhalla PL, Singh MB. Genome-wide analysis reveals the crucial role of lncRNAs in regulating the expression of genes controlling pollen development. PLANT CELL REPORTS 2023; 42:337-354. [PMID: 36653661 DOI: 10.1007/s00299-022-02960-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The genomic location and stage-specific expression pattern of many long non-coding RNAs reveal their critical role in regulating protein-coding genes crucial in pollen developmental progression and male germ line specification. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 bp with no apparent protein-coding potential. Multiple investigations have revealed high expression of lncRNAs in plant reproductive organs in a cell and tissue-specific manner. However, their potential role as essential regulators of molecular processes involved in sexual reproduction remains largely unexplored. We have used developing field mustard (Brassica rapa) pollen as a model system for investigating the potential role of lncRNAs in reproductive development. Reference-based transcriptome assembly performed to update the existing genome annotation identified novel expressed protein-coding genes and long non-coding RNAs (lncRNAs), including 4347 long intergenic non-coding RNAs (lincRNAs, 1058 expressed) and 2,045 lncRNAs overlapping protein-coding genes on the opposite strand (lncNATs, 780 expressed). The analysis of expression profiles reveals that lncRNAs are significant and stage-specific contributors to the gene expression profile of developing pollen. Gene co-expression networks accompanied by genome location analysis identified 38 cis-acting lincRNA, 31 cis-acting lncNAT, 7 trans-acting lincRNA and 14 trans-acting lncNAT to be substantially co-expressed with target protein-coding genes involved in biological processes regulating pollen development and male lineage specification. These findings provide a foundation for future research aiming at developing strategies to employ lncRNAs as regulatory tools for gene expression control during reproductive development.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- School of Science, Western Sydney University, Richmond, Australia
| | - Agnieszka A Golicz
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University Gießen, Gießen, Germany
| | - Annapurna D Allu
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
- Department of Biology, Indian Institute of Science Education and Research, Tirupati, India
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, Melbourne, VIC, Australia.
| |
Collapse
|
20
|
LncRNA CCAT2, involving miR-34a/TGF-β1/Smad4 signaling, regulate hepatic stellate cells proliferation. Sci Rep 2022; 12:21199. [PMID: 36482069 PMCID: PMC9732356 DOI: 10.1038/s41598-022-25738-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
miR-34a targeting on Smad4 plays important role in TGF-β1 pathway which is a dominant factor for balancing collagen production and degradation in hepatic stellate cells. TGF-β1/Smad4 regulated collagen deposition is a hallmark of hepatic fibrosis. The potential regulation on miR-34a by LncRNAs in hepatic stellate cells (HSCs) is still reserved to be revealed. In current study, it was hypothesized that a miR-34a interactor, lncRNA CCAT2 may regulate TGF-β1 pathway in liver fibrotic remodeling. The interaction between CCAT2 and miR-34a-5p was checked by dual luciferase assay. the effects of CCAT2 and miR-34a-5p on cell proliferation and apoptosis were verified by MTT assay, colony formation assay, and flow cytometry assay. Dual luciferase activity showed CCAT2 are targets of miR-34a-5p. Sh-CCAT2 transfection prohibit HSCs proliferation and induce HSCs apoptosis, also inhibited ECM protein synthesis in HSCs. Decreased miR-34a-5p enhanced HSCs proliferation, blocked HSCs apoptosis and promoted ECM protein production. miR-34a-5p inhibitor undo protective regulation of sh-CCAT2 in liver fibrosis. Furthermore, clinical investigation showed that CCAT2 and Smad4 expression level were significantly induced, while miR-34a-5p was significantly decreased in HBV related liver fibrosis serum. In conclusion, activated HSCs via TGF-β1/Smad4 signaling pathway was successfully alleviated by CCAT2 inhibition through miR-34a-5p elevation.
Collapse
|
21
|
Chen Y, Wang N, Cao L, Zhang D, Peng H, Xue P. Long non-coding RNA HOXB-AS1 is a prognostic marker and promotes hepatocellular carcinoma cells' proliferation and invasion. Open Life Sci 2022; 17:944-951. [PMID: 36045719 PMCID: PMC9380905 DOI: 10.1515/biol-2022-0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/12/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are broadly transcribed in the genome of human and play critical roles in the progression of multiple diseases. Long non-coding HOXB cluster antisense RNA 1 (HOXB-AS1) is a tumor exciter in various cancers. This study aimed to investigate the involvement of HOXB-AS1 in hepatocellular carcinoma (HCC). In the following study, HOXB-AS1 was unveiled to be highly expressed in HCC tissues as opposed to normal tissues. Silencing of HOXB-AS1 led to the loss of proliferation, migration, and invasiveness of HCC cells, namely Hep3B and Huh7. Moreover, the data showed that expression levels of HOXB-AS1 contribute significantly to the patient's survival rates. Otherwise, HOXB-AS1 levels in the serum of patients proved HOXB-AS1 as a biomarker for analysis and treatment of HCC. In summary, this study highlights HOXB-AS1 as key upregulated lncRNA in HCC which being an oncogene can cause proliferation and metastasis of HCC cells. The results also highlighted HOXB-AS1 as a promising biomarker for early diagnosis and prognosis of patients with HCC.
Collapse
Affiliation(s)
- Yubin Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Na Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Liangqi Cao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Dawei Zhang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Heping Peng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| | - Ping Xue
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Guangzhou Medical University, No. 63 Yayun South Road, Guangzhou, 510000, Guangdong Province, China
| |
Collapse
|
22
|
A brain-enriched lncRNA shields cancer cells from immune-mediated killing for metastatic colonization in the brain. Proc Natl Acad Sci U S A 2022; 119:e2200230119. [PMID: 35617432 DOI: 10.1073/pnas.2200230119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceBrain metastasis with current limited treatment options is a common complication in advanced cancer patients, and breast-to-brain metastasis (B2BM) is one of the major types. In this work, we report that brain metastasis oncogenic long noncoding RNA (BMOR) is a key brain-enriched long noncoding RNA for the development of B2BM. We demonstrate that BMOR allows B2BM cells to colonize the brain tissue by evading immune-mediated killing in the brain microenvironment. At the molecular level, BMOR binds and inactivates IRF3 in B2BM cells. Finally, BMOR silencer can effectively suppress the development of brain metastasis in vivo. Therefore, our findings reveal a way in which cancer cells evade immune-mediated killing in the brain microenvironment for brain metastasis development and establish therapeutic targets with potential targeted strategies against B2BM.
Collapse
|
23
|
Gibert MK, Sarkar A, Chagari B, Roig-Laboy C, Saha S, Bednarek S, Kefas B, Hanif F, Hudson K, Dube C, Zhang Y, Abounader R. Transcribed Ultraconserved Regions in Cancer. Cells 2022; 11:1684. [PMID: 35626721 PMCID: PMC9139194 DOI: 10.3390/cells11101684] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Transcribed ultraconserved regions are putative lncRNA molecules that are transcribed from DNA that is 100% conserved in human, mouse, and rat genomes. This is notable, as lncRNAs are typically poorly conserved. TUCRs remain very understudied in many diseases, including cancer. In this review, we summarize the current literature on TUCRs in cancer with respect to expression deregulation, functional roles, mechanisms of action, and clinical perspectives.
Collapse
Affiliation(s)
- Myron K. Gibert
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Aditya Sarkar
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Bilhan Chagari
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Christian Roig-Laboy
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Sylwia Bednarek
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Benjamin Kefas
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Farina Hanif
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Kadie Hudson
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- NCI Designated Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
24
|
Yang J, Yang Y. Long noncoding RNA endogenous bornavirus-like nucleoprotein acts as an oncogene by regulating microRNA-655-3p expression in T-cell acute lymphoblastic leukemia. Bioengineered 2022; 13:6409-6419. [PMID: 35220878 PMCID: PMC8974199 DOI: 10.1080/21655979.2022.2044249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Acute lymphocytic leukemia (ALL) is the most common malignant tumor in children with T-cell ALL (T-ALL), accounting for approximately 15% of all cases. Long noncoding RNAs (lncRNAs) are involved in the pathogenesis and progression of T-ALL. The present study aimed to explore the role and mechanism of action of lncRNA EBLN3P in T-ALL. We used quantitative reverse transcription-PCR (qRT-PCR) to determine the expression of lncRNA endogenous bornavirus-like nucleoprotein (EBLN3P), microRNA (miR)-655-3p, and the transcription level of matrix metalloproteinase-9 (MMP-9), and Western blot assay to quantify the protein expression level of cleaved-caspase3, caspase3, proliferating cell nuclear antigen (PCNA), and MMP-9. The potential binding sites between lncRNA EBLN3P and miR-655-3p were predicted using StarBase, and the interaction was further verified by dual-luciferase reporter assay and RNA pull-down assay. The proliferation ability of Jurkat cells was detected using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and their invasion and migration ability using transwell assay. Cell apoptosis was determined using flow cytometry (FCM) assay. The expression of lncRNA EBLN3P was upregulated while that of miR-655-3p was downregulated in human T-ALL cell lines and lncRNA EBLN3P negatively regulated miR-655-3p. LncRNA EBLN3P knockdown significantly inhibited proliferation, invasion, and migration of Jurkat cells and induced their apoptosis. Downregulating miR-655-3p reversed the effects of lncRNA EBLN3P knockdown on Jurkat cells. In conclusion, we confirmed for the first time that lncRNA EBLN3P is dysregulated in T-ALL cell lines, and lncRNA EBLN3P knockdown inhibited the malignant biological behaviors of T-ALL cells by up-regulating miR-655-3p.
Collapse
Affiliation(s)
- Jinhua Yang
- Department of Hematology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingying Yang
- Department of Hematology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
25
|
LncCDH5-3:3 Regulates Apoptosis, Proliferation, and Aggressiveness in Human Lung Cancer Cells. Cells 2022; 11:cells11030378. [PMID: 35159188 PMCID: PMC8834634 DOI: 10.3390/cells11030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/07/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Lung cancer (both small cell and non-small cell) is the leading cause of new deaths associated with cancers globally in men and women. Long noncoding RNAs (lncRNAs) are associated with tumorigenesis in different types of tumors, including lung cancer. Herein, we discuss: (1) An examination of the expression profile of lncCDH5-3:3 in non-small cell lung cancer (NSCLC), and an evaluation of its functional role in lung cancer development and progression using in vitro models; (2) A quantitative real-time polymerase chain reaction assay that confirms lncCDH5-3:3 expression in tumor samples resected from 20 NSCLC patients, and that shows its statistically higher expression levels at stage III NSCLC, compared to stages I and II. Moreover, knockout (KO) and overexpression, as well as molecular and biochemical techniques, were used to investigate the biological functions of lncCDH5-3:3 in NSCLC cells, with a focus on the cells’ proliferation and migration; (3) The finding that lncCDH5-3:3 silencing promotes apoptosis and probably regulates the cell cycle and E-cadherin expression in adenocarcinoma cell lines. In comparison, lncCDH5-3:3 overexpression increases the expression levels of proliferation and epithelial-to-mesenchymal transition markers, such as EpCAM, Akt, and ERK1/2; however, at the same time, it also stimulates the expression of E-cadherin, which conversely inhibits the mobility capabilities of lung cancer cells; (4) The results of this study, which provide important insights into the role of lncRNAs in lung cancer. Our study shows that lncCDH5-3:3 affects important features of lung cancer cells, such as their viability and motility. The results support the idea that lncCDH5-3:3 is probably involved in the oncogenesis of NSCLC through the regulation of apoptosis and tumor cell metastasis formation.
Collapse
|
26
|
Lindlöf A. The Vulnerability of the Developing Brain: Analysis of Highly Expressed Genes in Infant C57BL/6 Mouse Hippocampus in Relation to Phenotypic Annotation Derived From Mutational Studies. Bioinform Biol Insights 2022; 16:11779322211062722. [PMID: 35023907 PMCID: PMC8743926 DOI: 10.1177/11779322211062722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/06/2022] Open
Abstract
The hippocampus has been shown to have a major role in learning and memory, but also to participate in the regulation of emotions. However, its specific role(s) in memory is still unclear. Hippocampal damage or dysfunction mainly results in memory issues, especially in the declarative memory but, in animal studies, has also shown to lead to hyperactivity and difficulty in inhibiting responses previously taught. The brain structure is affected in neuropathological disorders, such as Alzheimer's, epilepsy, and schizophrenia, and also by depression and stress. The hippocampus structure is far from mature at birth and undergoes substantial development throughout infant and juvenile life. The aim of this study was to survey genes highly expressed throughout the postnatal period in mouse hippocampus and which have also been linked to an abnormal phenotype through mutational studies to achieve a greater understanding about hippocampal functions during postnatal development. Publicly available gene expression data from C57BL/6 mouse hippocampus was analyzed; from a total of 5 time points (at postnatal day 1, 10, 15, 21, and 30), 547 genes highly expressed in all of these time points were selected for analysis. Highly expressed genes are considered to be of potential biological importance and appear to be multifunctional, and hence any dysfunction in such a gene will most likely have a large impact on the development of abilities during the postnatal and juvenile period. Phenotypic annotation data downloaded from Mouse Genomic Informatics database were analyzed for these genes, and the results showed that many of them are important for proper embryo development and infant survival, proper growth, and increase in body size, as well as for voluntary movement functions, motor coordination, and balance. The results also indicated an association with seizures that have primarily been characterized by uncontrolled motor activity and the development of proper grooming abilities. The complete list of genes and their phenotypic annotation data have been compiled in a file for easy access.
Collapse
|
27
|
Park EG, Pyo SJ, Cui Y, Yoon SH, Nam JW. Tumor immune microenvironment lncRNAs. Brief Bioinform 2021; 23:6458113. [PMID: 34891154 PMCID: PMC8769899 DOI: 10.1093/bib/bbab504] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
Long non-coding ribonucleic acids (RNAs) (lncRNAs) are key players in tumorigenesis and immune responses. The nature of their cell type-specific gene expression and other functional evidence support the idea that lncRNAs have distinct cellular functions in the tumor immune microenvironment (TIME). To date, the majority of lncRNA studies have heavily relied on bulk RNA-sequencing data in which various cell types contribute to an averaged signal, limiting the discovery of cell type-specific lncRNA functions. Single-cell RNA-sequencing (scRNA-seq) is a potential solution for tackling this limitation despite the lack of annotations for low abundance yet cell type-specific lncRNAs. Hence, updated annotations and further understanding of the cellular expression of lncRNAs will be necessary for characterizing cell type-specific functions of lncRNA genes in the TIME. In this review, we discuss lncRNAs that are specifically expressed in tumor and immune cells, summarize the regulatory functions of the lncRNAs at the cell type level and highlight how a scRNA-seq approach can help to study the cell type-specific functions of TIME lncRNAs.
Collapse
Affiliation(s)
- Eun-Gyeong Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sung-Jin Pyo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Youxi Cui
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang-Ho Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
28
|
Geng Z, Wang X, Hao S, Dong B, Huang Y, Wang Y, Xu L. LncRNA NNT-AS1 regulates proliferation, ECM accumulation and inflammation of human mesangial cells induced by high glucose through miR-214-5p/smad4. BMC Nephrol 2021; 22:368. [PMID: 34742256 PMCID: PMC8572446 DOI: 10.1186/s12882-021-02580-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Background LncRNA NNT-AS1 (NNT-AS1) has been extensively studied as the causative agent in propagation and progression of lung and bladder cancers, and cholangiocarcinoma. However, its significance in proliferation and inflammation of diabetic nephropathy is enigmatic. This study focuses on the molecular mechanisms followed by NNT-AS1 to establish diabetic nephropathy (DN) and its potential miRNA target. Methods Bioinformatics analysis to identify potential miRNA target of NNT-AS1 and smad4 transcription factor was conducted using LncBase and TargetScan, and was subsequently confirmed by luciferase reporter assay. Relative quantitative expression of NNT-AS1 in human glomerular mesangial cells (HGMCs) was detected through quantitative real-time PCR and WB analysis. Cell proliferation was detected through CCK-8 assay, whereas, ELISA was conducted to evaluate the expression of inflammatory cytokines. Following this, relative expression of miR-214-5p and smad4 were confirmed through qRT-PCR and western blot analysis. Results Results from the experiments manifested up-regulated levels of NNT-AS1 and smad4 in the blood samples of DN patients as well as in HGMCs, whereas, downregulated levels of miR-214-5p were measured in the HGMCs suggesting the negative correlation between NNT-AS1 and miR-214-5p. Potential binding sites of NNT-AS1 showed miR-214-5p as its direct target and NNT-AS1 as potential absorber for this microRNA, in turn increasing the expression of transcription factor smad4. Conclusion The data suggests that NNT-AS1 can be positively used as a potential biomarker and indicator of DN and causes extracellular matrix (ECM) accumulation and inflammation of human mesangial cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02580-y. 1. Up-regulated levels of NNT-AS1 and smad4 in DN samples and HGMCs was manifested. 2. Potential binding sites of NNT-AS1 showed miR-214-5p as its direct target and NNT-AS1 as potential absorber for this microRNA, in turn increasing the expression of transcription factor smad4. 3. The results manifested that knocking-down NNT-AS1 can significantly decrease the inflammation and progression of DN and hence can be used as a potential therapeutic target.
Collapse
Affiliation(s)
- Zhuang Geng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P.R. China
| | - Xiang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P.R. China
| | - Shiyuan Hao
- Department of Anesthesiology of the Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P.R. China
| | - Bingzi Dong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P.R. China
| | - Yajing Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P.R. China
| | - Yangang Wang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P.R. China.
| | - Lili Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, P.R. China.
| |
Collapse
|
29
|
Fu Y, Wei X, Han Q, Le J, Ma Y, Lin X, Xu Y, Liu N, Wang X, Kong X, Gu J, Tong Y, Wu H. Identification and characterization of a 25-lncRNA prognostic signature for early recurrence in hepatocellular carcinoma. BMC Cancer 2021; 21:1165. [PMID: 34717566 PMCID: PMC8556945 DOI: 10.1186/s12885-021-08827-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Background Early recurrence is the major cause of poor prognosis in hepatocellular carcinoma (HCC). Long non-coding RNAs (lncRNAs) are deeply involved in HCC prognosis. In this study, we aimed to establish a prognostic lncRNA signature for HCC early recurrence. Methods The lncRNA expression profile and corresponding clinical data were retrieved from total 299 HCC patients in TCGA database. LncRNA candidates correlated to early recurrence were selected by differentially expressed gene (DEG), univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. A 25-lncRNA prognostic signature was constructed according to receiver operating characteristic curve (ROC). Kaplan-Meier and multivariate Cox regression analyses were used to evaluate the performance of this signature. ROC and nomogram were used to evaluate the integrated models based on this signature with other independent clinical risk factors. Gene set enrichment analysis (GSEA) was used to reveal enriched gene sets in the high-risk group. Tumor infiltrating lymphocytes (TILs) levels were analyzed with single sample Gene Set Enrichment Analysis (ssGSEA). Immune therapy response prediction was performed with TIDE and SubMap. Chemotherapeutic response prediction was conducted by using Genomics of Drug Sensitivity in Cancer (GDSC) pharmacogenomics database. Results Compared to low-risk group, patients in high-risk group showed reduced disease-free survival (DFS) in the training (p < 0.0001) and validation cohort (p = 0.0132). The 25-lncRNA signature, AFP, TNM and vascular invasion could serve as independent risk factors for HCC early recurrence. Among them, the 25-lncRNA signature had the best predictive performance, and combination of those four risk factors further improves the prognostic potential. Moreover, GSEA showed significant enrichment of “E2F TARGETS”, “G2M CHECKPOINT”, “MYC TARGETS V1” and “DNA REPAIR” pathways in the high-risk group. In addition, increased TILs were observed in the low-risk group compared to the high-risk group. The 25-lncRNA signature negatively associates with the levels of some types of antitumor immune cells. Immunotherapies and chemotherapies prediction revealed differential responses to PD-1 inhibitor and several chemotherapeutic drugs in the low- and high-risk group. Conclusions Our study proposed a 25-lncRNA prognostic signature for predicting HCC early recurrence, which may guide postoperative treatment and recurrence surveillance in HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08827-z.
Collapse
Affiliation(s)
- Yi Fu
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,School of Medical Instruments, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xindong Wei
- Nanjing University of Traditional Chinese Medicine, Nanjing, 210000, China
| | - Qiuqin Han
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Jiamei Le
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yujie Ma
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinjie Lin
- Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yuhui Xu
- Graduate School of Art and Sciences, Columbia University, New York, NY, 10027, USA
| | - Ning Liu
- Department of Clinical Oncology, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Xuan Wang
- Department of General Surgery, Nanjing General Hospital of Nanjing Military Command, Nanjing, 210000, China
| | - Xiaoni Kong
- Institute of Clinical Immunology, Department of Liver Diseases, Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Jinyang Gu
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Ying Tong
- Department of Liver Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Hailong Wu
- Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China. .,Shanghai Key Laboratory of Molecular Imaging, Collaborative Innovation Center for Biomedicines, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
30
|
Methylation Modification, Alternative Splicing, and Noncoding RNA Play a Role in Cancer Metastasis through Epigenetic Regulation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4061525. [PMID: 34660788 PMCID: PMC8514273 DOI: 10.1155/2021/4061525] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/15/2021] [Indexed: 12/15/2022]
Abstract
Metastasis is the leading cause of cancer-related deaths. Understanding the pathogenesis of metastasis at the molecular levels is of great significance for cancer research. However, the molecular diagnosis or treatment of cancer metastasis is limited. Accumulating and growing evidence shows that epigenetic changes are present in all human cancers, and epigenetic regulation is an indispensable factor to promote tumor metastasis. With the deepening of research and the advancement of technology, the function and mechanism of epigenetic regulation, including DNA methylation, histone/RNA modification, and precursor messenger RNA alternative splicing and noncoding RNAs, has become more increasingly clear. At present, the application of epigenetic therapies in tumor treatment is becoming a feasible therapeutic route. In this review, we looked for the key molecules in epigenetic regulation and discuss their relative regulating mechanisms in cancer metastasis. Furthermore, we highlight promising therapeutic strategies, including monitoring serum DNA for diagnostic purposes and early phase clinical trial therapies that target DNA and histone methylation. This may also be beneficial in finding new targets for further prognosis and diagnosis of cancer metastasis.
Collapse
|
31
|
Ng CT, Azwar S, Yip WK, Zahari Sham SY, Faisal Jabar M, Sahak NH, Mohtarrudin N, Seow HF. Isolation and Identification of Long Non-Coding RNAs in Exosomes Derived from the Serum of Colorectal Carcinoma Patients. BIOLOGY 2021; 10:biology10090918. [PMID: 34571795 PMCID: PMC8465981 DOI: 10.3390/biology10090918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Treatment regimens for patients with advanced disease are limited and the mortality rate is high in these patients. A better understanding on pathogenesis and progression of cancer is critical for the development of new treatment strategies. In colorectal cancer (CRC), exosomes (secreted vesicles from cells) and long non-coding RNAs (lncRNAs) have been shown to play significant roles in disease development and progression. Long non-coding RNAs (lncRNAs) are present in the exosomes of serum and their profiles may potentially be useful as novel biomarkers for CRC patients and may provide a new insight in the pathogenesis and progression of CRC. Here, we compared the expression profiles of exosomal lncRNAs between non-cancer individuals and patients with colorectal carcinoma. The relative expression level of LINC00152 was found to be significantly lower in exosomes from sera of CRC patients as compared to non-cancer individuals whereas lncRNA H19 was significantly up-regulated in advanced-stages (stage III and IV) of CRC as compared to early-stages (stage I and II). Our data suggest that LINC00152 and H19 may play important roles in pathogenesis and progression of CRC. Abstract Long non-coding RNAs (lncRNAs) are non-coding RNAs consisting of more than 200 nucleotides in length. LncRNAs present in exosomes may play a critical role in the cellular processes involved in cancer pathogenesis and progression including proliferation, invasion, and migration of tumor cells. This paper aims to identify the differential expression of exosomal lncRNAs derived from the sera of non-cancer individuals and patients diagnosed with colorectal carcinoma. These differentially-expressed exosomal serum lncRNAs may provide an insight into the pathogenesis and progression of colorectal cancer (CRC). Serum exosomes and exosomes from SW480-7 cell culture supernatants were isolated and viewed by transmission electron microscope (TEM). The particle size distribution and protein markers of exosomes derived from SW480-7 were further analyzed using the Zetasizer Nano S instrument and western blotting technique. TEM showed that exosomes derived from serum and SW480-7 cells were round vesicles with sizes ranging from 50–200 nm. The exosomes derived from SW480-7 had an average diameter of 274.6 nm and contained the exosomal protein, ALIX/PDCD6IP. In our clinical studies, six lncRNAs, namely GAS5, H19, LINC00152, SNHG16, RMRP, and ZFAS1 were detected in the exosomes from sera of 18 CRC patients. Among these six lncRNAs, the expression level of LINC00152 was found to be significantly lower in CRC patients as compared to non-cancer individuals (p = 0.04) while lncRNA H19 was significantly up-regulated in advanced-stages (stage III and IV) of CRC (p = 0.04) as compared to early-stages (stage I and II). In conclusion, the detection of lower LINC00152 in exosomes of sera from CRC patients versus non-cancer individuals and H19 upregulation in advanced stages suggests that they may play important roles in pathogenesis and progression of CRC.
Collapse
Affiliation(s)
- Chin Tat Ng
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| | - Shamin Azwar
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| | - Wai Kien Yip
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| | - Siti Yazmin Zahari Sham
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| | - Mohd Faisal Jabar
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Norren Haneezah Sahak
- Department of Pathology, Hospital Serdang, Jalan Puchong, Kajang 43000, Selangor, Malaysia;
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
- Correspondence:
| | - Heng Fong Seow
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (C.T.N.); (S.A.); (W.K.Y.); (S.Y.Z.S.); (H.F.S.)
| |
Collapse
|
32
|
Lee YW, Chen M, Chung IF, Chang TY. lncExplore: a database of pan-cancer analysis and systematic functional annotation for lncRNAs from RNA-sequencing data. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6360505. [PMID: 34464437 PMCID: PMC8407485 DOI: 10.1093/database/baab053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 06/18/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022]
Abstract
Over the past few years, with the rapid growth of deep-sequencing technology and the development of computational prediction algorithms, a large number of long non-coding RNAs (lncRNAs) have been identified in various types of human cancers. Therefore, it has become critical to determine how to properly annotate the potential function of lncRNAs from RNA-sequencing (RNA-seq) data and arrange the robust information and analysis into a useful system readily accessible by biological and clinical researchers. In order to produce a collective interpretation of lncRNA functions, it is necessary to integrate different types of data regarding the important functional diversity and regulatory role of these lncRNAs. In this study, we utilized transcriptomic sequencing data to systematically observe and identify lncRNAs and their potential functions from 5034 The Cancer Genome Atlas RNA-seq datasets covering 24 cancers. Then, we constructed the 'lncExplore' database that was developed to comprehensively integrate various types of genomic annotation data for collective interpretation. The distinctive features in our lncExplore database include (i) novel lncRNAs verified by both coding potential and translation efficiency score, (ii) pan-cancer analysis for studying the significantly aberrant expression across 24 human cancers, (iii) genomic annotation of lncRNAs, such as cis-regulatory information and gene ontology, (iv) observation of the regulatory roles as enhancer RNAs and competing endogenous RNAs and (v) the findings of the potential lncRNA biomarkers for the user-interested cancers by integrating clinical information and disease specificity score. The lncExplore database is to our knowledge the first public lncRNA annotation database providing cancer-specific lncRNA expression profiles for not only known but also novel lncRNAs, enhancer RNAs annotation and clinical analysis based on pan-cancer analysis. lncExplore provides a more complete pathway to highly efficient, novel and more comprehensive translation of laboratory discoveries into the clinical context and will assist in reinterpreting the biological regulatory function of lncRNAs in cancer research. Database URL http://lncexplore.bmi.nycu.edu.tw.
Collapse
Affiliation(s)
- Yi-Wei Lee
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Beitou District, Taipei 11221, Taiwan
| | - Ming Chen
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, No.176, Chong-Hua Rd., Changhua 50046, Taiwan.,Research Department, Changhua Christian Hospital, No.135, Nan-Hsiao St., Changhua 50006, Taiwan.,Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, No.176, Chong-Hua Rd., Changhua 50046, Taiwan.,Department of Obstetrics and Gynecology, Changhua Christian Hospital, No.135, Nan-Hsiao St., Changhua 50006, Taiwan.,Department of Medical Genetics, National Taiwan University Hospital, No.7, Chung Shan S. Rd.(Zhongshan S. Rd.), Zhongzheng Dist., Taipei 10041, Taiwan.,Department of Obstetrics and Gynecology, College of Medicine, National Taiwan University, No.7, Chung Shan S. Rd.(Zhongshan S. Rd.), Zhongzheng Dist., Taipei 10041, Taiwan.,Department of Biomedical Science, Dayeh University, No.168, University Rd., Dacun, Changhua 51591, Taiwan.,Department of Medical Science, National Tsing Hua University, No.101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - I-Fang Chung
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Beitou District, Taipei 11221, Taiwan.,Center for Systems and Synthetic Biology, National Yang Ming Chiao Tung University, No.155, Sec. 2, Linong St., Beitou District, Taipei 11221, Taiwan
| | - Ting-Yu Chang
- Department of Genomic Medicine and Center for Medical Genetics, Changhua Christian Hospital, No.176, Chong-Hua Rd., Changhua 50046, Taiwan.,Research Department, Changhua Christian Hospital, No.135, Nan-Hsiao St., Changhua 50006, Taiwan.,Department of Genomic Science and Technology, Changhua Christian Hospital Healthcare System, No.176, Chong-Hua Rd., Changhua 50046, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, No.200, Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan
| |
Collapse
|
33
|
The Role of lncRNA in the Development of Tumors, including Breast Cancer. Int J Mol Sci 2021; 22:ijms22168427. [PMID: 34445129 PMCID: PMC8395147 DOI: 10.3390/ijms22168427] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are the largest groups of ribonucleic acids, but, despite the increasing amount of literature data, the least understood. Given the involvement of lncRNA in basic cellular processes, especially in the regulation of transcription, the role of these noncoding molecules seems to be of great importance for the proper functioning of the organism. Studies have shown a relationship between disturbed lncRNA expression and the pathogenesis of many diseases, including cancer. The present article presents a detailed review of the latest reports and data regarding the importance of lncRNA in the development of cancers, including breast carcinoma.
Collapse
|
34
|
Ho KH, Huang TW, Shih CM, Lee YT, Liu AJ, Chen PH, Chen KC. Glycolysis-associated lncRNAs identify a subgroup of cancer patients with poor prognoses and a high-infiltration immune microenvironment. BMC Med 2021; 19:59. [PMID: 33627136 PMCID: PMC7905662 DOI: 10.1186/s12916-021-01925-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Long noncoding (lnc)RNAs and glycolysis are both recognized as key regulators of cancers. Some lncRNAs are also reportedly involved in regulating glycolysis metabolism. However, glycolysis-associated lncRNA signatures and their clinical relevance in cancers remain unclear. We investigated the roles of glycolysis-associated lncRNAs in cancers. METHODS Glycolysis scores and glycolysis-associated lncRNA signatures were established using a single-sample gene set enrichment analysis (GSEA) of The Cancer Genome Atlas pan-cancer data. Consensus clustering assays and genomic classifiers were used to stratify patient subtypes and for validation. Fisher's exact test was performed to investigate genomic mutations and molecular subtypes. A differentially expressed gene analysis, with GSEA, transcription factor (TF) activity scoring, cellular distributions, and immune cell infiltration, was conducted to explore the functions of glycolysis-associated lncRNAs. RESULTS Glycolysis-associated lncRNA signatures across 33 cancer types were generated and used to stratify patients into distinct clusters. Patients in cluster 3 had high glycolysis scores and poor survival, especially in bladder carcinoma, low-grade gliomas, mesotheliomas, pancreatic adenocarcinomas, and uveal melanomas. The clinical significance of lncRNA-defined groups was validated using external datasets and genomic classifiers. Gene mutations, molecular subtypes associated with poor prognoses, TFs, oncogenic signaling such as the epithelial-to-mesenchymal transition (EMT), and high immune cell infiltration demonstrated significant associations with cluster 3 patients. Furthermore, five lncRNAs, namely MIR4435-2HG, AC078846.1, AL157392.3, AP001273.1, and RAD51-AS1, exhibited significant correlations with glycolysis across the five cancers. Except MIR4435-2HG, the lncRNAs were distributed in nuclei. MIR4435-2HG was connected to glycolysis, EMT, and immune infiltrations in cancers. CONCLUSIONS We identified a subgroup of cancer patients stratified by glycolysis-associated lncRNAs with poor prognoses, high immune infiltration, and EMT activation, thus providing new directions for cancer therapy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Ting Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
35
|
Chen J, Li P, Chen Z, Wang S, Tang S, Chen X, Chen Z, Zhou J. Elevated LINC01550 induces the apoptosis and cell cycle arrest of melanoma. Med Oncol 2021; 38:32. [PMID: 33609219 DOI: 10.1007/s12032-021-01478-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023]
Abstract
Melanoma is a high-grade malignant subtype of human skin cancer with the highest mortality rate. Here we perform a bioinformatics analysis concerning human melanoma tissues by the Gene Expression Omnibus (GEO) database and Gene Expression Profiling Interactive Analysis (GEPIA) platform. We found that lncRNA LINC01550 was significantly down-regulated in the melanoma tissues as compared to the normal tissues. The low expression of LINC01550 was tightly associated with shorter overall survival and disease-free survival of patients with melanoma. LINC01550 expression is negatively associated with tumor cell proliferation and invasion abilities in melanoma as evidenced by the single-cell RNA sequencing (scRNA-seq) databases. LINC01550-overexpressing vectors were transferred into melanoma cells (WM35 and WM451). Up-regulation of LINC01550 significantly inhibited proliferation and invasion abilities, as well as induced cell apoptosis and G1 and S phase arrest of the melanoma cells. In conclusion, overexpression of LINC01550 may serve as a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- Jia Chen
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Ping Li
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zizi Chen
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shaohua Wang
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiang Chen
- Department of Dermatology, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Zhizhao Chen
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Jianda Zhou
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
36
|
Zhang X, Chen C, Zhong Y, Zeng X. lncRNA involved in triptonide-induced cytotoxicity in mouse germ cells. Reprod Toxicol 2020; 98:218-224. [PMID: 33045310 DOI: 10.1016/j.reprotox.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 09/16/2020] [Accepted: 10/04/2020] [Indexed: 01/29/2023]
Abstract
Triptonide reportedly has strong antitumor and anti-inflammatory activities. However, its severe toxicity, including to the reproductive system, has greatly restricted its use in patients who wish to preserve fertility. lncRNAs play crucial roles in male fertility and reportedly regulate triptonide's antitumor activity. However, whether lncRNAs are involved in triptonide-induced reproductive toxicity is unknown. Here, we showed that triptonide induced significant cytotoxicity, as demonstrated by reduced cell viability and induction of apoptosis and autophagy in mouse germ cells (a spermatocyte cell line, GC2). The expression levels of numerous lncRNAs and mRNAs in GC2 cells were altered at the transcriptome level after treatment with triptonide for 24 h, as determined by RNA sequencing. Gene ontology and pathway analyses showed that the functions of the differentially expressed lncRNAs and mRNAs were closely linked with many processes, including gene expression regulation, cell death, cell cycle regulation, cell proliferation and development and others. After validating our RNA-seq data, we selected one lncRNA, Obox4-ps35, dramatically induced by triptonide for further investigation. Obox4-ps35 knock-out aggravated triptonide-induced cytotoxicity by decreasing cell survival and increasing apoptosis and autophagy rates. These data suggest that germ cells exposed to triptonide overexpress Obox4-ps35 to protect against triptonide-induced cytotoxicity. This study provides preliminary evidence and novel directions for exploring roles of lncRNAs in triptonide-induced cytotoxicity, especially in reproductive toxicity.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China; Institute of Life Science, Nanchang University, Nanchang, China
| | - Chen Chen
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China
| | - Yuanyuan Zhong
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Xuhui Zeng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, China.
| |
Collapse
|
37
|
Blecua P, Martinez‐Verbo L, Esteller M. The DNA methylation landscape of hematological malignancies: an update. Mol Oncol 2020; 14:1616-1639. [PMID: 32526054 PMCID: PMC7400809 DOI: 10.1002/1878-0261.12744] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022] Open
Abstract
The rapid advances in high-throughput sequencing technologies have made it more evident that epigenetic modifications orchestrate a plethora of complex biological processes. During the last decade, we have gained significant knowledge about a wide range of epigenetic changes that crucially contribute to some of the most aggressive forms of leukemia, lymphoma, and myelodysplastic syndromes. DNA methylation is a key epigenetic player in the abnormal initiation, development, and progression of these malignancies, often acting in synergy with other epigenetic alterations. It also contributes to the acquisition of drug resistance. In this review, we summarize the role of DNA methylation in hematological malignancies described in the current literature. We discuss in detail the dual role of DNA methylation in normal and aberrant hematopoiesis, as well as the involvement of this type of epigenetic change in other aspects of the disease. Finally, we present a comprehensive overview of the main clinical implications, including a discussion of the therapeutic strategies that regulate or reverse aberrant DNA methylation patterns in hematological malignancies, including their combination with (chemo)immunotherapy.
Collapse
Affiliation(s)
- Pedro Blecua
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Laura Martinez‐Verbo
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
| | - Manel Esteller
- Cancer Epigenetics GroupJosep Carreras Leukaemia Research Institute (IJC)BarcelonaSpain
- Centro de Investigación Biomedica en Red Cancer (CIBERONC)MadridSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Physiological Sciences DepartmentSchool of Medicine and Health SciencesUniversity of BarcelonaSpain
| |
Collapse
|
38
|
Potential Involvement of lncRNAs in the Modulation of the Transcriptome Response to Nodavirus Challenge in European Sea Bass ( Dicentrarchus labrax L.). BIOLOGY 2020; 9:biology9070165. [PMID: 32679770 PMCID: PMC7407339 DOI: 10.3390/biology9070165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNAs) are being increasingly recognised as key modulators of various biological mechanisms, including the immune response. Although investigations in teleosts are still lagging behind those conducted in mammals, current research indicates that lncRNAs play a pivotal role in the response of fish to a variety of pathogens. During the last several years, interest in lncRNAs has increased considerably, and a small but notable number of publications have reported the modulation of the lncRNA profile in some fish species after pathogen challenge. This study was the first to identify lncRNAs in the commercial species European sea bass. A total of 12,158 potential lncRNAs were detected in the head kidney and brain. We found that some lncRNAs were not common for both tissues, and these lncRNAs were located near coding genes that are primarily involved in tissue-specific processes, reflecting a degree of cellular specialisation in the synthesis of lncRNAs. Moreover, lncRNA modulation was analysed in both tissues at 24 and 72 h after infection with nodavirus. Enrichment analysis of the neighbouring coding genes of the modulated lncRNAs revealed many terms related to the immune response and viral infectivity but also related to the stress response. An integrated analysis of the lncRNAs and coding genes showed a strong correlation between the expression of the lncRNAs and their flanking coding genes. Our study represents the first systematic identification of lncRNAs in European sea bass and provides evidence regarding the involvement of these lncRNAs in the response to nodavirus.
Collapse
|
39
|
Kim SS, Baek GO, Ahn HR, Sung S, Seo CW, Cho HJ, Nam SW, Cheong JY, Eun JW. Serum small extracellular vesicle-derived LINC00853 as a novel diagnostic marker for early hepatocellular carcinoma. Mol Oncol 2020; 14:2646-2659. [PMID: 32525601 PMCID: PMC7530776 DOI: 10.1002/1878-0261.12745] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to identify novel long noncoding RNA (lncRNA) biomarkers for hepatocellular carcinoma (HCC) using publicly available tissue genomic datasets and validate their diagnostic utility for early-stage HCC. Differentially expressed lncRNAs between 371 HCC and 50 nontumor tissues were obtained from The Cancer Genome Atlas liver hepatocellular carcinoma (TCGA_LIHC) project. Subsequently, the expression of the serum- and extracellular vesicle (EV)-derived lncRNA was assessed in 10 patients with HCC and 10 healthy controls using RT-qPCR. The candidate lncRNAs were validated in 90 HCC and 92 non-HCC (29 healthy control, 28 chronic hepatitis, 35 liver cirrhosis) patients. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated for the candidate lncRNAs and the current HCC biomarker, alpha-fetoprotein (AFP). SFTA1P, HOTTIP, HAGLROS, LINC01419, HAGLR, CRNDE, and LINC00853 were markedly upregulated in HCC in TCGA_LIHC dataset. Among them, LINC00853 has not been reported in relation to HCC before. In patients with HCC, only expression of small EV-derived LINC00853 (EV-LINC00853) was increased. EV-LINC00853 showed excellent discriminatory ability in the diagnosis of all-stage HCC (AUC = 0.934, 95% confidence interval = 0.887-0.966). Moreover, using a 14-fold increase and 20 ng·mL-1 as cutoffs for EV-LINC00853 expression and AFP level, respectively, EV-LINC00853 was found to have a sensitivity of 93.75% and specificity of 89.77%, while AFP showed only 9.38% sensitivity and 72.73% specificity for the diagnosis of early-stage HCC (mUICC stage I). EV-LINC00853 had a positivity of 97% and 67% in AFP-negative and AFP-positive early HCC, respectively. Serum EV-derived LINC00853 may be a novel potential diagnostic biomarker for early HCC, especially for AFP-negative HCC.
Collapse
Affiliation(s)
- Soon Sun Kim
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | - Geum Ok Baek
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | - Hye Ri Ahn
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Suna Sung
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Chul Won Seo
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea.,Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
| | - Hyo Jung Cho
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | - Suk Woo Nam
- Functional RNomics Research Center, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine & Health Sciences, Graduate School of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| | - Jung Woo Eun
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
40
|
Hong Y, Liang X, Gilhus NE. AChR antibodies show a complex interaction with human skeletal muscle cells in a transcriptomic study. Sci Rep 2020; 10:11230. [PMID: 32641696 PMCID: PMC7343820 DOI: 10.1038/s41598-020-68185-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/17/2020] [Indexed: 01/26/2023] Open
Abstract
Acetylcholine receptor (AChR) antibodies are the most important pathogenic marker in patients with myasthenia gravis (MG). The antibodies bind to AChRs on the postsynaptic membrane, and this leads to receptor degradation, destruction, or functional blocking with impaired signal at the neuromuscular junction. In this study, we have explored the effects of AChR antibodies binding to mature human myotubes with agrin-induced AChR clusters and pathways relevant for AChR degradation using bulk RNA sequencing. Protein-coding RNAs and lncRNAs were examined by RNA sequencing analysis. AChR antibodies induced marked changes of the transcriptomic profiles, with over 400 genes differentially expressed. Cholesterol metabolic processes and extracellular matrix organization gene sets were influenced and represent AChR-trafficking related pathways. Muscle contraction and cellular homeostasis gene sets were also affected, and independently of AChR trafficking. Furthermore, we found changes in a protein-coding RNA and lncRNA network, where expression of lncRNA MEG3 correlated closely with protein-coding genes for cellular homeostasis. We conclude that AChR antibodies induce an active response in human skeletal muscle cells which affects key intra- and extracellular pathways.
Collapse
Affiliation(s)
- Yu Hong
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Xiao Liang
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
41
|
New LncRNAs in Chronic Hepatitis C progression: from fibrosis to hepatocellular carcinoma. Sci Rep 2020; 10:9886. [PMID: 32555359 PMCID: PMC7303194 DOI: 10.1038/s41598-020-66881-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death in the world, and about 80% of the cases are associated with hepatitis B or C. Genetic and epigenetic alterations are accumulated over decades of chronic injury and may affect the functioning of tumor suppressor genes and protooncogenes. Studies have evidenced the role of Long non-coding RNAs (LncRNA) with oncogenic or tumor suppressor activities, suggesting a great potential in the treatment, diagnosis or indicator of prognosis in cancer. In this context, the aim of this study was to evaluate the global expression profile lncRNA in hepatic tissue samples with different stages of fibrosis associated with chronic hepatitis C, HCC and normal liver, in order to identify new lncRNAs that could contribute to study the progression of hepatic fibrosis to HCC associated with chronic hepatitis C. RNA-Seq was performed on Illumina NextSeq platform to identify lncRNAs expressed differently in 15 patients with chronic hepatitis C, three patients with HCC and three normal liver specimens. When the pathological tissues (fibrosis and carcinoma) were compared to normal hepatic tissue, were identified 2, 6 e 34 differentially expressed lncRNAs in moderate fibrosis, advanced fibrosis and HCC, respectively. The carcinoma group had the highest proportion of differentially expressed lncRNA (34) and of these, 29 were exclusive in this type of tissue. A heat map of the deregulated lncRNA revealed different expression patterns along the progression of fibrosis to HCC. The results showed the deregulation of some lncRNA already classified as tumor suppressors in HCC and other cancers, as well as some unpublished lncRNA whose function is unknown. Some of these lncRNAs are dysregulated since the early stages of liver injury in patients with hepatitis C, others overexpressed only in tumor tissue, indicating themselves as candidates of markers of fibrosis progression or tumor, with potential clinical applications in prognosis as well as a therapeutic target. Although there are already studies on lncRNA in hepatocellular carcinoma, this is the first study conducted in samples exclusively of HCV-related liver and HCV HCC.
Collapse
|
42
|
Tran KV, Brown EL, DeSouza T, Jespersen NZ, Nandrup-Bus C, Yang Q, Yang Z, Desai A, Min SY, Rojas-Rodriguez R, Lundh M, Feizi A, Willenbrock H, Larsen TJ, Severinsen MCK, Malka K, Mozzicato AM, Deshmukh AS, Emanuelli B, Pedersen BK, Fitzgibbons T, Scheele C, Corvera S, Nielsen S. Human thermogenic adipocyte regulation by the long noncoding RNA LINC00473. Nat Metab 2020; 2:397-412. [PMID: 32440655 PMCID: PMC7241442 DOI: 10.1038/s42255-020-0205-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/14/2020] [Indexed: 02/07/2023]
Abstract
Human thermogenic adipose tissue mitigates metabolic disease, raising much interest in understanding its development and function. Here, we show that human thermogenic adipocytes specifically express a primate-specific long non-coding RNA, LINC00473 which is highly correlated with UCP1 expression and decreased in obesity and type-2 diabetes. LINC00473 is detected in progenitor cells, and increases upon differentiation and in response to cAMP. In contrast to other known adipocyte LincRNAs, LINC00473 shuttles out of the nucleus, colocalizes and can be crosslinked to mitochondrial and lipid droplet proteins. Up- or down- regulation of LINC00473 results in reciprocal alterations in lipolysis, respiration and transcription of genes associated with mitochondrial oxidative metabolism. Depletion of PLIN1 results in impaired cAMP-responsive LINC00473 expression and lipolysis, indicating bidirectional interactions between PLIN1, LINC00473 and mitochondrial oxidative functions. Thus, we suggest that LINC00473 is a key regulator of human thermogenic adipocyte function, and reveals a role for a LincRNA in inter-organelle communication and human energy metabolism.
Collapse
Affiliation(s)
- Khanh-Van Tran
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Naja Zenius Jespersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Nandrup-Bus
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Qin Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Zinger Yang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anand Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - So Yun Min
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Raziel Rojas-Rodriguez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Amir Feizi
- Novo Nordisk Research Centre Oxford, University of Oxford, Oxford, UK
| | - Hanni Willenbrock
- Novo Nordisk A/S, Discovery Biology & Technology Boinformatics, Maaloev, Denmark
| | - Therese Juhlin Larsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mai Charlotte Krogh Severinsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kimberly Malka
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of Massachusetts Medical School, Worcester, MA, USA
| | - Anthony M Mozzicato
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Atul S Deshmukh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Timothy Fitzgibbons
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Søren Nielsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Buttarelli M, De Donato M, Raspaglio G, Babini G, Ciucci A, Martinelli E, Baccaro P, Pasciuto T, Fagotti A, Scambia G, Gallo D. Clinical Value of lncRNA MEG3 in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2020; 12:cancers12040966. [PMID: 32295169 PMCID: PMC7226118 DOI: 10.3390/cancers12040966] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/11/2020] [Indexed: 01/16/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are emerging as regulators in cancer development and progression, and aberrant lncRNA profiles have been reported in several cancers. Here, we evaluated the potential of using the maternally expressed gene 3 (MEG3) tissue level as a prognostic marker in high-grade serous ovarian cancer (HGSOC), the most common and deadliest gynecologic malignancy. To the aim of the study, we measured MEG3 transcript levels in 90 pre-treatment peritoneal biopsies. We also investigated MEG3 function in ovarian cancer biology. We found that high MEG3 expression was independently associated with better progression-free (p = 0.002) and overall survival (p = 0.01). In vitro and in vivo preclinical studies supported a role for MEG3 as a tumor suppressor in HGSOC, possibly through modulation of the phosphatase and tensin homologue (PTEN) network. Overall, results from this study demonstrated that decreased MEG3 is a hallmark for malignancy and tumor progression in HGSOC.
Collapse
Affiliation(s)
- Marianna Buttarelli
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (M.B.); (M.D.D.); (G.R.); (A.C.); (E.M.)
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (P.B.); (A.F.); (G.S.)
| | - Marta De Donato
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (M.B.); (M.D.D.); (G.R.); (A.C.); (E.M.)
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (P.B.); (A.F.); (G.S.)
| | - Giuseppina Raspaglio
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (M.B.); (M.D.D.); (G.R.); (A.C.); (E.M.)
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (P.B.); (A.F.); (G.S.)
| | - Gabriele Babini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (G.B.); (T.P.)
| | - Alessandra Ciucci
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (M.B.); (M.D.D.); (G.R.); (A.C.); (E.M.)
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (P.B.); (A.F.); (G.S.)
| | - Enrica Martinelli
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (M.B.); (M.D.D.); (G.R.); (A.C.); (E.M.)
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (P.B.); (A.F.); (G.S.)
| | - Pina Baccaro
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (P.B.); (A.F.); (G.S.)
| | - Tina Pasciuto
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (G.B.); (T.P.)
| | - Anna Fagotti
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (P.B.); (A.F.); (G.S.)
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (G.B.); (T.P.)
| | - Giovanni Scambia
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (P.B.); (A.F.); (G.S.)
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (G.B.); (T.P.)
| | - Daniela Gallo
- Unit of Translational Medicine for Woman and Child Health, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy; (M.B.); (M.D.D.); (G.R.); (A.C.); (E.M.)
- Department of Life Sciences and Public Health, Section of Gynecology and Obstetrics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (P.B.); (A.F.); (G.S.)
- Correspondence: ; Tel.: +39-06-30-15-42-98; Fax: +39-06-30-51-160
| |
Collapse
|
44
|
Wang Y, Luo Y, Yao Y, Ji Y, Feng L, Du F, Zheng X, Tao T, Zhai X, Li Y, Han P, Xu B, Zhao H. Silencing the lncRNA Maclpil in pro-inflammatory macrophages attenuates acute experimental ischemic stroke via LCP1 in mice. J Cereb Blood Flow Metab 2020; 40:747-759. [PMID: 30895879 PMCID: PMC7168792 DOI: 10.1177/0271678x19836118] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Long noncoding RNAs (lncRNA) expression profiles change in the ischemic brain after stroke, but their roles in specific cell types after stroke have not been studied. We tested the hypothesis that lncRNA modulates brain injury by altering macrophage functions. Using RNA deep sequencing, we identified 73 lncRNAs that were differentially expressed in monocyte-derived macrophages (MoDMs) and microglia-derived macrophages (MiDMs) isolated in the ischemic brain three days after stroke. Among these, the lncRNA, GM15628, is highly expressed in pro-inflammatory MoDMs but not in MiDMs, and are functionally related to its neighbor gene, lymphocyte cytosolic protein 1 (LCP1), which plays a role in maintaining cell shape and cell migration. We termed this lncRNA as Macrophage contained LCP1 related pro-inflammatory lncRNA, Maclpil. Using cultured macrophages polarized by LPS, M(LPS), we found that downregulation of Maclpil in M(LPS) decreased pro-inflammatory gene expression while promoting anti-inflammatory gene expression. Maclpil inhibition also reduced the migration and phagocytosis ability of MoDMs by inhibiting LCP1. Furthermore, adoptive transfer of Maclpil silenced M(LPS), reduced ischemic brain infarction, improved behavioral performance and attenuated penetration of MoDMs in the ischemic hemisphere. We conclude that by blocking macrophage, Maclpil protects against acute ischemic stroke by inhibiting neuroinflammation.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ying Luo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Yao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuhua Ji
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Liangshu Feng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Fang Du
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xiaoya Zheng
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Tao Tao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Xuan Zhai
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Yaning Li
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Pei Han
- Department of Cardiovascular Medicine, Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Heng Zhao
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
45
|
Marttila S, Chatsirisupachai K, Palmer D, de Magalhães JP. Ageing-associated changes in the expression of lncRNAs in human tissues reflect a transcriptional modulation in ageing pathways. Mech Ageing Dev 2020; 185:111177. [PMID: 31706952 PMCID: PMC6961210 DOI: 10.1016/j.mad.2019.111177] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/18/2022]
Abstract
Ageing-associated changes in the protein coding transcriptome have been extensively characterised, but less attention has been paid to the non-coding portion of the human genome, especially to long non-coding RNAs (lncRNAs). Only a minority of known lncRNAs have been functionally characterised; however, a handful of these lncRNAs have already been linked to ageing-associated processes. To gain more information on the effects of ageing on lncRNAs, we identified from GTEx data lncRNAs that show ageing-associated expression patterns (age-lncRNAs) in 29 human tissues in 20-79-year-old individuals. The age-lncRNAs identified were highly tissue-specific, but the protein coding genes co-expressed with the age-lncRNAs and the functional categories associated with the age-lncRNAs showed significant overlap across tissues. Functions associated with the age-lncRNAs, including immune system processes and transcription, were similar to what has previously been reported for protein coding genes with ageing-associated expression pattern. As the tissue-specific age-lncRNAs were associated with shared functions across tissues, they may reflect the tissue-specific fine-tuning of the common ageing-associated processes. The present study can be utilised as a resource when selecting and prioritising lncRNAs for further functional analyses.
Collapse
Affiliation(s)
- Saara Marttila
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Kasit Chatsirisupachai
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Daniel Palmer
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
46
|
Miguel V, Lamas S. Redox distress in organ fibrosis: The role of noncoding RNAs. OXIDATIVE STRESS 2020:779-820. [DOI: 10.1016/b978-0-12-818606-0.00037-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
47
|
Han L, Wang B, Wang R, Wang Z, Gong S, Chen G, Telemacque D, Feng Y, Xu W. Prognostic and Clinicopathological Significance of Long Non-coding RNA PANDAR Expression in Cancer Patients: A Meta-Analysis. Front Oncol 2019; 9:1337. [PMID: 31850222 PMCID: PMC6901660 DOI: 10.3389/fonc.2019.01337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/15/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Long non-coding RNA PANDAR is an emerging non-coding RNA mapping to 6p21.2. It underlies metastatic progression and chromosomal instability in a variety of cancers. Despite the fact that recent studies have revealed that lncRNA PANDAR may be a potential prognostic biomarker for patients with cancer, there has still been controversy on the prognostic value of PANDAR. Methods: Databases of PubMed, Embase, SinoMed, and Web of Science were carefully searched and the literature which investigated the prognostic value of PANDAR expression among human cancers was collected for further analysis. Odds ratios (ORs) or hazards ratios (HRs) with 95% confidence intervals (CIs) were pooled to estimate the relation between PANDAR expression and survival or clinicopathological characteristics of cancer patients. Results: There were 13 eligible studies in total, with 1,465 patients enlisted in this meta-analysis. All the eligible studies complied with the case-control study. The outcome showed that the elevated expression level of PANDAR was significantly related to poor overall survival (OS) (pooled HR 1.72, 95%CI 1.14-2.60). However, high or low expression of PANDAR did not differ in the prediction of event-free survival (EFS). Moreover, we discovered that high PANDAR expression was closely related to decreased OS in colorectal cancer (pooled HR 3.43, 95%CI 2.06-5.72) and reduced expression level of PANDAR was markedly related to poor OS (pooled HR 0.65, 95%CI 0.45-0.88) in non-small cell lung cancer. However, the expression level of PANDAR had no significant association with OS in renal cell carcinoma (pooled HR 1.19, 95%CI 0.56-2.50). Moreover, after analysis, we discovered that the high expression level of PANDAR was associated closely with the depth of invasion (pooled OR 3.95, 95%CI 2.36-6.63), lymph node metastasis (pooled OR 1.92, 95%CI 0.93-3.98), tumor stage (pooled OR 2.05, 95%CI 0.99-4.27), and distant metastasis (pooled OR 2.87, 95%CI 1.60-5.16). Conclusions: Our study revealed that increased PANDAR expression may serve as an adverse prognostic biomarker for cancer patients, thus helping the clinical decision-making process.
Collapse
Affiliation(s)
- Lizhi Han
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No.1 Hospital, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan, China
| | - Ruoyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zijian Wang
- Department of Orthopedics, Xiangyang Central Hospital Affiliated Hubei University of Arts and Science, Xiangyang, China
| | - Song Gong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dionne Telemacque
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Feng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weihua Xu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Wang Y, Shao Y, Zhu Y, Wang K, Ma B, Zhou Q, Chen A, Chen H. XRN1-associated long non-coding RNAs may contribute to fungal virulence and sexual development in entomopathogenic fungus Cordyceps militaris. PEST MANAGEMENT SCIENCE 2019; 75:3302-3311. [PMID: 31025499 DOI: 10.1002/ps.5453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Numerous long non-coding RNAs (lncRNAs) identified and characterized in mammals, plants, and fungi have been found to play critical regulatory roles in biological processes. However, little is known about the role of lncRNAs in insect pathogenic fungi. RESULTS By profiling the transcriptomes of sexual and asexual development in the insect-pathogenic fungus Cordyceps militaris, 4140 lncRNAs were identified and found to be dynamically expressed during fungal development. The lncRNAs had shorter transcript lengths and lower numbers of exons compared to protein-coding genes. The expressed target genes (neighboring and cis-regulated) of various expressed lncRNAs were predicted, and these genes showed significant enrichment in energy metabolism and signaling pathways, such as 'Glycolysis/Gluconeogenesis' and "MAPK signaling pathway". To better understand how lncRNAs function in the fungus, xrn1, the final gene of the NMD pathway, which determines the fate of lncRNAs, was disrupted. The Δxrn1 deletion mutant displayed significant (P < 0.05) attenuation of virulence and a lower growth rate in C. militaris. Quantitative RT-PCR results revealed 10 lncRNAs with significantly higher expression, while 8 of these 10 lncRNA target genes (virulence- and sexual development-related) showed significantly lower expression in Δxrn1 compared to in the wild-type, suggesting that lncRNA expression regulates fungal virulence and sexual development by affecting gene expression. CONCLUSION These findings suggest that lncRNAs in C. militaris play important roles in the fungal infection progress and fruiting body production, providing a broad repertoire and resource for further studies of lncRNAs. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yulong Wang
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, China
- Key Laboratory of Crop Quality Improvement of Anhui Province/Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ying Shao
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Yunlan Zhu
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Kun Wang
- Jiangsu KONEN Biological Engineering Co., Ltd, Nanjing, China
| | - Bin Ma
- Jiangsu KONEN Biological Engineering Co., Ltd, Nanjing, China
| | - Qiumei Zhou
- Experimental Center of Clinical Research, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Anhui Chen
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| | - Hongwei Chen
- Jiangsu Key Construction Laboratory of Food Resource Development and Quality Safe, Xuzhou University of Technology, Xuzhou, China
| |
Collapse
|
49
|
Non-Coding RNAs as New Therapeutic Targets in the Context of Renal Fibrosis. Int J Mol Sci 2019; 20:ijms20081977. [PMID: 31018516 PMCID: PMC6515288 DOI: 10.3390/ijms20081977] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 12/15/2022] Open
Abstract
Fibrosis, or tissue scarring, is defined as the excessive, persistent and destructive accumulation of extracellular matrix components in response to chronic tissue injury. Renal fibrosis represents the final stage of most chronic kidney diseases and contributes to the progressive and irreversible decline in kidney function. Limited therapeutic options are available and the molecular mechanisms governing the renal fibrosis process are complex and remain poorly understood. Recently, the role of non-coding RNAs, and in particular microRNAs (miRNAs), has been described in kidney fibrosis. Seminal studies have highlighted their potential importance as new therapeutic targets and innovative diagnostic and/or prognostic biomarkers. This review will summarize recent scientific advances and will discuss potential clinical applications as well as future research directions.
Collapse
|
50
|
Long Non-Coding RNA Myoparr Regulates GDF5 Expression in Denervated Mouse Skeletal Muscle. Noncoding RNA 2019; 5:ncrna5020033. [PMID: 30965639 PMCID: PMC6631233 DOI: 10.3390/ncrna5020033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle is a highly plastic tissue and decreased skeletal muscle mass (muscle atrophy) results in deteriorated motor function and perturbed body homeostasis. Myogenin promoter-associated long non-coding RNA (lncRNA) Myoparr promotes skeletal muscle atrophy caused by surgical denervation; however, the precise molecular mechanism remains unclear. Here, we examined the downstream genes of Myoparr during muscle atrophy following denervation of tibialis anterior (TA) muscles in C57BL/6J mice. Myoparr knockdown affected the expression of 848 genes. Sixty-five of the genes differentially regulated by Myoparr knockdown coded secretory proteins. Among these 65 genes identified in Myoparr-depleted skeletal muscles after denervation, we focused on the increased expression of growth/differentiation factor 5 (GDF5), an inhibitor of muscle atrophy. Myoparr knockdown led to activated bone morphogenetic protein (BMP) signaling in denervated muscles, as indicated by the increased levels of phosphorylated Smad1/5/8. Our detailed evaluation of downstream genes of Myoparr also revealed that Myoparr regulated differential gene expression between myogenic differentiation and muscle atrophy. This is the first report demonstrating the in vivo role of Myoparr in regulating BMP signaling in denervated muscles. Therefore, lncRNAs that have inhibitory activity on BMP signaling may be putative therapeutic targets for skeletal muscle atrophy.
Collapse
|