1
|
Zailaa J, Trueba S, Browne M, Fletcher LR, Buckley TN, Brodersen CR, Scoffoni C, Sack L. Sensitive Hydraulic and Stomatal Decline in Extreme Drought Tolerant Species of California Ceanothus. PLANT, CELL & ENVIRONMENT 2025; 48:1555-1573. [PMID: 39462892 DOI: 10.1111/pce.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024]
Abstract
Identifying the physiological mechanisms by which plants are adapted to drought is critical to predict species responses to climate change. We measured the responses of leaf hydraulic and stomatal conductances (Kleaf and gs, respectively) to dehydration, and their association with anatomy, in seven species of California Ceanothus grown in a common garden, including some of the most drought-tolerant species in the semi-arid flora. We tested for matching of maximum hydraulic supply and demand and quantified the role of decline of Kleaf in driving stomatal closure. Across Ceanothus species, maximum Kleaf and gs were negatively correlated, and both Kleaf and gs showed steep declines with decreasing leaf water potential (i.e., a high sensitivity to dehydration). The leaf water potential at 50% decline in gs was linked with a low ratio of maximum hydraulic supply to demand (i.e., maximum Kleaf:gs). This sensitivity of gs, combined with low minimum epidermal conductance and water storage, could contribute to prolonged leaf survival under drought. The specialized anatomy of subg. Cerastes includes trichomous stomatal crypts and pronounced hypodermis, and was associated with higher water use efficiency and water storage. Combining our data with comparative literature of other California species, species of subg. Cerastes show traits associated with greater drought tolerance and reliance on leaf water storage relative to other California species. In addition to drought resistance mechanisms such as mechanical protection and resistance to embolism, drought avoidance mechanisms such as sensitive stomatal closure could contribute importantly to drought tolerance in dry-climate adapted species.
Collapse
Affiliation(s)
- Joseph Zailaa
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Santiago Trueba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Marvin Browne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Leila R Fletcher
- School of the Environment, Yale University, New Haven, Connecticut, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, Davis, California
| | - Craig R Brodersen
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Christine Scoffoni
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, California, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
2
|
Keeley JE, Thomas Parker V, Zedler PH, Brandon Pratt R. Ceanothus: Taxonomic patterns in life history responses to fire. AMERICAN JOURNAL OF BOTANY 2024; 111:e16434. [PMID: 39500741 DOI: 10.1002/ajb2.16434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 11/24/2024]
Abstract
PREMISE Ceanothus (Rhamnaceae) is a large genus of shrubs that dominate California chaparral and are resilient to fires. Persistence is ensured by resprouting and/or seedling recruitment from dormant seed banks. Some species do both and others, the obligate seeders, are entirely dependent on seedling recruitment. The distribution of these two modes within the genus is poorly documented. METHODS We used all available publications that document species responses to fire and filled most gaps in the literature based on extensive field studies of more than 60 recent wildfires in California. RESULTS The genus is divided into two subgenera, Ceanothus and Cerastes. Ceanothus is widely considered to comprise mostly resprouting species and Cerastes to consist of only obligate seeders. The subgenus Ceanothus includes resprouting species throughout their range from the eastern United States and Midwest to western United States. Within the California Floristic Province (CFP), a few species are unique in producing massive lignotubers that develop from repeated fires; however, within the CFP, the majority of species in this subgenus do not resprout and are obligate seeders. Two have disjunct subspecies that are facultative seeders or obligate seeders. CONCLUSIONS Previously, speciation in this genus was contended to have occurred in the late Miocene within the CFP. The syndrome of obligate seeding is most strongly represented in this region, and we hypothesize that evolution of this syndrome was a response to increased predictability of fire driven by the Mediterranean climate and the long interval between fires.
Collapse
Affiliation(s)
- Jon E Keeley
- U.S. Geological Survey, Western Ecological Research Center, Sequoia-Kings Canyon Field Station, Three Rivers, 93271, CA, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 90095, CA, USA
- California Botanic Garden, Clairmont, 91711, CA, USA
| | - V Thomas Parker
- Department of Biology, San Francisco State University, San Francisco, 94132, CA, USA
| | - Paul H Zedler
- Nelson Institute for Environmental Studies, University of Wisconsin, Madison, 53706, WI, USA
| | - R Brandon Pratt
- Department of Biology, California State University, Bakersfield, 93311, CA, USA
| |
Collapse
|
3
|
Pratt RB. Vegetation-type conversion of evergreen chaparral shrublands to savannahs dominated by exotic annual herbs: causes and consequences for ecosystem function. AMERICAN JOURNAL OF BOTANY 2022; 109:9-28. [PMID: 34636412 DOI: 10.1002/ajb2.1777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Woody, evergreen shrublands are the archetypal community in mediterranean-type ecosystems, and these communities are profoundly changed when they undergo vegetation-type conversion (VTC) to become annual, herb-dominated communities. Recently, VTC has occurred throughout southern California chaparral shrublands, likely with changes in important ecosystem functions. The mechanisms that lead to VTC and subsequent changes to ecosystem processes are important to understand as they have regional and global implications for ecosystem services, climate change, land management, and policy. The main drivers of VTC are altered fire regimes, aridity, and anthropogenic disturbance. Some changes to ecosystem function are certain to occur with VTC, but their magnitudes are unclear, whereas other changes are unpredictable. I present two hypotheses: (1) VTC leads to warming that creates a positive feedback promoting additional VTC, and (2) altered nitrogen dynamics create negative feedbacks and promote an alternative stable state in which communities are dominated by herbs. The patterns described for California are mostly relevant to the other mediterranean-type shrublands of the globe, which are biodiversity hotspots and threatened by VTC. This review examines the extent and causes of VTC, ecosystem effects, and future research priorities.
Collapse
Affiliation(s)
- R Brandon Pratt
- Department of Biology, California State University, Bakersfield, CA, USA
| |
Collapse
|
4
|
Stiemsma LT, Davis SD, Brewster JL. Analysis of Microbial Water Contamination, Soil Microbial Community Structure, and Soil Respiration in a Collaborative First-Year Students as Scholars Program (SAS). Front Microbiol 2021; 11:590035. [PMID: 33391206 PMCID: PMC7773706 DOI: 10.3389/fmicb.2020.590035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
The persistence of college students in STEM majors after their first-year of college is approximately 50%, with underrepresented populations displaying even higher rates of departure. For many undergraduates, their first-year in college is defined by large class sizes, poor access to research faculty, and minimal standing in communities of scholars. Pepperdine University and Whittier College, funded by a National Science Foundation award to Improve Undergraduate Stem Education (NSF IUSE), partnered in the development of first-year classes specifically geared to improve student persistence in STEM and academic success. This Students as Scholars Program (SAS) engaged first-year undergraduates in scholarly efforts during their first semester in college with a careful approach to original research design and mentoring by both faculty and upperclassmen experienced in research. Courses began by introducing hypothesis formulation and experimental design partnered with the scientific focus of each course (ecological, biochemical, microbiological). Students split into research teams, explored the primary literature, designed research projects, and executed experiments over a 6–7 week period, collecting, analyzing, and interpreting data. Microbiology-specific projects included partnerships with local park managers to assess water quality and microbial coliform contamination at specified locations in a coastal watershed. In addition, students explored the impact of soil salinity on microbial community structure. Analysis of these samples included next-generation sequencing and microbiome compositional analysis via collaboration with students from an upper division microbiology course. This cross-course collaboration facilitated additional student mentoring opportunities between upperclassmen and first-year students. This approach provided first-year students an introduction to the analysis of complex data sets using bioinformatics and statistically reliable gas-exchange replicates. Assessment of the impact of this program revealed students to view the research as challenging, but confidence building as they take their first steps as biology majors. In addition, the direct mentorship of first-year students by upperclassmen and faculty was viewed positively by students. Ongoing assessments have revealed SAS participants to display a 15% increased persistence rate in STEM fields when compared to non-SAS biology majors.
Collapse
Affiliation(s)
- Leah T Stiemsma
- Natural Science Division, Pepperdine University, Malibu, CA, United States
| | - Stephen D Davis
- Natural Science Division, Pepperdine University, Malibu, CA, United States
| | - Jay L Brewster
- Natural Science Division, Pepperdine University, Malibu, CA, United States
| |
Collapse
|
5
|
Abstract
Devastation of both natural and human habitats due to wildfires is becoming an increasingly prevalent global issue. Fire-adapted and fire-prone regions, such as California and parts of Australia, are experiencing more frequent and increasingly destructive wildfires, accompanied by longer wildfire seasons. Further, wildfires are becoming more commonplace in areas that historically do not regularly experience fire, causing an increased risk of habitat loss in less resilient ecosystems. The escalation of fire outbreaks is a result of several factors; however, at the forefront of these outbreaks is an increase in highly flammable dry vegetation due to sustained drought, a trend we will see growing in our changing climate. To mitigate the potentially detrimental outcomes of wildfires, it is imperative that we understand the response of ecosystems to fire not only from an ecological perspective, but also from a physiological perspective. Research focused on the physiological adaptations of organisms to environmental constraints caused by fire can give insight into how plants and animals respond to fire, on both short- and long-term scales. Importantly, this information needs to be adapted effectively into fire management plans to improve the recovery success of organisms after fire.
Collapse
Affiliation(s)
- Clare Stawski
- Department of Biology, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Anna C Doty
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
6
|
Ramirez AR, De Guzman ME, Dawson TE, Ackerly DD. Plant hydraulic traits reveal islands as refugia from worsening drought. CONSERVATION PHYSIOLOGY 2020; 8:coz115. [PMID: 32015878 PMCID: PMC6988607 DOI: 10.1093/conphys/coz115] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/05/2019] [Accepted: 12/31/2019] [Indexed: 05/14/2023]
Abstract
Relatively mesic environments within arid regions may be important conservation targets as 'climate change refugia' for species persistence in the face of worsening drought conditions. Semi-arid southern California and the relatively mesic environments of California's Channel Islands provide a model system for examining drought responses of plants in potential climate change refugia. Most methods for detecting refugia are focused on 'exposure' of organisms to certain abiotic conditions, which fail to assess how local adaptation or acclimation of plant traits (i.e. 'sensitivity') contribute to or offset the benefits of reduced exposure. Here, we use a comparative plant hydraulics approach to characterize the vulnerability of plants to drought, providing a framework for identifying the locations and trait patterns that underlie functioning climate change refugia. Seasonal water relations, xylem hydraulic traits and remotely sensed vegetation indices of matched island and mainland field sites were used to compare the response of native plants from contrasting island and mainland sites to hotter droughts in the early 21st century. Island plants experienced more favorable water relations and resilience to recent drought. However, island plants displayed low plasticity/adaptation of hydraulic traits to local conditions, which indicates that relatively conserved traits of island plants underlie greater hydraulic safety and localized buffering from regional drought conditions. Our results provide an explanation for how California's Channel Islands function as a regional climate refugia during past and current climate change and demonstrate a physiology-based approach for detecting potential climate change refugia in other systems.
Collapse
Affiliation(s)
- Aaron R Ramirez
- Department of Integrative Biology, University of California, 3040 Valley Life Sciences Building #3140 Berkeley CA 94720-3200, USA
- Department of Biology & Environmental Studies, Reed College, Portland, 33203 Southeast Woodstock Blvd., Portland, Oregon 97202-8199, USA
- Corresponding author: Department of Biology & Environmental Studies, Reed College, Portland, 33203 Southeast Woodstock Blvd., Portland, Oregon 97202-8199, USA. Tel: +(503) 517-4101.
| | - Mark E De Guzman
- Department of Biology & Environmental Studies, Reed College, Portland, 33203 Southeast Woodstock Blvd., Portland, Oregon 97202-8199, USA
- Department of Botany & Plant Sciences, University of California, Riverside, 900 University Ave., Riverside CA 92521, USA
| | - Todd E Dawson
- Department of Integrative Biology, University of California, 3040 Valley Life Sciences Building #3140 Berkeley CA 94720-3200, USA
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall #3114, Berkeley, CA 94720-3114, USA
| | - David D Ackerly
- Department of Integrative Biology, University of California, 3040 Valley Life Sciences Building #3140 Berkeley CA 94720-3200, USA
- Department of Environmental Science, Policy, and Management, University of California, 130 Mulford Hall #3114, Berkeley, CA 94720-3114, USA
| |
Collapse
|