1
|
Gu G, Murphy CM, Zheng J, Nou X, Rideout SL, Strawn LK. Effects of Fumigation on the Reduction of Salmonella enterica in Soil. Foodborne Pathog Dis 2023; 20:563-569. [PMID: 37738333 PMCID: PMC11079441 DOI: 10.1089/fpd.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Due to the phaseout of methyl bromide (MeBr), there is a need for broad-spectrum soil fumigation alternatives for pest management. Little is known about the impact of fumigation alternatives on foodborne pathogens, such as Salmonella, in agricultural soils. This study investigated the effect of MeBr alternative fumigants on Salmonella reduction in soil. Sandy loam soil was collected from a conventional farmed vegetable field and inoculated with either Salmonella Newport J1892 or Typhimurium ATCC 14028 (5.9 ± 0.3 log10 colony-forming unit [CFU]/g). Each of the four fumigants labeled for pest management (1,3-dichloropropene, chloropicrin, dimethyl disulfide, and metam sodium) was applied at labeled maximum application field levels to soil in pots and stored for a 2-week period. Sterile water was used as a control. Following the 2-week period, Salmonella concentrations in soil samples were enumerated at 1, 7, 14, and 21 days postfumigation. The mean concentration of Salmonella Newport was significantly higher than that of Salmonella Typhimurium 1 day after fumigation (p = 0.015). Fumigation using 1,3-dichloropropene or dimethyl disulfide significantly reduced Salmonella Newport and Salmonella Typhimurium concentrations, compared with the sterile water control. The rate of Salmonella reduction in soil treated with dimethyl disulfide was higher (0.17 ± 0.02 log10 CFU/g/day), compared with soil treated with the other fumigants (0.10-0.12 log10 CFU/g/day). Due to the reduction of Salmonella, alternative fumigation treatments may mitigate potential Salmonella contamination in soil within farm environments.
Collapse
Affiliation(s)
- Ganyu Gu
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | - Claire M. Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland, USA
| | - Steven L. Rideout
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Laura K. Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
2
|
Micallef SA, Callahan MT, McEgan R, Martinez L. Soil Microclimate and Persistence of Foodborne Pathogens Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica Newport in Soil Affected by Mulch Type. J Food Prot 2023; 86:100159. [PMID: 37703940 DOI: 10.1016/j.jfp.2023.100159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Mulching is a common agricultural practice that benefits crop production through soil moisture retention, weed suppression, and soil temperature regulation. However, little is known about the effect of mulch on foodborne pathogens present in soil. In this study, the influence of polyethylene plastic, biodegradable corn-based plastic, paper, and straw mulches on Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica Newport populations in soil was investigated. Silt loam soil in troughs was inoculated with a cocktail of the pathogens and covered with mulch or left bare, then incubated for 21 days, during which bacteria were enumerated and environmental parameters monitored. Bacterial counts declined in all treatments over time (p < 0.001) but persisted at 21 days at 0.8-0.95 log CFU/g. Pathogens also declined as a factor of mulch cover (p < 0.01). An exponential decay with asymptote model fit to the data revealed slower rates of decline in soil under mulches for all pathogens (p < 0.05) relative to bare soil. Compared to the average for all treatments, rates of decay in bare soil were 0.60 (p < 0.001), 0.45 (p < 0.05), and 0.63 (p < 0.001) log CFU/g/d for E. coli O157:H7, L. monocytogenes, and Salmonella, respectively. Linear multiple regression revealed that soil hydrological parameters were positively correlated (p < 0.05) with bacterial counts, while day soil temperatures were negatively correlated (p < 0.001), suggesting that higher day temperatures and lower moisture content of bare soil contributed to the faster decline of pathogens compared to mulched soil. A microcosm experiment using field soil from lettuce cultivation suggested no influence of prior mulch treatment on pathogens. In summary, pathogen decline in soil was modified by the soil microclimate created under mulch covers, but the effect appeared was restricted to the time of soil cover. Slower decline rates of pathogens in mulched soil may pose a risk for contamination of fresh market produce crops.
Collapse
Affiliation(s)
- Shirley A Micallef
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA; Center for Produce Safety and Security Systems, University of Maryland, College Park, MD, USA.
| | - Mary Theresa Callahan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Rachel McEgan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Louisa Martinez
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| |
Collapse
|
3
|
Detert K, Schmidt H. Sporadic Detection of Escherichia coli O104:H4 Strain C227/11Φcu in the Edible Parts of Lamb's Lettuce Cultured in Contaminated Agricultural Soil Samples. Microorganisms 2023; 11:2072. [PMID: 37630632 PMCID: PMC10457958 DOI: 10.3390/microorganisms11082072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In the current study, we demonstrate that E. coli O104:H4 strain C227/11Φcu, a derivative of the 2011 enterohemorrhagic/enteroaggregative (EHEC/EAEC) E. coli outbreak strain, migrated into the edible portion of lamb's lettuce plants upon contamination of the surrounding soil. Seeds were surface-sterilized and cultivated on Murashige-Skoog agar or in autoclaved agricultural soil. Migration into the edible portions was investigated by inoculating the agar or soil close to the plants with 108 colony-forming units (CFU). The edible parts, which did not come into contact with the contaminated medium or soil, were quantitatively analyzed for the presence of bacteria after 2, 4 and 8 weeks. Strain C227/11Φcu could colonize lamb's lettuce when contamination of medium or soil occurs. The highest recovery rate (27%) was found for lettuce cultivated in agar, and up to 1.6 × 103 CFU/g lettuce was detected. The recovery rate was lower for the soil samples (9% and 13.5%). Although the used contamination levels were high, migration of C227/11Φcu from the soil into the edible parts was demonstrated. This study further highlights the risk of crop plant contamination with pathogenic E. coli upon soil contamination.
Collapse
Affiliation(s)
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599 Stuttgart, Germany;
| |
Collapse
|
4
|
Miyamoto T. Studies on ensuring the microbiological safety of food. J JPN SOC FOOD SCI 2022. [DOI: 10.3136/nskkk.69.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Takahisa Miyamoto
- Laboratory of Food Hygienic Chemistry, Division of Food Science & Biotechnology, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University
| |
Collapse
|
5
|
Doren J, Hadad R, McKEAG L, Tucker C, Newbold E. Food Safety Risks of Harvesting Dropped and Drooping Produce: A Review. J Food Prot 2022; 85:571-582. [PMID: 34914837 DOI: 10.4315/jfp-21-369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/10/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT The Produce Safety Rule of the Food Safety Modernization Act (FSMA) sets forth minimum standards for fruit and vegetable production in the United States. One provision states that growers must not harvest dropped produce because damage or ground contact may contaminate produce. In an unpublished survey of 2020 food safety inspections conducted by the Northeast Center to Advance Food Safety, handling of dropped produce covered by the FSMA was a common misunderstood and noncompliance issue among growers in the Northeast. In consideration of this provision's on-farm practicality, this review was conducted to evaluate the risks associated with dropped and drooping produce, to guide growers in making informed risk management decisions, and to answer the following questions: (i) what are the risk factors that influence transferability of pathogens from touching the ground to produce and (ii) what are the risks associated with harvesting dropped or drooping produce covered under the Produce Safety Rule? A search of online databases revealed 12 relevant publications, which highlighted moisture, contact time, and crop features as affecting contamination rates from a ground surface to a crop surface. Soil and mulch posed a differential risk, with bare soil generally presenting a lower risk than plastic mulch. The effects of other mulch types are unclear. Mulches may promote pathogen persistence in soil, although they may also protect produce from contaminated soils. These studies were limited in their scope and applicability and most did not directly address dropped produce. Research is needed to clarify the various effects of dropped and drooping produce, the impact of ground surface type on pathogen survivability and transfer, soil and crop features that facilitate contamination, and postharvest risks of harvesting dropped or drooping produce. A comprehensive understanding of these issues will guide growers in implementing preventive measures and better managing risk in a way practicable to each farm's unique conditions. HIGHLIGHTS
Collapse
Affiliation(s)
- Johanna Doren
- Northeast Center to Advance Food Safety, University of Vermont Extension, Bennington, Vermont 05201
| | - Robert Hadad
- Cornell Vegetable Program, Cornell Cooperative Extension, Rochester, New York 14617
| | - Lisa McKEAG
- Center for Agriculture, Food, and the Environment, University of Massachusetts Extension, Amherst, Massachusetts 01003, USA
| | - Caitlin Tucker
- Cornell Vegetable Program, Cornell Cooperative Extension, Rochester, New York 14617
| | - Elizabeth Newbold
- Northeast Center to Advance Food Safety, University of Vermont Extension, Bennington, Vermont 05201
| |
Collapse
|
6
|
Lenzi A, Marvasi M, Baldi A. Agronomic practices to limit pre- and post-harvest contamination and proliferation of human pathogenic Enterobacteriaceae in vegetable produce. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107486] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Jechalke S, Schierstaedt J, Becker M, Flemer B, Grosch R, Smalla K, Schikora A. Salmonella Establishment in Agricultural Soil and Colonization of Crop Plants Depend on Soil Type and Plant Species. Front Microbiol 2019; 10:967. [PMID: 31156568 PMCID: PMC6529577 DOI: 10.3389/fmicb.2019.00967] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Human pathogenic bacteria, such as Salmonella enterica, are able to colonize crop plants. So far, not much is known about biotic and abiotic factors influencing this colonization in field soil. This understanding, however, is imperative for the provision of safe fresh produce to the consumer. In this study, we investigated the effects of soil type, organic fertilization, plant species and the way of Salmonella entry into the plant production system, on the survival of S. enterica in soil as well as the colonization of plants. The selected S. enterica serovar Typhimurium strain 14028s, S. Typhimurium strain LT2 and S. Senftenberg were able to persist in soil for several weeks. Salmonella's persistence in soil was prolonged in loamy, if compared to sandy soil, and when applied together with organic fertilizer. The leaves of lettuce and corn salad were colonized by S. enterica providing evidence for internalization from the soil via the root. Colonization rates were affected by soil type, plant species and S. enterica strain. Overall, S. enterica was detected in leaves of 0.5-0.9% of the plants, while lettuce was more frequently colonized than corn salad. Plants grown in sandy soil were more often colonized than plants grown in loamy soil. After spray inoculation, S. enterica could be detected on and in leaves for several weeks by cultivation-depending methods, confirmed by confocal microscopy using GFP-labeled S. Typhimurium 14028s. On the one hand, transcriptome data from S. Typhimurium 14028s assessed in response to lettuce medium or lettuce root exudates showed an upregulation of genes associated with biofilm formation and virulence. On the other hand, lettuce inoculated with S. Typhimurium 14028s showed a strong upregulation of genes associated with plant immune response and genes related to stress response. In summary, these results showed that organic fertilizers can increase the persistence of Salmonella in soil and that soil type and plant species play a crucial role in the interactions between human pathogens and crop plants. This understanding is therefore a starting point for new strategies to provide safe food for the consumer.
Collapse
Affiliation(s)
- Sven Jechalke
- Institute for Phytopathology, Justus Liebig University Giessen, Gießen, Germany
| | - Jasper Schierstaedt
- Leibniz Institute of Vegetable and Ornamental Crops, Plant-Microbe Systems, Großbeeren, Germany
| | - Marlies Becker
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Burkhardt Flemer
- Leibniz Institute of Vegetable and Ornamental Crops, Plant-Microbe Systems, Großbeeren, Germany
| | - Rita Grosch
- Leibniz Institute of Vegetable and Ornamental Crops, Plant-Microbe Systems, Großbeeren, Germany
| | - Kornelia Smalla
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Adam Schikora
- Federal Research Centre for Cultivated Plants, Julius Kühn-Institut (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
8
|
Honjoh KI, Lin Y, Jo K, Iwaizako Y, Maeda M, Kijima N, Miyamoto T. Possible Contamination Routes of Listeria monocytogenes in Leaf Lettuce during Cultivation. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ken-ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Yin Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Kiyomi Jo
- Department of Bioresource and Bioenvironment, School of Agriculture, Kyushu University
| | - Yuri Iwaizako
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | | | - Nobuyuki Kijima
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| |
Collapse
|
9
|
Honjoh KI, Iwaizako Y, Lin Y, Kijima N, Miyamoto T. Possibilities for Contamination of Tomato Fruit by Listeria monocytogenes during Cultivation. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.349] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ken-ichi Honjoh
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| | - Yuri Iwaizako
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Yin Lin
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University
| | - Nobuyuki Kijima
- Institute of Vegetable and Tea Science, National Agriculture and Food Research Organization
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University
| |
Collapse
|