1
|
Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. ATMOSPHERE 2022. [DOI: 10.3390/atmos13020155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Road transport significantly contributes to air pollution in cities. Emission regulations have led to significantly reduced emissions in modern vehicles. Particle emissions are controlled by a particulate matter (PM) mass and a solid particle number (SPN) limit. There are concerns that the SPN limit does not effectively control all relevant particulate species and there are instances of semi-volatile particle emissions that are order of magnitudes higher than the SPN emission levels. This overview discusses whether a new metric (total particles, i.e., solids and volatiles) should be introduced for the effective regulation of vehicle emissions. Initially, it summarizes recent findings on the contribution of road transport to particle number concentration levels in cities. Then, both solid and total particle emission levels from modern vehicles are presented and the adverse health effects of solid and volatile particles are briefly discussed. Finally, the open issues regarding an appropriate methodology (sampling and instrumentation) in order to achieve representative and reproducible results are summarized. The main finding of this overview is that, even though total particle sampling and quantification is feasible, details for its realization in a regulatory context are lacking. It is important to define the methodology details (sampling and dilution, measurement instrumentation, relevant sizes, etc.) and conduct inter-laboratory exercises to determine the reproducibility of a proposed method. It is also necessary to monitor the vehicle emissions according to the new method to understand current and possible future levels. With better understanding of the instances of formation of nucleation mode particles it will be possible to identify its culprits (e.g., fuel, lubricant, combustion, or aftertreatment operation). Then the appropriate solutions can be enforced and the right decisions can be taken on the need for new regulatory initiatives, for example the addition of total particles in the tailpipe, decrease of specific organic precursors, better control of inorganic precursors (e.g., NH3, SOx), or revision of fuel and lubricant specifications.
Collapse
|
2
|
Shen X, Hao J, Kong L, Shi Y, Cao X, Shi J, Yao Z, Li X, Wu B, Xu Y, He K. Variation characteristics of fine particulate matter and its components in diesel vehicle emission plumes. J Environ Sci (China) 2021; 107:138-149. [PMID: 34412776 DOI: 10.1016/j.jes.2021.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/31/2021] [Accepted: 01/31/2021] [Indexed: 06/13/2023]
Abstract
A rapid reaction occurs near the exhaust nozzle when vehicle emissions contact the air. Twenty diesel vehicles were studied using a new multipoint sampling system that is suitable for studying the exhaust plume near the exhaust nozzle. The variation characteristics of fine particle matter (PM2.5) and its components in diesel vehicle exhaust plumes were analyzed. The PM2.5 emissions gradually increased with increasing distance from the nozzle in the plume. Elemental carbon emissions remained basically unchanged, organic carbon and total carbon (TC) increased with increasing distance. The concentrations of SO42-, NO3- and NH4+ (SNA) directly emitted by the vehicles were very low but increased rapidly in the exhaust plume. The selective catalytic reduction (SCR) reduced 42.7% TC, 40% NO3- emissions, but increased 104% SO42- and 36% NH4+ emissions, respectively. In summary, the SCR reduced 29% primary PM2.5 emissions for the tested diesel vehicles. The NH4NO3 particle formation maybe more important in the plume, and there maybe other forms of formation of NH4+ (eg. NH4Cl). The generation of secondary organic carbon (SOC) plays a leading role in the generation of secondary PM2.5. The SCR enhanced the formation of SOC and SNA in the plume, but comprehensive analysis shows that the SCR more enhanced the SNA formation in the plume, which is mainly new particles formation process. The inconsistency between secondary organic aerosol (SOA) and primary organic aerosol definitions is one of the important reasons for the difference between SOA simulation and observation.
Collapse
Affiliation(s)
- Xianbao Shen
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jiateng Hao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Lei Kong
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Yue Shi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Xinyue Cao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Jiacheng Shi
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xin Li
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Bobo Wu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yiming Xu
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
3
|
Rönkkö T, Timonen H. Overview of Sources and Characteristics of Nanoparticles in Urban Traffic-Influenced Areas. J Alzheimers Dis 2020; 72:15-28. [PMID: 31561356 PMCID: PMC6839465 DOI: 10.3233/jad-190170] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Atmospheric nanoparticles can be formed either via nucleation in atmosphere or be directly emitted to the atmosphere. In urban areas, several combustion sources (engines, biomass burning, power generation plants) are directly emitting nanoparticles to the atmosphere and, in addition, the gaseous emissions from the same sources can participate to atmospheric nanoparticle formation. This article focuses on the sources and formation of nanoparticles in traffic-influenced environments and reviews current knowledge on composition and characteristics of these nanoparticles. In general, elevated number concentrations of nanoparticles are very typically observed in traffic-influenced environments. Traffic related nanoparticles can originate from combustion process or from non-exhaust related sources such as brake wear. Particles originating from combustion process can be divided to three different sources; 1) primary nanoparticles formed in high temperature, 2) delayed primary particles formed as gaseous compounds nucleate during the cooling and dilution process and 3) secondary nanoparticles formed from gaseous precursors via the atmospheric photochemistry. The nanoparticles observed in roadside environment are a complex mixture of particles from several sources affected by atmospheric processing, local co-pollutants and meteorology.
Collapse
Affiliation(s)
- Topi Rönkkö
- Aerosol Physics Laboratory, Physics Unit, Tampere University, Tampere, Finland
| | - Hilkka Timonen
- Atmospheric Composition Research, Finnish Meteorological Institute, Helsinki, Finland
| |
Collapse
|
4
|
Wang JM, Jeong CH, Zimmerman N, Healy RM, Hilker N, Evans GJ. Real-World Emission of Particles from Vehicles: Volatility and the Effects of Ambient Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4081-4090. [PMID: 28234490 DOI: 10.1021/acs.est.6b05328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A majority of the ultrafine particles observed in real-world conditions are systematically excluded from many measurements that help to guide regulation of vehicle emissions. To investigate the impact of this exclusion, coincident near-road particle number (PN) emission factors were quantified up- and downstream of a thermodenuder during two seasonal month-long campaigns with wide-ranging ambient temperatures (-19 to +30 °C) to determine the volatile fraction of particles. During colder temperatures (<0 °C), the volatile fraction of particles was 94%, but decreased to 85% during warmer periods (>20 °C). Additionally, mean PN emission factors were a factor of 3.8 higher during cold compared to warm periods. On the basis of 130 000 vehicle plumes including three additional campaigns, fleet mean emission factors were calculated for PN (8.5 × 1014 kg-fuel-1), black carbon (37 mg kg-fuel-1), organic aerosol (51 mg kg-fuel-1), and particle-bound polycyclic aromatic hydrocarbons (0.7 mg kg-fuel-1). These findings demonstrate that significant differences exist between particles in thermally treated vehicle exhaust as compared to in real-world vehicle plumes to which populations in near-road environments are actually exposed. Furthermore, the magnitude of these differences are dependent upon season and may be more extreme in colder climates.
Collapse
Affiliation(s)
- Jonathan M Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5 Canada
| | - Cheol-Heon Jeong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5 Canada
| | - Naomi Zimmerman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5 Canada
| | - Robert M Healy
- Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment and Climate Change , Etobicoke, Ontario M3P3V6 Canada
| | - Nathan Hilker
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5 Canada
| | - Greg J Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5 Canada
| |
Collapse
|
5
|
|
6
|
Ajtai T, Pintér M, Utry N, Kiss-Albert G, Gulyás G, Pusztai P, Puskás R, Bereczky Á, Szabados G, Szabó G, Kónya Z, Bozóki Z. Characterisation of diesel particulate emission from engines using commercial diesel and biofuels. ATMOSPHERIC ENVIRONMENT 2016. [DOI: 10.1016/j.atmosenv.2016.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Zimmerman N, Wang JM, Jeong CH, Ramos M, Hilker N, Healy RM, Sabaliauskas K, Wallace JS, Evans GJ. Field Measurements of Gasoline Direct Injection Emission Factors: Spatial and Seasonal Variability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2035-2043. [PMID: 26794244 DOI: 10.1021/acs.est.5b04444] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Four field campaigns were conducted between February 2014 and January 2015 to measure emissions from light-duty gasoline direct injection (GDI) vehicles (2013 Ford Focus) in an urban near-road environment in Toronto, Canada. Measurements of CO2, CO, NOx, black carbon (BC), benzene, toluene, ethylbenzene-xylenes (BTEX), and size-resolved particle number (PN) were recorded 15 m from the roadway and converted to fuel-based emission factors (EFs). Other than for NOx and CO, the GDI engine had elevated emissions compared to the Toronto fleet, with BC EFs in the 73rd percentile, BTEX EFs in the 80-90th percentile, and PN EFs in the 75th percentile during wintertime measurements. Additionally, for three campaigns, a second platform for measuring PN and CO2 was placed 1.5-3 m from the roadway to quantify changes in PN with distance from point of emission. GDI vehicle PN EFs were found to increase by up to 240% with increasing distance from the roadway, predominantly due to an increasing fraction of sub-40 nm particles. PN and BC EFs from the same engine technology were also measured in the laboratory. BC EFs agreed within 20% between the laboratory and real-world measurements; however, laboratory PN EFs were an order of magnitude lower due to exhaust conditioning.
Collapse
Affiliation(s)
- Naomi Zimmerman
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5, Canada
| | - Jonathan M Wang
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5, Canada
| | - Cheol-Heon Jeong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5, Canada
| | - Manuel Ramos
- Department of Mechanical and Industrial Engineering, University of Toronto , Toronto, Ontario M5S3G8, Canada
| | - Nathan Hilker
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5, Canada
| | - Robert M Healy
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5, Canada
| | - Kelly Sabaliauskas
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5, Canada
| | - James S Wallace
- Department of Mechanical and Industrial Engineering, University of Toronto , Toronto, Ontario M5S3G8, Canada
| | - Greg J Evans
- Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto, Ontario M5S3E5, Canada
| |
Collapse
|
8
|
Guan B, Zhan R, Lin H, Huang Z. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2015; 154:225-258. [PMID: 25743879 DOI: 10.1016/j.jenvman.2015.02.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/05/2015] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The increasingly stringent emission regulations, such as US 2010, Tier 2 Bin 5 and beyond, off-road Tier 4 final, and Euro V/5 for particulate matter (PM) reduction applications, will mandate the use of the diesel particulate filters (DPFs) technology, which is proven to be the only way that can effectively control the particulate emissions. This paper covers a comprehensive overview of the state-of-the-art DPF technologies, including the advanced filter substrate materials, the novel catalyst formulations, the highly sophisticated regeneration control strategies, the DPF uncontrolled regenerations and their control methodologies, the DPF soot loading prediction, and the soot sensor for the PM on-board diagnostics (OBD) legislations. Furthermore, the progress of the highly optimized hybrid approaches, which involves the integration of diesel oxidation catalyst (DOC) + (DPF, NOx reduction catalyst), the selective catalytic reduction (SCR) catalyst coated on DPF, as well as DPF in the high-pressure exhaust gas recirculation (EGR) loop systems, is well discussed. Besides, the impacts of the quality of fuel and lubricant on the DPF performance and the maintenance and retrofit of DPF are fully elaborated. Meanwhile, the high efficiency gasoline particulate filter (GPF) technology is being required to effectively reduce the PM and particulate number (PN) emissions from the gasoline direct injection (GDI) engines to comply with the future increasingly stricter emissions regulations.
Collapse
Affiliation(s)
- Bin Guan
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China; Engine, Emissions, and Vehicle Research Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238, USA.
| | - Reggie Zhan
- Engine, Emissions, and Vehicle Research Division, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78238, USA.
| | - He Lin
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhen Huang
- Key Laboratory for Power Machinery and Engineering of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|