1
|
Wang K, Lin F, Liao Z, Wang Y, Zhang T, Wang R. Development of a Dual-Plane MRI-Based Deep Learning Model to Assess the 1-Year Postoperative Outcomes in Lumbar Disc Herniation After Tubular Microdiscectomy. J Magn Reson Imaging 2025; 61:2294-2307. [PMID: 39501646 DOI: 10.1002/jmri.29639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 04/12/2025] Open
Abstract
BACKGROUND Tubular microdiscectomy (TMD) is a treatment for lumbar disc herniation (LDH). Although the combination of MRI and deep learning (DL) has shown promise, its application in evaluating postoperative outcomes in TMD has not been fully explored. PURPOSE/HYPOTHESIS To evaluate whether integrating preoperative dual-plane MRI-based DL features with clinical features can assess 1-year outcomes in TMD for LDH. STUDY TYPE Retrospective. POPULATION/SUBJECTS The study involved 548 patients who underwent TMD between January 2016 and January 2021. Training set (N = 305, mean age 51.85 ± 13.84 years, 56.4% male). Internal validation set (N = 131, mean age 51.85 ± 13.84 years, 54.2% male). External validation set (N = 112, mean age 51.54 ± 14.43 years, 50.9% male). FIELD STRENGTH/SEQUENCE 3 T MRI with sagittal and transverse T2-weighted sequences (Fast Spin Echo). ASSESSMENT Ground truth labels were based on improvement rate in 1-year Japanese Orthopaedic Association (JOA) scores. Information on 42 preoperative clinical features was collected. The largest protrusions were identified from T2 MRI by three clinicians and were used to train deep learning models (ResNet50, ResNet101, and ResNet152) to extract DL features. After feature selection, three models were built, namely, clinical, DL, and combined models. STATISTICAL TESTS Chi-square or Fisher's exact tests was used for group comparisons. Quantitative differences were analyzed using the t-test or Mann-Whitney U test. P-values <0.05 were considered significant. Models were validated on internal and external datasets using metrics such as the area under the curve (AUC). RESULTS The AUCs of the clinical models achieved 0.806 (internal) and 0.779 (external). ResNet152 performed best in three DL models, with AUCs of 0.858 (internal) and 0.834 (external). The combined model achieved AUCs of 0.889 (internal) and 0.857 (external). DATA CONCLUSION A model combining preoperative dual-plane MRI DL features and clinical features can assess 1-year outcomes of TMD for LDH. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Kaifeng Wang
- Fujian Medical University, Fuzhou, Fujian, China
| | - Fabin Lin
- Fujian Medical University, Fuzhou, Fujian, China
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zulin Liao
- Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | | | - Tingxin Zhang
- Ordos Central Hospital, Ordos, Inner Mongolia, China
| | - Rui Wang
- Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Won D, Lee HJ, Lee SJ, Park SH. Lumbar Spinal Stenosis Grading in Multiple Level Magnetic Resonance Imaging Using Deep Convolutional Neural Networks. Global Spine J 2025; 15:2309-2317. [PMID: 39487037 PMCID: PMC11559735 DOI: 10.1177/21925682241299332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024] Open
Abstract
Study DesignRetrospective magnetic resonance imaging grading with comparison between experts and deep convolutional neural networks (CNNs).ObjectiveThe application of deep learning to clinical diagnosis has gained popularity. This approach can accelerate image interpretation and serve as a screening tool to help doctors.MethodsA comparison was conducted between retrospective magnetic resonance imaging (MRI) grading performed by experts and grading obtained using CNN classifiers. Data were collected from the lumbar axial dataset in the DICOM format. Two experts labeled the sampled images using the same diagnostic tools: localization of patches near the spinal canal, rootlet leveling, and stenosis grading. Comprehensive comparisons were presented for both rootlet cord classification and stenosis grading.ResultsRootlet-cord classification for the two analyzers was 90.3% and the F1 score was 86.6%. The agreement of Analyzers-Classifiers was 92.7% and 96.8% for data with 90.6% and 95.6% F1 scores, respectively. For stenosis grading, there was an agreement of 89.2% between the two analyzers, resulting in an F1 score of 76.5%. The grades of the Analyzers-Classifiers agreed on 91.5/89.4% of the data, with an F1 score of 78.4/75.7%. Analyzer1 and Analyzer2 classified >74% as grade A (78.8% and 74.4%, respectively), 15.4% and 18.6% as grade B, 4.2% and 6.0% as grade C, and 1.6% and 2.0% as grade D, respectively.ConclusionsThe fully automated deep learning model showed competitive results in stenosis grade diagnosis and rootlet cord classification under similar anatomical conditions. However, abrupt anatomical changes can lead to a puzzle diagnosis based only on images.
Collapse
Affiliation(s)
- Dongkyu Won
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Hyun-Joo Lee
- Department of Orthopaedic Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
- Institute of Medical Device and Robot, Kyungpook National University, Daegu, Korea
| | - Suk-Joong Lee
- Department of Orthopaedic Surgery, Gyeongsang National University College of Medicine and Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Sang Hyun Park
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| |
Collapse
|
3
|
Abbas J, Yousef M, Hamoud K, Joubran K. Low Back Pain Among Health Sciences Undergraduates: Results Obtained from a Machine-Learning Analysis. J Clin Med 2025; 14:2046. [PMID: 40142854 PMCID: PMC11943121 DOI: 10.3390/jcm14062046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Background and objective. Low back pain (LBP) is considered the most common and challenging disorder in health care. Although its incidence increases with age, a student's sedentary behavior could contribute to this risk. Through machine learning (ML), advanced algorithms can analyze complex patterns in health data, enabling accurate prediction and targeted prevention of medical conditions such as LBP. This study aims to detect the factors associated with LBP among health sciences students. Methods. A self-administered modified version of the Standardized Nordic Questionnaire was completed by 222 freshman health sciences students from May to June 2022. A supervised random forest algorithm was utilized to analyze data and prioritize the importance of variables related to LBP. The model's predictive capability was further visualized using a decision tree to identify high-risk patterns and associations. Results. A total of 197/222 (88.7%) students participated in this study, most of whom (75%) were female. Their mean age and body mass index were 23 ± 3.8 and 23 ± 3.5, respectively. In this group, 46% (n = 90) of the students reported having experienced LBP in the last month, 15% (n = 30) were smokers, and 60% (n = 119) were involved in prolonged sitting (more than 3 h per day). The decision tree of ML revealed that a history of pain (score = 1), as well as disability (score= 0.34) and physical activity (score = 0.21), were significantly associated with LBP. Conclusions. Approximately 46% of the health science students reported LBP in the last month, and a machine-learning approach highlighted a history of pain as the most significant factor related to LBP.
Collapse
Affiliation(s)
- Janan Abbas
- Department of Physical Therapy, Zefat Academic College, Zefat 13206, Israel; (K.H.); (K.J.)
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat 13206, Israel;
| | - Kamal Hamoud
- Department of Physical Therapy, Zefat Academic College, Zefat 13206, Israel; (K.H.); (K.J.)
| | - Katherin Joubran
- Department of Physical Therapy, Zefat Academic College, Zefat 13206, Israel; (K.H.); (K.J.)
| |
Collapse
|
4
|
Ke B, Ma W, Xuan J, Liang Y, Zhou L, Jiang W, Lin J, Li G. MRI to digital medicine diagnosis: integrating deep learning into clinical decision-making for lumbar degenerative diseases. Front Surg 2025; 11:1424716. [PMID: 39834502 PMCID: PMC11743461 DOI: 10.3389/fsurg.2024.1424716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction To develop an intelligent system based on artificial intelligence (AI) deep learning algorithms using deep learning tools, aiming to assist in the diagnosis of lumbar degenerative diseases by identifying lumbar spine magnetic resonance images (MRI) and improve the clinical efficiency of physicians. Methods The PP-YOLOv2 algorithm, a deep learning technique, was used to design a deep learning program capable of automatically identifying the spinal diseases (lumbar disc herniation or lumbar spondylolisthesis) based on the lumbar spine MR images. A retrospective analysis was conducted on lumbar spine MR images of patients who visited our hospital from January 2017 to January 2022. The collected images were divided into a training set and a testing set. The training set images were used to establish and validate the deep learning program's algorithm. The testing set images were annotated, and the experimental results were recorded by three spinal specialists. The training set images were also validated using the deep learning program, and the experimental results were recorded. Finally, a comparison of the accuracy of the deep learning algorithm and that of spinal surgeons was performed to determine the clinical usability of deep learning technology based on the PP-YOLOv2 algorithm. A total of 654 patients were included in the final study, with 604 cases in the training set and 50 cases in the testing set. Results The mean average precision (mAP) value of the deep learning algorithm reached 90.08% based on the PP-YOLOv2 algorithm. Through classification of the testing set, the deep learning algorithm showed higher sensitivity, specificity, and accuracy in diagnosing lumbar spine MR images compared to manual identification. Additionally, the testing time of the deep learning program was significantly shorter than that of manual identification, and the differences were statistically significant (P < 0.05). Conclusions Deep learning technology based on the PP-YOLOv2 algorithm can be used to identify normal intervertebral discs, lumbar disc herniation, and lumbar spondylolisthesis from lumbar MRI images. Its diagnostic performance is significantly higher than that of most spinal surgeons and can be practically applied in clinical settings.
Collapse
Affiliation(s)
- Baoyi Ke
- Department of Spine and Osteopathy Surgery, Guilin People’s Hospital, Guilin, China
| | - Wenyu Ma
- Department of Spine and Osteopathy Surgery, Guilin People’s Hospital, Guilin, China
| | - Junbo Xuan
- Guangxi Key Lab of Multi-source Information Mining & Security, Guangxi Normal University, Guilin, China
- School of Artificial Intelligence, Naning Vocational and Technical University, Nanning, China
| | - Yinghao Liang
- School of Artificial Intelligence, Naning Vocational and Technical University, Nanning, China
| | - Liguang Zhou
- Information Center, Wuxiang Hospital of Nanning Second People’s Hospital, Nanning, China
| | - Wenyong Jiang
- Department of Spine and Osteopathy Surgery, Guilin People’s Hospital, Guilin, China
| | - Jing Lin
- Operation Room, Guilin People’s Hospital, Guilin, Guangxi, China
| | - Guixiang Li
- Department of Traditional Chinese Medicine, Guilin People’s Hospital, Guilin, Guangxi, China
| |
Collapse
|
5
|
Han H, Li R, Fu D, Zhou H, Zhan Z, Wu Y, Meng B. Revolutionizing spinal interventions: a systematic review of artificial intelligence technology applications in contemporary surgery. BMC Surg 2024; 24:345. [PMID: 39501233 PMCID: PMC11536876 DOI: 10.1186/s12893-024-02646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 10/28/2024] [Indexed: 11/09/2024] Open
Abstract
Leveraging its ability to handle large and complex datasets, artificial intelligence can uncover subtle patterns and correlations that human observation may overlook. This is particularly valuable for understanding the intricate dynamics of spinal surgery and its multifaceted impacts on patient prognosis. This review aims to delineate the role of artificial intelligence in spinal surgery. A search of the PubMed database from 1992 to 2023 was conducted using relevant English publications related to the application of artificial intelligence in spinal surgery. The search strategy involved a combination of the following keywords: "Artificial neural network," "deep learning," "artificial intelligence," "spinal," "musculoskeletal," "lumbar," "vertebra," "disc," "cervical," "cord," "stenosis," "procedure," "operation," "surgery," "preoperative," "postoperative," and "operative." A total of 1,182 articles were retrieved. After a careful evaluation of abstracts, 90 articles were found to meet the inclusion criteria for this review. Our review highlights various applications of artificial neural networks in spinal disease management, including (1) assessing surgical indications, (2) assisting in surgical procedures, (3) preoperatively predicting surgical outcomes, and (4) estimating the occurrence of various surgical complications and adverse events. By utilizing these technologies, surgical outcomes can be improved, ultimately enhancing the quality of life for patients.
Collapse
Affiliation(s)
- Hao Han
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ran Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongming Fu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongyou Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zihao Zhan
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi'ang Wu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Wu CY, Yeh WC, Chang SM, Hsu CW, Lin ZJ. The Application of Deep Learning to Accurately Identify the Dimensions of Spinal Canal and Intervertebral Foramen as Evaluated by the IoU Index. Bioengineering (Basel) 2024; 11:981. [PMID: 39451357 PMCID: PMC11504142 DOI: 10.3390/bioengineering11100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Artificial intelligence has garnered significant attention in recent years as a rapidly advancing field of computer technology. With the continual advancement of computer hardware, deep learning has made breakthrough developments within the realm of artificial intelligence. Over the past few years, applying deep learning architecture in medicine and industrial anomaly inspection has significantly contributed to solving numerous challenges related to efficiency and accuracy. For excellent results in radiological, pathological, endoscopic, ultrasonic, and biochemical examinations, this paper utilizes deep learning combined with image processing to identify spinal canal and vertebral foramen dimensions. In existing research, technologies such as corrosion and expansion in magnetic resonance image (MRI) processing have also strengthened the accuracy of results. Indicators such as area and Intersection over Union (IoU) are also provided for assessment. Among them, the mean Average Precision (mAP) for identifying intervertebral foramen (IVF) and intervertebral disc (IVD) through YOLOv4 is 95.6%. Resnet50 mixing U-Net was employed to identify the spinal canal and intervertebral foramen and achieved IoU scores of 79.11% and 80.89%.
Collapse
Affiliation(s)
- Chih-Ying Wu
- Department of Neurosurgery, China Medical University Hsinchu Hospital, Hsinchu 302, Taiwan;
| | - Wei-Chang Yeh
- Engineering Management, National Tsing Hua University, Hsinchu 300044, Taiwan; (C.-W.H.); (Z.-J.L.)
| | - Shiaw-Meng Chang
- Engineering Management, National Tsing Hua University, Hsinchu 300044, Taiwan; (C.-W.H.); (Z.-J.L.)
| | - Che-Wei Hsu
- Engineering Management, National Tsing Hua University, Hsinchu 300044, Taiwan; (C.-W.H.); (Z.-J.L.)
| | - Zi-Jie Lin
- Engineering Management, National Tsing Hua University, Hsinchu 300044, Taiwan; (C.-W.H.); (Z.-J.L.)
| |
Collapse
|
7
|
Badahman F, Alsobhi M, Alzahrani A, Chevidikunnan MF, Neamatallah Z, Alqarni A, Alabasi U, Abduljabbar A, Basuodan R, Khan F. Validating the Accuracy of a Patient-Facing Clinical Decision Support System in Predicting Lumbar Disc Herniation: Diagnostic Accuracy Study. Diagnostics (Basel) 2024; 14:1870. [PMID: 39272655 PMCID: PMC11394625 DOI: 10.3390/diagnostics14171870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Low back pain (LBP) is a major cause of disability globally, and the diagnosis of LBP is challenging for clinicians. OBJECTIVE Using new software called Therapha, this study aimed to assess the accuracy level of artificial intelligence as a Clinical Decision Support System (CDSS) compared to MRI in predicting lumbar disc herniated patients. METHODS One hundred low back pain patients aged ≥18 years old were included in the study. The study was conducted in three stages. Firstly, a case series was conducted by matching MRI and Therapha diagnosis for 10 patients. Subsequently, Delphi methodology was employed to establish a clinical consensus. Finally, to determine the accuracy of the newly developed software, a cross-sectional study was undertaken involving 100 patients. RESULTS The software showed a significant diagnostic accuracy with the area under the curve in the ROC analysis determined as 0.84 with a sensitivity of 88% and a specificity of 80%. CONCLUSIONS The study's findings revealed that CDSS using Therapha has a reasonable level of efficacy, and this can be utilized clinically to acquire a faster and more accurate screening of patients with lumbar disc herniation.
Collapse
Affiliation(s)
- Fatima Badahman
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Mashael Alsobhi
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Almaha Alzahrani
- Department of Physical Therapy, King Faisal Hospital, Makkah 24236, Saudi Arabia
| | - Mohamed Faisal Chevidikunnan
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Ziyad Neamatallah
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Abdullah Alqarni
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Umar Alabasi
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Ahmed Abduljabbar
- Department of Radiology, Faculty of Medicine, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| | - Reem Basuodan
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Fayaz Khan
- Department of Physical Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah 22252, Saudi Arabia
| |
Collapse
|
8
|
Ton A, Wishart D, Ball JR, Shah I, Murakami K, Ordon MP, Alluri RK, Hah R, Safaee MM. The Evolution of Risk Assessment in Spine Surgery: A Narrative Review. World Neurosurg 2024; 188:1-14. [PMID: 38677646 DOI: 10.1016/j.wneu.2024.04.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Risk assessment is critically important in elective and high-risk interventions, particularly spine surgery. This narrative review describes the evolution of risk assessment from the earliest instruments focused on general surgical risk stratification, to more accurate and spine-specific risk calculators that quantified risk, to the current era of big data. METHODS The PubMed and SCOPUS databases were queried on October 11, 2023 using search terms to identify risk assessment tools (RATs) in spine surgery. A total of 108 manuscripts were included after screening with full-text review using the following inclusion criteria: 1) study population of adult spine surgical patients, 2) studies describing validation and subsequent performance of preoperative RATs, and 3) studies published in English. RESULTS Early RATs provided stratified patients into broad categories and allowed for improved communication between physicians. Subsequent risk calculators attempted to quantify risk by estimating general outcomes such as mortality, but then evolved to estimate spine-specific surgical complications. The integration of novel concepts such as invasiveness, frailty, genetic biomarkers, and sarcopenia led to the development of more sophisticated predictive models that estimate the risk of spine-specific complications and long-term outcomes. CONCLUSIONS RATs have undergone a transformative shift from generalized risk stratification to quantitative predictive models. The next generation of tools will likely involve integration of radiographic and genetic biomarkers, machine learning, and artificial intelligence to improve the accuracy of these models and better inform patients, surgeons, and payers.
Collapse
Affiliation(s)
- Andy Ton
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Danielle Wishart
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jacob R Ball
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Ishan Shah
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Kiley Murakami
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Matthew P Ordon
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - R Kiran Alluri
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Raymond Hah
- Department of Orthopedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael M Safaee
- Department of Neurological Surgery, Keck School of MedicineUniversity of Southern California, Los Angeles, California, USA.
| |
Collapse
|
9
|
Chen Z, Wang W, Chen X, Dong F, Cheng G, He L, Ma C, Yao H, Zhou S. Deep learning-based quantitative morphological study of anteroposterior digital radiographs of the lumbar spine. Quant Imaging Med Surg 2024; 14:5385-5395. [PMID: 39144021 PMCID: PMC11320550 DOI: 10.21037/qims-22-540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/30/2023] [Indexed: 08/16/2024]
Abstract
Background Morphological parameters of the lumbar spine are valuable in assessing lumbar spine diseases. However, manual measurement of lumbar morphological parameters is time-consuming. Deep learning has automatic quantitative and qualitative analysis capabilities. To develop a deep learning-based model for the automatic quantitative measurement of morphological parameters from anteroposterior digital radiographs of the lumbar spine and to evaluate its performance. Methods This study used 1,368 anteroposterior digital radiographs of the lumbar spine to train a deep learning model to measure the quantitative morphological indicators, including L1 to L5 vertebral body height (VBH) and L1-L2 to L4-L5 intervertebral disc height (IDH). The means of the manual measurements by three radiologists were used as the reference standard. The parameters predicted by the model were analyzed against the manual measurements using paired t-tests. Percentage of correct key points (PCK), intra-class correlation coefficient (ICC), Pearson correlation coefficient (r), mean absolute error (MAE), root mean square error (RMSE), and Bland-Altman plots were performed to assess the performance of the model. Results Within the 3-mm distance threshold, the model had a PCK range of 99.77-99.46% for the L1 to L4 vertebrae and 77.37% for the L5 vertebrae. Except for VBH-L5 and IDH_L3-L4, IDH_L4-L5 (P<0.05), the estimated values of the model in the remaining parameters were not statistically significant compared with the reference standard (P>0.05). Except for VBH-L5 and IDH_L4-L5, the model showed good correlation and consistency with the reference standard (ICC =0.84-0.96, r=0.85-0.97, MAE =0.5-0.66, RMSE =0.66-0.95). The model outperformed other models (EfficientDet + Unet, EfficientDet + DarkPose, HRNet, and Unet) in predicting landmarks within a distance threshold of 1.5 to 5 mm. Conclusions The model developed in this study can automatically measure the morphological parameters of the L1 to L4 vertebrae from anteroposterior digital radiographs of the lumbar spine. Its performance is close to the level of radiologists.
Collapse
Affiliation(s)
- Zhizhen Chen
- Medical Imaging Center of Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenqi Wang
- Department of Radiology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaofei Chen
- Department of Radiology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Fuwen Dong
- Department of Radiology, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Guohua Cheng
- Hangzhou Jianpei Technology Co., Ltd., Hangzhou, China
| | - Linyang He
- Hangzhou Jianpei Technology Co., Ltd., Hangzhou, China
| | - Chunyu Ma
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Hongyan Yao
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
| | - Sheng Zhou
- The First Clinical Medical College of Gansu University of Chinese Medicine, Lanzhou, China
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
10
|
Toh ZA, Berg B, Han QYC, Hey HWD, Pikkarainen M, Grotle M, He HG. Clinical Decision Support System Used in Spinal Disorders: Scoping Review. J Med Internet Res 2024; 26:e53951. [PMID: 38502157 PMCID: PMC10988379 DOI: 10.2196/53951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Spinal disorders are highly prevalent worldwide with high socioeconomic costs. This cost is associated with the demand for treatment and productivity loss, prompting the exploration of technologies to improve patient outcomes. Clinical decision support systems (CDSSs) are computerized systems that are increasingly used to facilitate safe and efficient health care. Their applications range in depth and can be found across health care specialties. OBJECTIVE This scoping review aims to explore the use of CDSSs in patients with spinal disorders. METHODS We used the Joanna Briggs Institute methodological guidance for this scoping review and reported according to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) statement. Databases, including PubMed, Embase, Cochrane, CINAHL, Web of Science, Scopus, ProQuest, and PsycINFO, were searched from inception until October 11, 2022. The included studies examined the use of digitalized CDSSs in patients with spinal disorders. RESULTS A total of 4 major CDSS functions were identified from 31 studies: preventing unnecessary imaging (n=8, 26%), aiding diagnosis (n=6, 19%), aiding prognosis (n=11, 35%), and recommending treatment options (n=6, 20%). Most studies used the knowledge-based system. Logistic regression was the most commonly used method, followed by decision tree algorithms. The use of CDSSs to aid in the management of spinal disorders was generally accepted over the threat to physicians' clinical decision-making autonomy. CONCLUSIONS Although the effectiveness was frequently evaluated by examining the agreement between the decisions made by the CDSSs and the health care providers, comparing the CDSS recommendations with actual clinical outcomes would be preferable. In addition, future studies on CDSS development should focus on system integration, considering end user's needs and preferences, and external validation and impact studies to assess effectiveness and generalizability. TRIAL REGISTRATION OSF Registries osf.io/dyz3f; https://osf.io/dyz3f.
Collapse
Affiliation(s)
- Zheng An Toh
- National University Hospital, National University Health System, Singapore, Singapore
| | - Bjørnar Berg
- Centre for Intelligent Musculoskeletal Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | | | - Hwee Weng Dennis Hey
- Division of Orthopaedic Surgery, National University Hospital, National University Health System, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Minna Pikkarainen
- Department of Rehabilitation and Health Technology, Oslo Metropolitan University, Oslo, Norway
- Martti Ahtisaari Institute, Oulu Business School, Oulu University, Oulu, Finland
- Department of Product Design, Oslo Metropolitan University, Oslo, Norway
| | - Margreth Grotle
- Centre for Intelligent Musculoskeletal Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Hong-Gu He
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Liawrungrueang W, Cho ST, Sarasombath P, Kim I, Kim JH. Current Trends in Artificial Intelligence-Assisted Spine Surgery: A Systematic Review. Asian Spine J 2024; 18:146-157. [PMID: 38130042 PMCID: PMC10910143 DOI: 10.31616/asj.2023.0410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
This systematic review summarizes existing evidence and outlines the benefits of artificial intelligence-assisted spine surgery. The popularity of artificial intelligence has grown significantly, demonstrating its benefits in computer-assisted surgery and advancements in spinal treatment. This study adhered to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), a set of reporting guidelines specifically designed for systematic reviews and meta-analyses. The search strategy used Medical Subject Headings (MeSH) terms, including "MeSH (Artificial intelligence)," "Spine" AND "Spinal" filters, in the last 10 years, and English- from January 1, 2013, to October 31, 2023. In total, 442 articles fulfilled the first screening criteria. A detailed analysis of those articles identified 220 that matched the criteria, of which 11 were considered appropriate for this analysis after applying the complete inclusion and exclusion criteria. In total, 11 studies met the eligibility criteria. Analysis of these studies revealed the types of artificial intelligence-assisted spine surgery. No evidence suggests the superiority of assisted spine surgery with or without artificial intelligence in terms of outcomes. In terms of feasibility, accuracy, safety, and facilitating lower patient radiation exposure compared with standard fluoroscopic guidance, artificial intelligence-assisted spine surgery produced satisfactory and superior outcomes. The incorporation of artificial intelligence with augmented and virtual reality appears promising, with the potential to enhance surgeon proficiency and overall surgical safety.
Collapse
Affiliation(s)
| | - Sung Tan Cho
- Department of Orthopaedics, Inje University Ilsan Paik Hospital, Goyang,
Korea
| | - Peem Sarasombath
- Department of Orthopaedics, Faculty of Medicine, Chiang Mai University, Chiang Mai,
Thailand
| | - Inhee Kim
- Department of Orthopaedics, Police National Hospital, Seoul,
Korea
| | - Jin Hwan Kim
- Department of Orthopaedics, Inje University Ilsan Paik Hospital, Goyang,
Korea
| |
Collapse
|
12
|
Azimi P, Yazdanian T, Zohrevand A, Ahmadiani A. Predicting Survival in Glioblastoma Using Gene Expression Databases: A Neural Network Analysis. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2024; 13:79-90. [PMID: 39156868 PMCID: PMC11329931 DOI: 10.22088/ijmcm.bums.13.1.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 08/20/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Artificial neural networks (ANNs) have the potential to make accurate predictions and improve decision making. The aim of this study was to create an ANN model to predict 15-month survival in GBM patients according to gene expression databases. Genomic data of GBM were downloaded from the CGGA, TCGA, MYO, and CPTAC. Logistic regression (LR) and ANN model were used. Age, gender, IDH wild-type/mutant and the 31 most important genes from our previous study, were determined as input factors for the established ANN model. 15-month survival time was used to evaluate the results. The normalized importance scores of each covariate were calculated using the selected ANN model. The area under a receiver operating characteristic (ROC) curve (AUC), Hosmer-Lemeshow (H-L) statistic and accuracy of prediction were measured to evaluate the two models. SPSS 26 was utilized. A total of 551 patients (61% male, mean age 55.5 ± 13.3 years) patients were divided into training, testing, and validation datasets of 441, 55 and 55 patients, respectively. The main candidate genes found were: FN1, ICAM1, MYD88, IL10, and CCL2 with the ANN model; and MMP9, MYD88, and CDK4 with LR model. The AUCs were 0.71 for the LR and 0.81 for the ANN analysis. Compared to the LR model, the ANN model showed better results: Accuracy rate, 83.3 %; H-L statistic, 6.5 %; and AUC, 0.81 % of patients. The findings show that ANNs can accurately predict the 15-month survival in GBM patients and contribute to precise medical treatment.
Collapse
Affiliation(s)
- Parisa Azimi
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| | - Taravat Yazdanian
- Research Fellow at the Neurological Clinical Research Institute and Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Amirhosein Zohrevand
- Department of Neurosurgery, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Abolhassan Ahmadiani
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
13
|
Prisilla AA, Guo YL, Jan YK, Lin CY, Lin FY, Liau BY, Tsai JY, Ardhianto P, Pusparani Y, Lung CW. An approach to the diagnosis of lumbar disc herniation using deep learning models. Front Bioeng Biotechnol 2023; 11:1247112. [PMID: 37731760 PMCID: PMC10507264 DOI: 10.3389/fbioe.2023.1247112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023] Open
Abstract
Background: In magnetic resonance imaging (MRI), lumbar disc herniation (LDH) detection is challenging due to the various shapes, sizes, angles, and regions associated with bulges, protrusions, extrusions, and sequestrations. Lumbar abnormalities in MRI can be detected automatically by using deep learning methods. As deep learning models gain recognition, they may assist in diagnosing LDH with MRI images and provide initial interpretation in clinical settings. YOU ONLY LOOK ONCE (YOLO) model series are often used to train deep learning algorithms for real-time biomedical image detection and prediction. This study aims to confirm which YOLO models (YOLOv5, YOLOv6, and YOLOv7) perform well in detecting LDH in different regions of the lumbar intervertebral disc. Materials and methods: The methodology involves several steps, including converting DICOM images to JPEG, reviewing and selecting MRI slices for labeling and augmentation using ROBOFLOW, and constructing YOLOv5x, YOLOv6, and YOLOv7 models based on the dataset. The training dataset was combined with the radiologist's labeling and annotation, and then the deep learning models were trained using the training/validation dataset. Results: Our result showed that the 550-dataset with augmentation (AUG) or without augmentation (non-AUG) in YOLOv5x generates satisfactory training performance in LDH detection. The AUG dataset overall performance provides slightly higher accuracy than the non-AUG. YOLOv5x showed the highest performance with 89.30% mAP compared to YOLOv6, and YOLOv7. Also, YOLOv5x in non-AUG dataset showed the balance LDH region detections in L2-L3, L3-L4, L4-L5, and L5-S1 with above 90%. And this illustrates the competitiveness of using non-AUG dataset to detect LDH. Conclusion: Using YOLOv5x and the 550 augmented dataset, LDH can be detected with promising both in non-AUG and AUG dataset. By utilizing the most appropriate YOLO model, clinicians have a greater chance of diagnosing LDH early and preventing adverse effects for their patients.
Collapse
Affiliation(s)
- Ardha Ardea Prisilla
- Department of Fashion Design, LaSalle College Jakarta, Jakarta, Indonesia
- Department of Digital Media Design, Asia University, Taichung, Taiwan
| | - Yue Leon Guo
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan
- Graduate Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chih-Yang Lin
- Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
| | - Fu-Yu Lin
- Department of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Ben-Yi Liau
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan
| | - Jen-Yung Tsai
- Department of Digital Media Design, Asia University, Taichung, Taiwan
| | - Peter Ardhianto
- Department of Visual Communication Design, Soegijapranata Catholic University, Semarang, Indonesia
| | - Yori Pusparani
- Department of Digital Media Design, Asia University, Taichung, Taiwan
- Department of Visual Communication Design, Budi Luhur University, Jakarta, Indonesia
| | - Chi-Wen Lung
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Creative Product Design, Asia University, Taichung, Taiwan
| |
Collapse
|
14
|
Constant C, Aubin CE, Kremers HM, Garcia DVV, Wyles CC, Rouzrokh P, Larson AN. The use of deep learning in medical imaging to improve spine care: A scoping review of current literature and clinical applications. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100236. [PMID: 37599816 PMCID: PMC10432249 DOI: 10.1016/j.xnsj.2023.100236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 06/14/2023] [Indexed: 08/22/2023]
Abstract
Background Artificial intelligence is a revolutionary technology that promises to assist clinicians in improving patient care. In radiology, deep learning (DL) is widely used in clinical decision aids due to its ability to analyze complex patterns and images. It allows for rapid, enhanced data, and imaging analysis, from diagnosis to outcome prediction. The purpose of this study was to evaluate the current literature and clinical utilization of DL in spine imaging. Methods This study is a scoping review and utilized the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) methodology to review the scientific literature from 2012 to 2021. A search in PubMed, Web of Science, Embased, and IEEE Xplore databases with syntax specific for DL and medical imaging in spine care applications was conducted to collect all original publications on the subject. Specific data was extracted from the available literature, including algorithm application, algorithms tested, database type and size, algorithm training method, and outcome of interest. Results A total of 365 studies (total sample of 232,394 patients) were included and grouped into 4 general applications: diagnostic tools, clinical decision support tools, automated clinical/instrumentation assessment, and clinical outcome prediction. Notable disparities exist in the selected algorithms and the training across multiple disparate databases. The most frequently used algorithms were U-Net and ResNet. A DL model was developed and validated in 92% of included studies, while a pre-existing DL model was investigated in 8%. Of all developed models, only 15% of them have been externally validated. Conclusions Based on this scoping review, DL in spine imaging is used in a broad range of clinical applications, particularly for diagnosing spinal conditions. There is a wide variety of DL algorithms, database characteristics, and training methods. Future studies should focus on external validation of existing models before bringing them into clinical use.
Collapse
Affiliation(s)
- Caroline Constant
- Orthopedic Surgery AI Laboratory, Mayo Clinic, 200 1st St Southwest, Rochester, MN, 55902, United States
- Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
- AO Research Institute Davos, Clavadelerstrasse 8, CH 7270, Davos, Switzerland
| | - Carl-Eric Aubin
- Polytechnique Montreal, 2500 Chem. de Polytechnique, Montréal, QC H3T 1J4, Canada
| | - Hilal Maradit Kremers
- Orthopedic Surgery AI Laboratory, Mayo Clinic, 200 1st St Southwest, Rochester, MN, 55902, United States
| | - Diana V. Vera Garcia
- Orthopedic Surgery AI Laboratory, Mayo Clinic, 200 1st St Southwest, Rochester, MN, 55902, United States
| | - Cody C. Wyles
- Orthopedic Surgery AI Laboratory, Mayo Clinic, 200 1st St Southwest, Rochester, MN, 55902, United States
- Department of Orthopedic Surgery, Mayo Clinic, 200, 1st St Southwest, Rochester, MN, 55902, United States
| | - Pouria Rouzrokh
- Orthopedic Surgery AI Laboratory, Mayo Clinic, 200 1st St Southwest, Rochester, MN, 55902, United States
- Radiology Informatics Laboratory, Mayo Clinic, 200, 1st St Southwest, Rochester, MN, 55902, United States
| | - Annalise Noelle Larson
- Orthopedic Surgery AI Laboratory, Mayo Clinic, 200 1st St Southwest, Rochester, MN, 55902, United States
- Department of Orthopedic Surgery, Mayo Clinic, 200, 1st St Southwest, Rochester, MN, 55902, United States
| |
Collapse
|
15
|
Yagi M, Yamanouchi K, Fujita N, Funao H, Ebata S. Revolutionizing Spinal Care: Current Applications and Future Directions of Artificial Intelligence and Machine Learning. J Clin Med 2023; 12:4188. [PMID: 37445222 DOI: 10.3390/jcm12134188] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Artificial intelligence (AI) and machine learning (ML) are rapidly becoming integral components of modern healthcare, offering new avenues for diagnosis, treatment, and outcome prediction. This review explores their current applications and potential future in the field of spinal care. From enhancing imaging techniques to predicting patient outcomes, AI and ML are revolutionizing the way we approach spinal diseases. AI and ML have significantly improved spinal imaging by augmenting detection and classification capabilities, thereby boosting diagnostic accuracy. Predictive models have also been developed to guide treatment plans and foresee patient outcomes, driving a shift towards more personalized care. Looking towards the future, we envision AI and ML further ingraining themselves in spinal care with the development of algorithms capable of deciphering complex spinal pathologies to aid decision making. Despite the promise these technologies hold, their integration into clinical practice is not without challenges. Data quality, integration hurdles, data security, and ethical considerations are some of the key areas that need to be addressed for their successful and responsible implementation. In conclusion, AI and ML represent potent tools for transforming spinal care. Thoughtful and balanced integration of these technologies, guided by ethical considerations, can lead to significant advancements, ushering in an era of more personalized, effective, and efficient healthcare.
Collapse
Affiliation(s)
- Mitsuru Yagi
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
- Department of Orthopaedic Surgery, International University of Health and Welfare and Narita Hospital, Narita 286-8520, Japan
| | - Kento Yamanouchi
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
- Department of Orthopaedic Surgery, International University of Health and Welfare and Narita Hospital, Narita 286-8520, Japan
| | - Naruhito Fujita
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
- Department of Orthopaedic Surgery, International University of Health and Welfare and Narita Hospital, Narita 286-8520, Japan
| | - Haruki Funao
- Department of Orthopaedic Surgery, School of Medicine, International University of Health and Welfare, Narita 286-8686, Japan
- Department of Orthopaedic Surgery, International University of Health and Welfare and Narita Hospital, Narita 286-8520, Japan
| | - Shigeto Ebata
- Department of Orthopaedic Surgery, International University of Health and Welfare and Narita Hospital, Narita 286-8520, Japan
| |
Collapse
|
16
|
Lee JH, Woo H, Jang JS, Kim JI, Na YC, Kim KR, Cho E, Lee JH, Park TY. Comparison of Concordance between Chuna Manual Therapy Diagnostic Methods (Palpation, X-ray, Artificial Intelligence Program) in Lumbar Spine: An Exploratory, Cross-Sectional Clinical Study. Diagnostics (Basel) 2022; 12:2732. [PMID: 36359575 PMCID: PMC9689192 DOI: 10.3390/diagnostics12112732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 10/15/2023] Open
Abstract
Before Chuna manual therapy (CMT), a manual therapy applied in Korean medicine, CMT spinal diagnosis using palpation or X-ray is performed. However, studies on the inter-rater concordance of CMT diagnostic methods, concordance among diagnostic methods, and standard CMT diagnostic methods are scarce. Moreover, no clinical studies have used artificial intelligence (AI) programs for X-ray image-based CMT diagnosis. Therefore, this study sought a feasible and standard CMT spinal diagnostic method and explored the clinical applicability of the CMT-AI program. One hundred participants were recruited, and the concordance within and among different diagnostic modalities was analyzed by dividing them into manual diagnosis (MD), X-ray image-based diagnosis (XRD) by experts and non-experts, and XRD using a CMT-AI program by non-experts. Regarding intra-group concordance, XRD by experts showed the highest concordance (used as a gold standard when comparing inter-group concordance), followed by XRD using the AI program, XRD by non-experts, and then MD. Comparing diagnostic results between the groups, concordance with the gold standard was the highest for XRD using the AI program, followed by XRD by non-experts, and MD. Therefore, XRD is a more reasonable CMT diagnostic method than MD. Furthermore, the clinical applicability of the CMT-AI program is high.
Collapse
Affiliation(s)
- Jin-Hyun Lee
- Institute for Integrative Medicine, Catholic Kwandong University International St. Mary’s Hospital, 25 Simgok-ro 100 Beon-gil, Seo-gu, Incheon 22711, Republic of Korea
| | - Hyeonjun Woo
- Department of Korean Medicine Rehabilitation, College of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan-si 54538, Republic of Korea
| | - Jun-Su Jang
- Digital Health Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Joong Il Kim
- Digital Health Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon 34054, Republic of Korea
| | - Young Cheol Na
- Department of Neurosurgery, Catholic Kwandong University International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, 25 Simgok-ro 100 Beon-gil, Seo-gu, Incheon 22711, Republic of Korea
| | - Kwang-Ryeol Kim
- Department of Neurosurgery, Catholic Kwandong University International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, 25 Simgok-ro 100 Beon-gil, Seo-gu, Incheon 22711, Republic of Korea
| | - Eunbyul Cho
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan-si 54538, Republic of Korea
| | - Jung-Han Lee
- Department of Korean Medicine Rehabilitation, College of Korean Medicine, Wonkwang University, 460 Iksan-daero, Iksan-si 54538, Republic of Korea
| | - Tae-Yong Park
- Institute for Integrative Medicine, Catholic Kwandong University International St. Mary’s Hospital, 25 Simgok-ro 100 Beon-gil, Seo-gu, Incheon 22711, Republic of Korea
| |
Collapse
|
17
|
Baur D, Kroboth K, Heyde CE, Voelker A. Convolutional Neural Networks in Spinal Magnetic Resonance Imaging: A Systematic Review. World Neurosurg 2022; 166:60-70. [PMID: 35863650 DOI: 10.1016/j.wneu.2022.07.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Convolutional neural networks (CNNs) are being increasingly used in the medical field, especially for image recognition in high-resolution, large-volume data sets. The study represents the current state of research on the application of CNNs in image segmentation and pathology detection in spine magnetic resonance imaging. METHODS For this systematic literature review, the authors performed a systematic initial search of the PubMed/Medline and Web of Science (Core collection) databases for eligible investigations. The authors limited the search to observational studies. Outcome parameters were analyzed according to the inclusion criteria and assigned to 3 groups: 1) segmentation of anatomical structures, 2) segmentation and evaluation of pathologic structures, and 3) specific implementation of CNNs. RESULTS Twenty-four retrospectively designed articles met the inclusion criteria. Publication dates ranged from 2017 to 2021. In total, 14,065 patients with 113,110 analyzed images were included. Most authors trained their network with a training-to-testing ratio of 80/20, while all but 2 articles used 5- to 10-fold cross-validation. Nine articles compared their performance results with other neural networks and algorithms, and all 24 articles described outcomes as positive. CONCLUSIONS State-of-the-art CNNs can detect and segment-specific anatomical landmarks and pathologies across a wide range, comparable to the skills of radiologists and experienced clinicians. With rapidly evolving network architectures and growing medical image databases, the future is likely to show growth in the development and refinement of these capable networks. However, the aid of automated segmentation and classification by neural networks cannot and should not be expected to replace clinical experts.
Collapse
Affiliation(s)
- David Baur
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Katharina Kroboth
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Christoph-Eckhard Heyde
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Anna Voelker
- Department of Orthopedics, Trauma and Plastic Surgery, University Hospital Leipzig, Leipzig, Germany.
| |
Collapse
|
18
|
Hung ND, Dung LT, Huyen DK, Duy NQ, He DV, Duc NM. The value of quantitative magnetic resonance imaging signal intensity in distinguishing between spinal meningiomas and schwannomas. Int J Med Sci 2022; 19:1110-1117. [PMID: 35919813 PMCID: PMC9339414 DOI: 10.7150/ijms.73319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Prior studies have suggested a number of the subjective visual characteristics that help distinguish between spinal meningiomas and schwannomas on magnetic resonance imaging and computed tomography; however, objective quantification of the signal intensity can be useful information. This study assessed whether quantitative magnetic resonance imaging (MRI) signal intensity (SI) measurements could distinguish intradural-extramedullary schwannomas from meningiomas. Methods: From July 2019 to September 2021, 54 patients with intradural-extramedullary tumors (37 meningiomas and 17 schwannomas) underwent surgery, and tumors were verified pathologically. Defined regions of interest were used to quantify SI values on T1- (T1W) and T2-weighted images (T2W). Receiver operating characteristic curve analysis was used to obtain cutoff values and calculate the area under the curve (AUC), sensitivity (SE), specificity (SP), positive predictive value (PPV), and negative predictive value (NPV). Results: Both Maximum (T2max) and mean (T2mean) T2W SI values demonstrated outstanding (AUC: 0.91) abilities to differentiate meningiomas from schwannomas with Se, Sp, PPV, and NPV values of 94.6%, 70.6%, 87.5%, and 85.7%, respectively, for T2max and 81.1%, 88.2%, 93.8%, and 68.2% for T2mean. The maximum SI value on contrast-enhanced T1W (T1CEmax) and the T2W tumor: fat SI ratio (rTF) demonstrated acceptable abilities (AUC: 0.73 and 0.79, respectively) to differentiate meningiomas from schwannomas with Se, Sp, PPV, and NPV values of 94.6%, 70.6%, 87.5%, and 85.7%, respectively, for T1CEmax and 81.1%, 88.2%, 93.8%, and 68.2% for rTF. Conclusions: Quantitative SI values (T2max, T2mean, T2min, T1CEmax, rTF) can be used to differentiate intradural-extramedullary schwannomas from meningiomas.
Collapse
Affiliation(s)
- Nguyen Duy Hung
- Department of Radiology, Hanoi Medical University, Hanoi, Vietnam
- Department of Radiology, Viet Duc Hospital, Hanoi, Vietnam
| | - Le Thanh Dung
- Department of Radiology, Viet Duc Hospital, Hanoi, Vietnam
- Department of Radiology, VNU University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Dang Khanh Huyen
- Department of Radiology, Hanoi Medical University, Hanoi, Vietnam
| | - Ngo Quang Duy
- Department of Radiology, Ha Giang General Hospital, Ha Giang, Vietnam
| | - Dong-Van He
- Department of Neurosurgery, Viet Duc Hospital, Hanoi, Vietnam
| | - Nguyen Minh Duc
- Department of Radiology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| |
Collapse
|
19
|
Abstract
Pain is a complex term that describes various sensations that create discomfort in various ways or types inside the human body. Generally, pain has consequences that range from mild to severe in different organs of the body and will depend on the way it is caused, which could be an injury, illness or medical procedures including testing, surgeries or therapies, etc. With recent advances in artificial-intelligence (AI) systems associated in biomedical and healthcare settings, the contiguity of physician, clinician and patient has shortened. AI, however, has more scope to interpret the pain associated in patients with various conditions by using any physiological or behavioral changes. Facial expressions are considered to give much information that relates with emotions and pain, so clinicians consider these changes with high importance for assessing pain. This has been achieved in recent times with different machine-learning and deep-learning models. To accentuate the future scope and importance of AI in medical field, this study reviews the explainable AI (XAI) as increased attention is given to an automatic assessment of pain. This review discusses how these approaches are applied for different pain types.
Collapse
|
20
|
Novel Magnetic Resonance Imaging Tools for the Diagnosis of Degenerative Disc Disease: A Narrative Review. Diagnostics (Basel) 2022; 12:diagnostics12020420. [PMID: 35204509 PMCID: PMC8870820 DOI: 10.3390/diagnostics12020420] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/27/2023] Open
Abstract
Low back pain (LBP) is one of the leading causes of disability worldwide, with a significant socioeconomic burden on healthcare systems. It is mainly caused by degenerative disc disease (DDD), a progressive, chronic, and age-related process. With its capacity to accurately characterize intervertebral disc (IVD) and spinal morphology, magnetic resonance imaging (MRI) has been established as one of the most valuable tools in diagnosing DDD. However, existing technology cannot detect subtle changes in IVD tissue composition and cell metabolism. In this review, we summarized the state of the art regarding innovative quantitative MRI modalities that have shown the capacity to discriminate and quantify changes in matrix composition and integrity, as well as biomechanical changes in the early stages of DDD. Validation and implementation of this new technology in the clinical setting will allow for an early diagnosis of DDD and ideally guide conservative and regenerative treatments that may prevent the progression of the degenerative process rather than intervene at the latest stages of the disease.
Collapse
|
21
|
Huber FA, Guggenberger R. AI MSK clinical applications: spine imaging. Skeletal Radiol 2022; 51:279-291. [PMID: 34263344 PMCID: PMC8692301 DOI: 10.1007/s00256-021-03862-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 02/02/2023]
Abstract
Recent investigations have focused on the clinical application of artificial intelligence (AI) for tasks specifically addressing the musculoskeletal imaging routine. Several AI applications have been dedicated to optimizing the radiology value chain in spine imaging, independent from modality or specific application. This review aims to summarize the status quo and future perspective regarding utilization of AI for spine imaging. First, the basics of AI concepts are clarified. Second, the different tasks and use cases for AI applications in spine imaging are discussed and illustrated by examples. Finally, the authors of this review present their personal perception of AI in daily imaging and discuss future chances and challenges that come along with AI-based solutions.
Collapse
Affiliation(s)
- Florian A. Huber
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Roman Guggenberger
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| |
Collapse
|
22
|
Zhang M, Ou‐Yang H, Jiang L, Wang C, Liu J, Jin D, Ni M, Liu X, Lang N, Yuan H. Optimal machine learning methods for radiomic prediction models: Clinical application for preoperative T 2*-weighted images of cervical spondylotic myelopathy. JOR Spine 2021; 4:e1178. [PMID: 35005444 PMCID: PMC8717093 DOI: 10.1002/jsp2.1178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Predicting the postoperative neurological function of cervical spondylotic myelopathy (CSM) patients is generally based on conventional magnetic resonance imaging (MRI) patterns, but this approach is not completely satisfactory. This study utilized radiomics, which produced advanced objective and quantitative indicators, and machine learning to develop, validate, test, and compare models for predicting the postoperative prognosis of CSM. MATERIALS AND METHODS In total, 151 CSM patients undergoing surgical treatment and preoperative MRI was retrospectively collected and divided into good/poor outcome groups based on postoperative modified Japanese Orthopedic Association (mJOA) scores. The datasets obtained from several scanners (an independent scanner) for the training (testing) cohort were used for cross-validation (CV). Radiological models based on the intramedullary hyperintensity and compression ratio were constructed with 14 binary classifiers. Radiomic models based on 237 robust radiomic features were constructed with the same 14 binary classifiers in combination with 7 feature reduction methods, resulting in 98 models. The main outcome measures were the area under the receiver operating characteristic curve (AUROC) and accuracy. RESULTS Forty-one (11) radiomic models were superior to random guessing during CV (testing), with significant increased AUROC and/or accuracy (P AUROC < .05 and/or P accuracy < .05). One radiological model performed better than random guessing during CV (P accuracy < .05). In the testing cohort, the linear SVM preprocessor + SVM, the best radiomic model (AUROC: 0.74 ± 0.08, accuracy: 0.73 ± 0.07), overperformed the best radiological model (P AUROC = .048). CONCLUSION Radiomic features can predict postoperative spinal cord function in CSM patients. The linear SVM preprocessor + SVM has great application potential in building radiomic models.
Collapse
Affiliation(s)
- Meng‐Ze Zhang
- Department of RadiologyPeking University Third HospitalBeijingChina
| | - Han‐Qiang Ou‐Yang
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal Disease ResearchBeijingChina
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of EducationBeijingChina
| | - Liang Jiang
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal Disease ResearchBeijingChina
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of EducationBeijingChina
| | - Chun‐Jie Wang
- Department of RadiologyPeking University Third HospitalBeijingChina
| | - Jian‐Fang Liu
- Department of RadiologyPeking University Third HospitalBeijingChina
| | - Dan Jin
- Department of RadiologyPeking University Third HospitalBeijingChina
| | - Ming Ni
- Department of RadiologyPeking University Third HospitalBeijingChina
| | - Xiao‐Guang Liu
- Department of OrthopedicsPeking University Third HospitalBeijingChina
- Beijing Key Laboratory of Spinal Disease ResearchBeijingChina
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of EducationBeijingChina
| | - Ning Lang
- Department of RadiologyPeking University Third HospitalBeijingChina
| | - Hui‐Shu Yuan
- Department of RadiologyPeking University Third HospitalBeijingChina
| |
Collapse
|
23
|
Park KB. Diagnosis and treatment of congenital scoliosis. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.11.728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Congenital scoliosis is caused by anomalies of the vertebra, such as hemivertebra or unsegmented bar, which result in asymmetric growth of the spine. The disruption of vertebra development during embryogenesis may be accompanied by other congenital multi-organ anomalies. The progression of the scoliotic curve may also hinder the development of other organs.Current Concepts: Hemivertebra excision and short spinal fusion have demonstrated favorable outcomes. However, the need for spinal growth and lung development has led to new treatment modalities. Growth-friendly surgeries, such as with a growing rod or vertical expandable rib-based distraction device, have demonstrated good results with curve correction while maintaining spinal growth. Although the outcome of conservative treatment for congenital scoliosis is questionable, casting may be effective as a “time-buying strategy” to delay the need for surgery.Discussion and Conclusion: It is essential to decide on a treatment plan considering the progression of the curve and growth of the spine and lungs through an individualized approach.
Collapse
|
24
|
Sun Y, Xing Y, Zhao Z, Meng X, Xu G, Hai Y. Comparison of manual versus automated measurement of Cobb angle in idiopathic scoliosis based on a deep learning keypoint detection technology. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 31:1969-1978. [PMID: 34716822 DOI: 10.1007/s00586-021-07025-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 09/27/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE The present study compared manual and automated measurement of Cobb angle in idiopathic scoliosis based on deep learning keypoint detection technology. METHODS A total of 181 anterior-posterior spinal X-rays were included in this study, including 165 cases of idiopathic scoliosis and 16 normal adult cases without scoliosis. We labeled all images and randomly chose 145 as the training set and 36 as the test set. Two state-of-the-art deep learning object detection models based on convolutional neural networks were used in sequence to segment each vertebra and locate the vertebral corners. Cobb angles measured from the output of the models were compared to manual measurements performed by orthopedic experts. RESULTS The mean Cobb angle in test cases was 27.4° ± 19.2° (range 0.00-91.00°) with manual measurements and 26.4° ± 18.9° (range 0.00-88.00°) with automated measurements. The automated method needed 4.45 s on average to measure each radiograph. The intra-class correlation coefficient (ICC) for the reliability of the automated measurement of the Cobb angle was 0.994. The Pearson correlation coefficient and mean absolute error between automated positioning and expert annotation were 0.990 and 2.2° ± 2.0°, respectively. The analytical result for the Spearman rank-order correlation was 0.984 (p < 0.001). CONCLUSION The automated measurement results agreed with the experts' annotation and had a high degree of reliability when the Cobb angle did not exceed 90° and could locate multiple curves in the same scoliosis case simultaneously in a short period of time. Our results need to be verified in more cases in the future.
Collapse
Affiliation(s)
- Yu Sun
- School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Yaozhong Xing
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Zian Zhao
- School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Xianglong Meng
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China.
| | - Gang Xu
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| | - Yong Hai
- Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gong Ti Nan Road, Chaoyang District, Beijing, 100020, China
| |
Collapse
|
25
|
D’Antoni F, Russo F, Ambrosio L, Vollero L, Vadalà G, Merone M, Papalia R, Denaro V. Artificial Intelligence and Computer Vision in Low Back Pain: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010909. [PMID: 34682647 PMCID: PMC8535895 DOI: 10.3390/ijerph182010909] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022]
Abstract
Chronic Low Back Pain (LBP) is a symptom that may be caused by several diseases, and it is currently the leading cause of disability worldwide. The increased amount of digital images in orthopaedics has led to the development of methods related to artificial intelligence, and to computer vision in particular, which aim to improve diagnosis and treatment of LBP. In this manuscript, we have systematically reviewed the available literature on the use of computer vision in the diagnosis and treatment of LBP. A systematic research of PubMed electronic database was performed. The search strategy was set as the combinations of the following keywords: "Artificial Intelligence", "Feature Extraction", "Segmentation", "Computer Vision", "Machine Learning", "Deep Learning", "Neural Network", "Low Back Pain", "Lumbar". Results: The search returned a total of 558 articles. After careful evaluation of the abstracts, 358 were excluded, whereas 124 papers were excluded after full-text examination, taking the number of eligible articles to 76. The main applications of computer vision in LBP include feature extraction and segmentation, which are usually followed by further tasks. Most recent methods use deep learning models rather than digital image processing techniques. The best performing methods for segmentation of vertebrae, intervertebral discs, spinal canal and lumbar muscles achieve Sørensen-Dice scores greater than 90%, whereas studies focusing on localization and identification of structures collectively showed an accuracy greater than 80%. Future advances in artificial intelligence are expected to increase systems' autonomy and reliability, thus providing even more effective tools for the diagnosis and treatment of LBP.
Collapse
Affiliation(s)
- Federico D’Antoni
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo 21, 00128 Rome, Italy; (F.D.); (L.V.)
| | - Fabrizio Russo
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
- Correspondence: (F.R.); (M.M.)
| | - Luca Ambrosio
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| | - Luca Vollero
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo 21, 00128 Rome, Italy; (F.D.); (L.V.)
| | - Gianluca Vadalà
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| | - Mario Merone
- Unit of Computer Systems and Bioinformatics, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo 21, 00128 Rome, Italy; (F.D.); (L.V.)
- Correspondence: (F.R.); (M.M.)
| | - Rocco Papalia
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| | - Vincenzo Denaro
- Department of Orthopaedic Surgery, Università Campus Bio-Medico di Roma, Via Alvaro Del Portillo 200, 00128 Rome, Italy; (L.A.); (G.V.); (R.P.); (V.D.)
| |
Collapse
|
26
|
Falla D, Devecchi V, Jiménez-Grande D, Rügamer D, Liew BXW. Machine learning approaches applied in spinal pain research. J Electromyogr Kinesiol 2021; 61:102599. [PMID: 34624604 DOI: 10.1016/j.jelekin.2021.102599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/13/2023] Open
Abstract
The purpose of this narrative review is to provide a critical reflection of how analytical machine learning approaches could provide the platform to harness variability of patient presentation to enhance clinical prediction. The review includes a summary of current knowledge on the physiological adaptations present in people with spinal pain. We discuss how contemporary evidence highlights the importance of not relying on single features when characterizing patients given the variability of physiological adaptations present in people with spinal pain. The advantages and disadvantages of current analytical strategies in contemporary basic science and epidemiological research are reviewed and we consider how analytical machine learning approaches could provide the platform to harness the variability of patient presentations to enhance clinical prediction of pain persistence or recurrence. We propose that machine learning techniques can be leveraged to translate a potentially heterogeneous set of variables into clinically useful information with the potential to enhance patient management.
Collapse
Affiliation(s)
- Deborah Falla
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.
| | - Valter Devecchi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - David Jiménez-Grande
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - David Rügamer
- Department of Statistics, Ludwig-Maximilians-Universität München, Germany
| | - Bernard X W Liew
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Colchester, Essex, UK
| |
Collapse
|
27
|
Tsai JY, Hung IYJ, Guo YL, Jan YK, Lin CY, Shih TTF, Chen BB, Lung CW. Lumbar Disc Herniation Automatic Detection in Magnetic Resonance Imaging Based on Deep Learning. Front Bioeng Biotechnol 2021; 9:708137. [PMID: 34490222 PMCID: PMC8416668 DOI: 10.3389/fbioe.2021.708137] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Lumbar disc herniation (LDH) is among the most common causes of lower back pain and sciatica. The causes of LDH have not been fully elucidated but most likely involve a complex combination of mechanical and biological processes. Magnetic resonance imaging (MRI) is a tool most frequently used for LDH because it can show abnormal soft tissue areas around the spine. Deep learning models may be trained to recognize images with high speed and accuracy to diagnose LDH. Although the deep learning model requires huge numbers of image datasets to train and establish the best model, this study processed enhanced medical image features for training the small-scale deep learning dataset. Methods: We propose automatic detection to assist the initial LDH exam for lower back pain. The subjects were between 20 and 65 years old with at least 6 months of work experience. The deep learning method employed the YOLOv3 model to train and detect small object changes such as LDH on MRI. The dataset images were processed and combined with labeling and annotation from the radiologist's diagnosis record. Results: Our method proves the possibility of using deep learning with a small-scale dataset with limited medical images. The highest mean average precision (mAP) was 92.4% at 550 images with data augmentation (550-aug), and the YOLOv3 LDH training was 100% with the best average precision at 550-aug among all datasets. This study used data augmentation to prevent under- or overfitting in an object detection model that was trained with the small-scale dataset. Conclusions: The data augmentation technique plays a crucial role in YOLOv3 training and detection results. This method displays a high possibility for rapid initial tests and auto-detection for a limited clinical dataset.
Collapse
Affiliation(s)
- Jen-Yung Tsai
- Department of Digital Media Design, Asia University, Taichung, Taiwan
| | - Isabella Yu-Ju Hung
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Yue Leon Guo
- Environmental and Occupational Medicine, College of Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan
- Graduate Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Yih-Kuen Jan
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Chih-Yang Lin
- Department of Electrical Engineering, Yuan Ze University, Chung-Li, Taiwan
| | - Tiffany Ting-Fang Shih
- Department of Medical Imaging and Radiology, National Taiwan University (NTU) Hospital and NTU College of Medicine, Taipei, Taiwan
| | - Bang-Bin Chen
- Department of Medical Imaging and Radiology, National Taiwan University (NTU) Hospital and NTU College of Medicine, Taipei, Taiwan
| | - Chi-Wen Lung
- Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Champaign, IL, United States
- Department of Creative Product Design, Asia University, Taichung, Taiwan
| |
Collapse
|
28
|
Weber KA, Abbott R, Bojilov V, Smith AC, Wasielewski M, Hastie TJ, Parrish TB, Mackey S, Elliott JM. Multi-muscle deep learning segmentation to automate the quantification of muscle fat infiltration in cervical spine conditions. Sci Rep 2021; 11:16567. [PMID: 34400672 PMCID: PMC8368246 DOI: 10.1038/s41598-021-95972-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 12/23/2022] Open
Abstract
Muscle fat infiltration (MFI) has been widely reported across cervical spine disorders. The quantification of MFI requires time-consuming and rater-dependent manual segmentation techniques. A convolutional neural network (CNN) model was trained to segment seven cervical spine muscle groups (left and right muscles segmented separately, 14 muscles total) from Dixon MRI scans (n = 17, 17 scans < 2 weeks post motor vehicle collision (MVC), and 17 scans 12 months post MVC). The CNN MFI measures demonstrated high test reliability and accuracy in an independent testing dataset (n = 18, 9 scans < 2 weeks post MVC, and 9 scans 12 months post MVC). Using the CNN in 84 participants with scans < 2 weeks post MVC (61 females, 23 males, age = 34.2 ± 10.7 years) differences in MFI between the muscle groups and relationships between MFI and sex, age, and body mass index (BMI) were explored. Averaging across all muscles, females had significantly higher MFI than males (p = 0.026). The deep cervical muscles demonstrated significantly greater MFI than the more superficial muscles (p < 0.001), and only MFI within the deep cervical muscles was moderately correlated to age (r > 0.300, p ≤ 0.001). CNN's allow for the accurate and rapid, quantitative assessment of the composition of the architecturally complex muscles traversing the cervical spine. Acknowledging the wider reports of MFI in cervical spine disorders and the time required to manually segment the individual muscles, this CNN may have diagnostic, prognostic, and predictive value in disorders of the cervical spine.
Collapse
Affiliation(s)
- Kenneth A Weber
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Rebecca Abbott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Vivie Bojilov
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Andrew C Smith
- Physical Therapy Program, Department of Physical Medicine and Rehabilitation, School of Medicine, University of Colorado, Aurora, CO, USA
| | - Marie Wasielewski
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Trevor J Hastie
- Statistics Department, Stanford University, Palo Alto, CA, USA
| | - Todd B Parrish
- Department of Radiology, Northwestern University, Chicago, IL, USA
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - James M Elliott
- Northern Sydney Local Health District, The Kolling Institute, St. Leonards, NSW, Australia.,The Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.,Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
29
|
The measurement of Cobb angle based on spine X-ray images using multi-scale convolutional neural network. Phys Eng Sci Med 2021; 44:809-821. [PMID: 34251603 DOI: 10.1007/s13246-021-01032-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a structural spinal deformity mainly in the coronal plane and is among the most frequent deformities in children, adolescents, and young adults, with an overall prevalence of 0.47-5.2%. The Cobb angle is an objective measure to determine the progression of deformity and plays a critical role in the planning of surgical treatment. However, existing studies suggested that Cobb angle measurement is susceptible to inter- and intra-observer variability, as well as a high variability in the definition of the end vertebra. In this study, we proposed an automatic method for the spine vertebrae segmentation using Deeplab V3+, a powerful tool that has shown success in the image segmentation of other anatomical regions but spine, and Cobb angle measurement. The segmentation performance was compared to existing mainstay neural networks. Compared to U-Net, Residual U-Net and Dilated U-Net, our method using Deeplab V3+ showed the best performance in the Dice Similarity Coefficient (DSC), accuracy, sensitivity and Jaccard Index. An excellent correlation in the final Cobb angle calculation was achieved between the smallest distance point (SDP) method and two experts (> 0.95), with a small error in the angle estimation compared (MAE < 3°). The proposed method could provide a potential tool for the automatic estimation of the Cobb angle to improve the efficiency and accuracy of the treatment workflow for AIS.
Collapse
|
30
|
Paliwal M, Weber KA, Smith AC, Elliott JM, Muhammad F, Dahdaleh NS, Bodurka J, Dhaher Y, Parrish TB, Mackey S, Smith ZA. Fatty infiltration in cervical flexors and extensors in patients with degenerative cervical myelopathy using a multi-muscle segmentation model. PLoS One 2021; 16:e0253863. [PMID: 34170961 PMCID: PMC8232539 DOI: 10.1371/journal.pone.0253863] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/14/2021] [Indexed: 12/27/2022] Open
Abstract
Background In patients with degenerative cervical myelopathy (DCM) that have spinal cord compression and sensorimotor deficits, surgical decompression is often performed. However, there is heterogeneity in clinical presentation and post-surgical functional recovery. Objectives Primary: a) to assess differences in muscle fat infiltration (MFI) in patients with DCM versus controls, b) to assess association between MFI and clinical disability. Secondary: to assess association between MFI pre-surgery and post-surgical functional recovery. Study design Cross-sectional case control study. Methods Eighteen patients with DCM (58.6 ± 14.2 years, 10 M/8F) and 25 controls (52.6 ± 11.8 years, 13M/12 F) underwent 3D Dixon fat-water imaging. A convolutional neural network (CNN) was used to segment cervical muscles (MFSS- multifidus and semispinalis cervicis, LC- longus capitis/colli) and quantify MFI. Modified Japanese Orthopedic Association (mJOA) and Nurick were collected. Results Patients with DCM had significantly higher MFI in MFSS (20.63 ± 5.43 vs 17.04 ± 5.24, p = 0.043) and LC (18.74 ± 6.7 vs 13.66 ± 4.91, p = 0.021) than controls. Patients with increased MFI in LC and MFSS had higher disability (LC: Nurick (Spearman’s ρ = 0.436, p = 0.003) and mJOA (ρ = -0.399, p = 0.008)). Increased MFI in LC pre-surgery was associated with post-surgical improvement in Nurick (ρ = -0.664, p = 0.026) and mJOA (ρ = -0.603, p = 0.049). Conclusion In DCM, increased muscle adiposity is significantly associated with sensorimotor deficits, clinical disability, and functional recovery after surgery. Accurate and time efficient evaluation of fat infiltration in cervical muscles may be conducted through implementation of CNN models.
Collapse
Affiliation(s)
- Monica Paliwal
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| | - Kenneth A. Weber
- Department of Anesthesiology, Systems Neuroscience and Pain Laboratory, Perioperative and Pain Medicine, Stanford University, Palo Alto, California, United States of America
| | - Andrew C. Smith
- Department of Physical Medicine and Rehabilitation, School of Medicine, Physical Therapy Program, Aurora, Colorado, United States of America
| | - James M. Elliott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Faculty of Medicine and Health, University of Sydney, Kolling Institute of Medical Research, St. Leonards, New South Wales, Australia
| | - Fauziyya Muhammad
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Nader S. Dahdaleh
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, Oklahoma, United States of America
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Yasin Dhaher
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Todd B. Parrish
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Sean Mackey
- Department of Anesthesiology, Systems Neuroscience and Pain Laboratory, Perioperative and Pain Medicine, Stanford University, Palo Alto, California, United States of America
| | - Zachary A. Smith
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
31
|
Cui P, Shu T, Lei J, Chen W. Nerve recognition in percutaneous transforaminal endoscopic discectomy using convolutional neural network. Med Phys 2021; 48:2279-2288. [PMID: 33683736 DOI: 10.1002/mp.14822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Percutaneous transforaminal endoscopic discectomy (PTED) is one of the most common minimally invasive surgery methods used in clinic in recent years. In this study, we developed a computer-aided detection system (CADS) based on convolutional neural network (CNN) to automatically recognize nerve and dura mater images under PTED surgery. METHODS We collected surgical videos from 65 patients with lumbar disc herniation who underwent PTED; we then converted the videos into images, and randomly divided some images into a training dataset, a validation dataset, test dataset. The training dataset and validation dataset were composed of 10 454 images containing nerve and dura mater from 50 randomly selected patients; test dataset contained 12 000 images from the remaining 15 patients. RESULTS The results showed that sensitivity, specificity, and accuracy reached 90.90%, 93.68%, and 92.29%, respectively. CADS could recognize the nerve and dura mater with no significant difference (P > 0.05) between each patient in test dataset. In comparison with clinicians of different levels, the performance of CADS was lower than that of a spinal endoscopist, but significantly higher than that of general surgeons. With the assistance of CADS, the performance of the general surgeons approached that of the spinal endoscopist. CONCLUSIONS CNN can recognize well nerve and dura mater images in PTED surgery, and can help general surgeons to improve their ability to recognize tissues during the operation.
Collapse
Affiliation(s)
- Peng Cui
- Biomedical Information Engineering Lab, The University of Aizu, Aizu-Wakamatsu City, Fukushima, 965-8580, Japan
| | - Tao Shu
- Department of Spine Surgery, Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, China
| | - Jun Lei
- Department of Orthopedics, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, China
| | - Wenxi Chen
- Biomedical Information Engineering Lab, The University of Aizu, Aizu-Wakamatsu City, Fukushima, 965-8580, Japan
| |
Collapse
|
32
|
Chen K, Zhai X, Sun K, Wang H, Yang C, Li M. A narrative review of machine learning as promising revolution in clinical practice of scoliosis. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:67. [PMID: 33553360 PMCID: PMC7859734 DOI: 10.21037/atm-20-5495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/27/2020] [Indexed: 11/06/2022]
Abstract
Machine learning (ML), as an advanced domain of artificial intelligence (AI), is progressively changing our view of the world. By implementing its algorithms, our ability to detect previously undiscoverable patterns in data has the potential to revolutionize predictive analytics. Scoliosis, as a relatively specialized branch in the spine field, mainly covers the pediatric, adult and the elderly populations, and its diagnosis and treatment remain difficult. With recent efforts and interdisciplinary cooperation, ML has been widely applied to investigate issues related to scoliosis, and surprisingly augment a surgeon's ability in clinical practice related to scoliosis. Meanwhile, ML models penetrate in every stage of the clinical practice procedure of scoliosis. In this review, we first present a brief description of the application of ML in the clinical practice procedures regarding scoliosis, including screening, diagnosis and classification, surgical decision making, intraoperative manipulation, complication prediction, prognosis prediction and rehabilitation. Meanwhile, the ML models and specific applications adopted are presented. Additionally, current limitations and future directions are briefly discussed regarding its use in the field of scoliosis. We believe that the implementation of ML is a promising revolution to assist surgeons in all aspects of clinical practice related to scoliosis in the near future.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Kaiqiang Sun
- Department of Orthopedics, Shanghai Changzheng Hospital, Shanghai, China
| | - Haojue Wang
- Basic medicine college, Navy Medical University, Shanghai, China
| | - Changwei Yang
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| | - Ming Li
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, China
| |
Collapse
|