1
|
Flavonoids of Artemisia argyi. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
2
|
Nong W, Huang F, Mao F, Lao D, Gong Z, Huang W. DCAF12 and HSPA1A May Serve as Potential Diagnostic Biomarkers for Myasthenia Gravis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8587273. [PMID: 35655486 PMCID: PMC9155969 DOI: 10.1155/2022/8587273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/11/2022] [Indexed: 12/20/2022]
Abstract
Background Myasthenia gravis (MG) is an autoimmune disease that severely affects the life quality of patients. This study explores the differences in immune cell types between MG and healthy control and the role of immune-related genes in the diagnosis of MG. Methods The GSE85452 dataset was downloaded from the Gene Expression Omnibus (GEO) database and analyzed using the limma package to determine differentially expressed genes (DEGs) between patients with MG and the control group. Differentially expressed immune cells were analyzed using single-sample gene set enrichment analysis (GSEA), while immune cell-associated modules were identified by weighted gene coexpression network analysis (WGCNA). Then, the expression of the identified hub genes was confirmed by RT-PCR in peripheral blood mononuclear cells (PBMCs) of MG patients. The R package pROC was used to plot the receiver operating characteristics (ROC) curves. Results The modules related to CD56bright natural killer cells were identified by GSEA and WGCNA. The proportion of CD56bright natural killer cells in the peripheral blood of MG patients is low. The results of RT-PCR showed that the levels of DDB1- and CUL4-associated factor 12 (DCAF12) and heat shock protein family A member 1A (HSPA1A) were significantly decreased in peripheral blood mononuclear cells of MG patients compared with healthy controls. The ROC curve results of DCAF12 and HSPA1A mRNA in MG diagnosis were 0.780 and 0.830, respectively. Conclusions CD56bright NK cell is lower in MG patients and may affect MG occurrence. DCAF12 and HSPA1A are lowly expressed in PBMCs of MG patients and may serve as the diagnostic biomarkers of MG.
Collapse
Affiliation(s)
- Weidong Nong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fang Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Fengping Mao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Dayuan Lao
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Zhuowei Gong
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| | - Wen Huang
- Department of Neurology, First Affiliated Hospital, Guangxi Medical University, Nanning, China 530021
| |
Collapse
|
3
|
An JM, Kim E, Lee HJ, Park MH, Son DJ, Hahm KB. Dolichos lablab L. extracts as pharmanutrient for stress-related mucosal disease in rat stomach. J Clin Biochem Nutr 2020; 67:89-101. [PMID: 32801474 PMCID: PMC7417803 DOI: 10.3164/jcbn.20-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric stress-related mucosal disease (SRMD) presented from superficial gastritis to deep ulceration consequent to insufficient perfusion, ischemia, and oxidative stress. Though pharmacologic interventions to optimize tissue perfusion or to enhance defensive mechanism are essential, limited clinical outcome necessitates strong acid suppressors or natural agents. Under the hypothesis that Dolichos lablab L. (NKM 23-1) can enhance defense against SRMD, water immersion restraint stress (WIRS) were imposed to rats and additional groups pretreated with differing doses of NKM 23-1 were monitored. On gross and microscopic evaluation, they significantly rescued SRMD (p<0.01). The levels of inflammatory mediators such as IL-18, IL-1β, IL-8, iNOS, TNF-α, caspase-1, NOXs as well as MMPs accompanied with NF-κB p50 activation were all significantly increased in WIRS, but their levels were significantly decreased in Groups pretreated with NKM 23-1. WIRS significantly increased apoptosis, but significantly decreased with NKM 23-1 accompanied with significantly increased levels of cyclin D/E and HSP70/HSP27. Gastric mucin was significantly preserved in Groups pretreated with NKM 23-1, while depleted in WIRS, accompanied with increased expressions of Muc5A. Gastric levels of HO-1 and NQO1 were significantly increased in Group treated with NKM 23-1 with transcriptional activation of Nrf2. Conclusively, preemptive intake of NKM 23-1 significantly rescued SRMD.
Collapse
Affiliation(s)
- Jeong Min An
- CHA Cancer Preventive Research Center, CHA Bio Complex, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Korea
| | - EunHye Kim
- CHA Cancer Preventive Research Center, CHA Bio Complex, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Korea
| | - Ho Jae Lee
- Gachon University Lee Gil Ya Cancer and Diabetes Institute, Incheon, 21565, Korea
| | - Min Hee Park
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, 28644, Korea
| | - Ki Baik Hahm
- CHA Cancer Preventive Research Center, CHA Bio Complex, CHA University, 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13496, Korea.,Research Institute, Medpactor, 92, Myeongdal-ro, Seocho-gu, Seoul, 06668, Korea
| |
Collapse
|
4
|
Increase of Hspa1a and Hspa1b genes in the resting B cells of Sirt1 knockout mice. Mol Biol Rep 2019; 46:4225-4234. [DOI: 10.1007/s11033-019-04876-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/14/2019] [Indexed: 01/12/2023]
|
5
|
Kim KO, Lee D, Hiep NT, Song JH, Lee HJ, Lee D, Kang KS. Protective Effect of Phenolic Compounds Isolated from Mugwort ( Artemisia argyi) against Contrast-Induced Apoptosis in Kidney Epithelium Cell Line LLC-PK1. Molecules 2019; 24:molecules24010195. [PMID: 30621054 PMCID: PMC6337708 DOI: 10.3390/molecules24010195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
We investigated whether 14 phenolic compounds isolated from Artemisia argyi could prevent the apoptotic damage caused by iodixanol, an iodinated contrast agent, on LLC-PK1 cells. Iodixanol was used to induce cytotoxicity in LLC-PK1 cells. Apoptotic cell death was observed as the fluorescence intensity emitted by annexin V and Hoechst 33342 stains. Western blotting was used to detect specific proteins. Seven phenolic compounds protected against iodixanol-induced LLC-PK1 cell death in a concentration-dependent manner. Among them, methyl caffeate exerted the strongest protective effect, and co-treatment with 50 and 100 μM methyl caffeate decreased intracellular reactive oxygen species elevated by 25 mg/mL iodixanol. In addition, the treatment of LLC-PK1 cells with iodixanol resulted in an increase in apoptotic cell death, which decreased by co-treatment with methyl caffeate. Iodixanol caused a cytotoxicity-related increase in the phosphorylation of extracellular-signal-regulated kinase, c-Jun N-terminal kinase, and P38; and a similar increase in the expression levels of kidney injury molecule-1 and cleaved caspase-3. However, the up-regulation of these proteins was reversed by co-treatment with methyl caffeate. These findings suggest that phenolic compounds isolated from A. argyi play an important role in protecting kidney epithelium cells against apoptotic damage caused by iodixanol.
Collapse
Affiliation(s)
- Kem Ok Kim
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Nguyen Tuan Hiep
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Ji Hoon Song
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bio-Nano technology, Gachon University, Seongnam 13120, Korea.
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
6
|
Ahuja A, Yi YS, Kim MY, Cho JY. Ethnopharmacological properties of Artemisia asiatica: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:117-128. [PMID: 29604379 DOI: 10.1016/j.jep.2018.03.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/24/2018] [Accepted: 03/24/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia asiatica Nakai (Compositae) has a long history as a traditional remedy. Preparation from various parts of the plant (aerial parts and leaves) are used to treat a wide range of diseases including gastric trouble, liver dysfunction, and skin inflammation. AIMS OF THIS REVIEW The aims of this review were: 1) to provide an overview of recent studies and progress on A. asiatica-derived ethnopharmacological compounds and their pharmacological activities; and 2) to summarize existing evidence and provide insight for future studies. MATERIALS AND METHODS This investigation was carried out by analyzing published books and research papers via scientific databases, namely Science Direct, PubMed ACS Publication, Wiley Online Library, CNKI and information obtained online. The keywords "Artemisia asiatica traditional uses," "Compounds isolated and studied in Artemisia asiatica," and "Pharmacological advances in Artemisia asiatica" were used and articles published between 1995 and 2017 were considered. In total, 500 works related to biological activities of A. asiatica were identified, and only materials published in English were included in the review. RESULTS Comparative analysis of literature searched through sources available confirmed that the ethnopharmacological use of A. asiatica was recorded in Korea, China, and Japan. Phytochemical studies revealed the presence of flavonoids, sesquiterpene lactones, monoterpenes, and steroids in A. asiatica. Of these, flavonoids have been shown to exhibit significant pharmacological effects such as gastroprotective, anti-inflammatory, anti-tumor, and anti-microbial actions. CONCLUSIONS Phytochemical and pharmacological studies of Artemisia asiatica have proven that this plant is one of valuable medicinal sources with neuroprotective, gastroprotective, anti-oxidative, anti-inflammatory, and anti-cancer effects. Although ethanol extract of this plant is now being prescribed as gastroprotective and anti-ulcerative medicine, it is now time to expand its application to other human inflammatory diseases such as pancreatitis and hepatitis and further extensive study on toxicity in human. Therefore, the present review will encourage further studies of A. asiatica in the pursuit of wide range of therapeutic remedy.
Collapse
Affiliation(s)
- Akash Ahuja
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju 28503, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
7
|
Lee D, Kim CE, Park SY, Kim KO, Hiep NT, Lee D, Jang HJ, Lee JW, Kang KS. Protective Effect of Artemisia argyi and Its Flavonoid Constituents against Contrast-Induced Cytotoxicity by Iodixanol in LLC-PK1 Cells. Int J Mol Sci 2018; 19:ijms19051387. [PMID: 29735908 PMCID: PMC5983776 DOI: 10.3390/ijms19051387] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
Preventive effects and corresponding molecular mechanisms of mugwort (Artemisia argyi) extract and its flavonoid constituents on contrast-induced nephrotoxicity were explored in the present study. We treated cultured LLC-PK1 cells with iodixanol to induce contrast-induced nephrotoxicity, and found that A. argyi extracts ameliorated the reduction in cellular viability following iodixanol treatment. The anti-apoptotic effect of A. argyi extracts on contrast-induced nephrotoxicity was mediated by the inhibition of mitogen-activated protein kinase (MAPK) phosphorylation and the activation of caspases. The flavonoid compounds isolated from A. argyi improved the viability of iodixanol-treated cells against contrast-induced nephrotoxicity. Seven compounds (1, 2, 3, 15, 16, 18, and 19) from 19 flavonoids exerted a significant protective effect. Based on the in silico oral-bioavailability and drug-likeness assessment, which evaluate the drug potential of these compounds, compound 2 (artemetin) showed the highest oral bioavailability (49.55%) and drug-likeness (0.48) values. We further investigated the compound–target–disease network of compound 2, and proliferator-activated receptor gamma (PPAR-γ) emerged as a predicted key marker for the treatment of contrast-induced nephrotoxicity. Consequently, compound 2 was the preferred candidate, and its protective effect was mediated by inhibiting the contrast-induced inflammatory response through activation of PPAR-γ and inhibition of MAPK phosphorylation and activation of caspases.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea.
| | - Chang-Eop Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Sa-Yoon Park
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| | - Kem Ok Kim
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Nguyen Tuan Hiep
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Dongho Lee
- Department of Biosystems and Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Hyuk-Jai Jang
- Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Jae Wook Lee
- Natural Constituent Research Center, Korea Institute of Science and Technology, Gangnung 210-340, Korea.
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
8
|
Liang J, Wu S, Xie W, He H. Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:845-853. [PMID: 29713142 PMCID: PMC5907785 DOI: 10.2147/dddt.s160046] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Ketamine can act as a multifunctional neuroprotective agent by inhibiting oxidative stress, cellular dysfunction, and apoptosis. Although it has been proven to be effective in various neurologic disorders, the mechanism of the treatment of traumatic brain injury (TBI) is not fully understood. The aim of this study was to investigate the neuroprotective function of ketamine in models of TBI and the potential role of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in this putative protective effect. Materials and methods Wild-type male mice were randomly assigned to five groups: Sham group, Sham + ketamine group, TBI group, TBI + vehicle group, and TBI + ketamine group. Marmarou’s weight drop model in mice was used to induce TBI, after which either ketamine or vehicle was administered via intraperitoneal injection. After 24 h, the brain samples were collected for analysis. Results Ketamine significantly ameliorated secondary brain injury induced by TBI, including neurological deficits, brain water content, and neuronal apoptosis. In addition, the levels of malondialdehyde (MDA), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were restored by the ketamine treatment. Western blotting and immunohistochemistry showed that ketamine significantly increased the level of Nrf2. Furthermore, administration of ketamine also induced the expression of Nrf2 pathway-related downstream factors, including hemeoxygenase-1 and quinine oxidoreductase-1, at the pre- and post-transcriptional levels. Conclusion Ketamine exhibits neuroprotective effects by attenuating oxidative stress and apoptosis after TBI. Therefore, ketamine could be an effective therapeutic agent for the treatment of TBI.
Collapse
Affiliation(s)
- Jinwei Liang
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Shanhu Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Wenxi Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| | - Hefan He
- Department of Anesthesiology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, People's Republic of China
| |
Collapse
|
9
|
Kim JI, Park SW, Lim JJ, Sohn SI, Shin JS, Park SC, Jang YP, Chung EK, Lee HW, Lee KT. Gastroprotective effects of the isopropanol extract of Artemisia princeps and its gastroretentive floating tablets on gastric mucosal injury. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2017; 67:479-494. [PMID: 29337669 DOI: 10.1515/acph-2017-0037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2017] [Indexed: 02/07/2023]
Abstract
In this study, we investigated the gastroprotective effect of an isopropanol extract from the aerial parts of Artemisia princeps (IPAP) and developed a gastroretentive floating tablet of IPAP (IPAP-FR) for maximized local gastroprotective effects. Pre-treatment with IPAP ameliorated the gastric mucosal hemorrhagic lesions in ethanol/HCl- or indomethacin- treated rats. IPAP decreased mucosal hemorrhage of gastric ulcers induced by ethanol or indomethacin plus pyloric ligation in rats. The optimized floating tablet, IPAP-FR, floated on medium surface with more sustained eupatilin release compared to the non-floating control tablet. X-ray photographs in beagle dogs showed that IPAPFR was retained for > 2 h in the stomach. In the ethanol-induced gastric ulcer rat model, the gastric hemorrhagic lesion was improved more substantially with IPAP-FR compared to the non-floating control tablet. Based on these data, our data suggest that IPAP-FR has an improved therapeutic potential for the treatment of gastric ulcer.
Collapse
Affiliation(s)
- Joo-Il Kim
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro Dongdaemun-gu, Seoul , 02447, Korea Republic of
- Central Research Institute, Daewon Pharmaceutical Company, 520 Cheonho-daero, Gwangjin-gu, Seoul Republic of Korea
| | - Sang-Wook Park
- Central Research Institute, Daewon Pharmaceutical Company, 520 Cheonho-daero, Gwangjin-gu, Seoul Republic of Korea
- Interdisciplinary Program in Agricultural Biotechnology College of Agriculture and Life Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul , 08826 Korea Republic of
| | - Jhong-Jae Lim
- Central Research Institute, Daewon Pharmaceutical Company, 520 Cheonho-daero, Gwangjin-gu, Seoul Republic of Korea
| | - Se-Il Sohn
- Central Research Institute, Daewon Pharmaceutical Company, 520 Cheonho-daero, Gwangjin-gu, Seoul Republic of Korea
| | - Ji-Su Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro Dongdaemun-gu, Seoul , 02447, Korea Republic of
| | - Sang Cheol Park
- Department of Life and Nanopharmaceutical Science College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul , 02447, Korea Republic of
- Department of Oriental Pharmaceutical Sciences College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul , 02447, Korea Republic of
| | - Young Pyo Jang
- Department of Life and Nanopharmaceutical Science College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea 5 Department of Oriental Pharmaceutical Sciences College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul , 02447, Korea Republic of
| | - Eun Kyoung Chung
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu Seoul , 02447, Korea Republic of
| | - Hong-Woo Lee
- Central Research Institute, Daewon Pharmaceutical Company, 520 Cheonho-daero, Gwangjin-gu, Seoul Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro Dongdaemun-gu, Seoul , 02447, Korea Republic of
- Department of Life and Nanopharmaceutical Science College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul , 02447, Korea Republic of
| |
Collapse
|
10
|
Zhang HJ, Wang XZ, Cao Q, Gong GH, Quan ZS. Design, synthesis, anti-inflammatory activity, and molecular docking studies of perimidine derivatives containing triazole. Bioorg Med Chem Lett 2017; 27:4409-4414. [DOI: 10.1016/j.bmcl.2017.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/06/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
|
11
|
Chen LL, Zhang HJ, Chao J, Liu JF. Essential oil of Artemisia argyi suppresses inflammatory responses by inhibiting JAK/STATs activation. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:107-117. [PMID: 28438564 DOI: 10.1016/j.jep.2017.04.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 05/22/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Artemisia argyi is a herbal medicine traditionally used in Asia for the treatment of bronchitis, dermatitis and arthritis. Recent studies revealed the anti-inflammatory effect of essential oil in this plant. However, the mechanisms underlying the therapeutic potential have not been well elucidated. The present study is aimed to verify its anti-inflammatory effect and investigate the probable mechanisms. MATERIALS AND METHODS The essential oil from Artemisia argyi (AAEO) was initially tested against LPS-induced production of inflammatory mediators and cytokines in RAW264.7 macrophages. Protein and mRNA expressions of iNOS and COX-2 were determined by Western blotting and RT-PCR analysis, respectively. The effects on the activation of MAPK/NF-κB/AP-1 and JAK/STATs pathway were also investigated by western blot. Meanwhile, in vivo anti-inflammatory effect was examined by histologic and immunohistochemical analysis in TPA-induced mouse ear edema model. RESULTS The results of in vitro experiments showed that AAEO dose-dependently suppressed the release of pro-inflammatory mediators (NO, PGE2 and ROS) and cytokines (TNF-α, IL-6, IFN-β and MCP-1) in LPS-induced RAW264.7 macrophages. It down-regulated iNOS and COX-2 protein and mRNA expression but did not affect the activity of these two enzymes. AAEO significantly inhibited the phosphorylation of JAK2 and STAT1/3, but not the activation of MAPK and NF-κB cascades. In animal model, oral administration of AAEO significantly attenuated TPA-induced mouse ear edema and decreased the protein level of COX-2. CONCLUSION AAEO suppresses inflammatory responses via down-regulation of the JAK/STATs signaling and ROS scavenging, which could contribute, at least in part, to the anti-inflammatory effect of AAEO.
Collapse
Affiliation(s)
- Lin-Lin Chen
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Hao-Jun Zhang
- Department of Pharmacology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jung Chao
- Department and Institute of Pharmacology, National Yang-Ming University, Taipei 112, Taiwan
| | - Jun-Feng Liu
- Key Laboratory of Traditional Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| |
Collapse
|
12
|
Sapkota A, Gaire BP, Cho KS, Jeon SJ, Kwon OW, Jang DS, Kim SY, Ryu JH, Choi JW. Eupatilin exerts neuroprotective effects in mice with transient focal cerebral ischemia by reducing microglial activation. PLoS One 2017; 12:e0171479. [PMID: 28178289 PMCID: PMC5298292 DOI: 10.1371/journal.pone.0171479] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/21/2017] [Indexed: 12/16/2022] Open
Abstract
Microglial activation and its-driven neuroinflammation are characteristic pathogenetic features of neurodiseases, including focal cerebral ischemia. The Artemisia asiatica (Asteraceae) extract and its active component, eupatilin, are well-known to reduce inflammatory responses. But the therapeutic potential of eupatilin against focal cerebral ischemia is not known, along with its anti-inflammatory activities on activated microglia. In this study, we investigated the neuroprotective effect of eupatilin on focal cerebral ischemia through its anti-inflammation, particularly on activated microglia, employing a transient middle cerebral artery occlusion/reperfusion (tMCAO), combined with lipopolysaccharide-stimulated BV2 microglia. Eupatilin exerted anti-inflammatory responses in activated BV2 microglia, in which it reduced secretion of well-known inflammatory markers, including nitrite, IL-6, TNF-α, and PGE2, in a concentration-dependent manner. These observed in vitro effects of eupatilin led to in vivo neuroprotection against focal cerebral ischemia. Oral administration of eupatilin (10 mg/kg) in a therapeutic paradigm significantly reduced brain infarction and improved neurological functions in tMCAO-challenged mice. The same benefit was also observed when eupatilin was given even within 5 hours after MCAO induction. In addition, the neuroprotective effects of a single administration of eupatilin (10 mg/kg) immediately after tMCAO challenge persisted up to 3 days after tMCAO. Eupatilin administration reduced the number of Iba1-immunopositive cells across ischemic brain and induced their morphological changes from amoeboid into ramified in the ischemic core, which was accompanied with reduced microglial proliferation in ischemic brain. Eupatilin suppressed NF-κB signaling activities in ischemic brain by reducing IKKα/β phosphorylation, IκBα phosphorylation, and IκBα degradation. Overall, these data indicate that eupatilin is a neuroprotective agent against focal cerebral ischemia through the reduction of microglial activation.
Collapse
Affiliation(s)
- Arjun Sapkota
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Bhakta Prasad Gaire
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Kyu Suk Cho
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Se Jin Jeon
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Oh Wook Kwon
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Dae Sik Jang
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
| | - Jong Hoon Ryu
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Woong Choi
- College of Pharmacy and Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|