1
|
Kosaki K, Kumamoto S, Tokinoya K, Yoshida Y, Sugaya T, Murase T, Akari S, Nakamura T, Nabekura Y, Takekoshi K, Maeda S. Xanthine Oxidoreductase Activity in Marathon Runners: Potential Implications for Marathon-Induced Acute Kidney Injury. J Appl Physiol (1985) 2022; 133:1-10. [DOI: 10.1152/japplphysiol.00669.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Excess activation of circulating xanthine oxidoreductase (XOR) may contribute to the pathogenesis of widespread remote organ injury, including kidney injury. The purpose of this study was to determine the acute impact of marathon running on plasma XOR activity and to examine whether plasma XOR activity is associated with marathon-induced elevations in biomarkers of acute kidney injury (AKI). Twenty-three young men (aged 20-25 years) who participated in the 38th Tsukuba Marathon were included. Blood and urine samples were collected before, immediately, 2 h (only blood sample), and 24 h after a full marathon run. Plasma XOR activity was evaluated using a highly sensitive assay utilizing a combination of [13C2,15N2] xanthine and liquid chromatography-triple quadrupole mass spectrometry. The levels of several AKI biomarkers, such as serum creatinine and urinary liver-type fatty acid-binding protein (L-FABP) were measured in each participant. Marathon running caused a transient elevation in plasma XOR activity and levels of purine degradation products (hypoxanthine, xanthine, and uric acid) as well as serum creatinine, urinary albumin, and urinary L-FABP levels. Immediately after the marathon, individual relative changes in plasma XOR activity were independently correlated with corresponding changes in serum creatinine and urinary L-FABP levels. In addition, the magnitude of marathon-induced elevation in plasma XOR activity and levels of purine degradation products were higher in individuals who developed AKI. These findings collectively suggest that marathon running substantially influences the purine metabolism pathway including XOR activity. Moreover, activated circulating XOR can be partly associated with elevated biomarkers of AKI after marathon running.
Collapse
Affiliation(s)
- Keisei Kosaki
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Shota Kumamoto
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Katsuyuki Tokinoya
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Graduate School of Human Health Science, Tokyo Metropolitan University, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yasuko Yoshida
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Tsukuba International University, Ibaraki, Japan
| | - Takeshi Sugaya
- Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | | | - Seigo Akari
- Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | | | - Yoshiharu Nabekura
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
| | - Kazuhiro Takekoshi
- Department of Clinical Laboratory, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Sciences, University of Tsukuba, Ibaraki, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
2
|
Kurajoh M, Mori K, Miyabe M, Matsufuji S, Kizu A, Tsujimoto Y, Emoto M. Xanthine Oxidoreductase Inhibitor Use Associated With Reduced Risk of Sarcopenia and Severe Sarcopenia in Patients Undergoing Hemodialysis. Front Med (Lausanne) 2022; 9:817578. [PMID: 35198574 PMCID: PMC8859856 DOI: 10.3389/fmed.2022.817578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Xanthine oxidoreductase (XOR) inhibition reduces reactive oxygen species (ROS) production and enhances adenosine triphosphate (ATP) synthesis. We investigated the protective effects of XOR inhibitor treatment on sarcopenia, frequently observed in patients undergoing hemodialysis (HD), in which increased ROS and ATP shortage are known to be involved. Methods This retrospective cross-sectional study included 296 HD patient (203 males, 93 females). Muscle mass, physical performance, and muscle strength were assessed using dual-energy X-ray absorptiometry, five-time chair stand testing, and handgrip strength, respectively. The Asian Working Group for Sarcopenia 2019 criteria were used to define low muscle mass, low physical performance, and low muscle strength, as well as sarcopenia and severe sarcopenia. Results Sarcopenia and severe sarcopenia prevalence rates were 42.2 and 20.9%, respectively. XOR inhibitor users (n = 119) showed a significantly (p < 0.05) lower prevalence of sarcopenia and severe sarcopenia, as well as reduced muscle mass, physical performance, and muscle strength than non-users (n = 177). Multivariate logistic regression analyses also revealed XOR inhibitor use to be significantly associated with low muscle mass [odds ratio (OR), 0.384; 95% confidence interval (CI), 0.183–0.806; p = 0.011] and low physical performance (OR, 0.286; 95% CI, 0.142–0.578; p < 0.001), while significance with low muscle strength was borderline. Furthermore, XOR inhibitor use was significantly associated with sarcopenia (OR, 0.462; 95% CI, 0.226–0.947; p = 0.035) and severe sarcopenia (OR, 0.236; 95% CI, 0.091–0.614; p = 0.003). Conclusions XOR inhibitor use was significantly associated with reduced risk of sarcopenia/severe sarcopenia in HD patients, suggesting that XOR inhibitor treatment has protective effects on sarcopenia in HD patients.
Collapse
Affiliation(s)
- Masafumi Kurajoh
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Mizuki Miyabe
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Division of Internal Medicine, Dialysis Center, Inoue Hospital, Osaka, Japan
| | | | - Akane Kizu
- Division of Internal Medicine, Dialysis Center, Inoue Hospital, Osaka, Japan
| | - Yoshihiro Tsujimoto
- Division of Internal Medicine, Dialysis Center, Inoue Hospital, Osaka, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
3
|
Kosaki K, Yokota A, Tanahashi K, Myoenzono K, Park J, Yoshikawa T, Yoshida Y, Murase T, Akari S, Nakamura T, Maeda S. Associations of circulating xanthine oxidoreductase activity with cardiometabolic risk markers in overweight and obese Japanese men: a cross-sectional pilot study. J Clin Biochem Nutr 2022; 71:122-128. [PMID: 36213790 PMCID: PMC9519417 DOI: 10.3164/jcbn.21-118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/22/2022] [Indexed: 11/29/2022] Open
Abstract
Circulating xanthine oxidoreductase (XOR) activity may contribute to the pathogenesis of obesity-related adverse cardiometabolic profiles. This pilot study aimed to examine the cross-sectional associations between plasma XOR activity and cardiometabolic risk (CMR) markers in overweight and obese men. In 64 overweight and obese Japanese men (aged 31–63 years), plasma XOR activity and several CMR markers, such as homeostasis model assessment of insulin resistance (HOMA-IR), and clustered CMR score were measured in each participant. Clustered CMR score was constructed based on waist circumference, triglyceride, blood pressure, fasting plasma glucose, and high-density lipoprotein cholesterol. Plasma XOR activity in overweight and obese men was positively associated with the body mass index, waist circumference, visceral fat area, body fat mass, hemoglobin A1c, serum 8-hydroxy-2'-deoxyguanosine, HOMA-IR, and clustered CMR score and was inversely associated with handgrip strength and high-density lipoprotein cholesterol. Multiple linear regression analysis further demonstrated that the associations of plasma XOR activity with HOMA-IR and the clustered CMR score remained significant after adjustment for covariates including uric acid. Our data demonstrate that circulating XOR activity was independently associated, albeit modestly, with HOMA-IR and the clustered CMR score. These preliminary findings suggest that circulating XOR activity can potentially be one of the preventive targets and biomarkers of cardiometabolic disorders in overweight and obese men.
Collapse
Affiliation(s)
- Keisei Kosaki
- Faculty of Health and Sport Sciences, University of Tsukuba
| | - Atsumu Yokota
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Koichiro Tanahashi
- Department of Health and Sports Sciences, Kyoto Pharmaceutical University
| | - Kanae Myoenzono
- Graduate School of Comprehensive Human Sciences, University of Tsukuba
| | - Jiyeon Park
- Faculty of Health and Sport Sciences, University of Tsukuba
| | - Toru Yoshikawa
- Faculty of Health & Sport Sciences, Ryutsu Keizai University
| | - Yasuko Yoshida
- Faculty of Health Sciences, Tsukuba International University
| | | | | | | | - Seiji Maeda
- Faculty of Sport Sciences, Waseda University
| |
Collapse
|
4
|
Furuhashi M, Koyama M, Matsumoto M, Murase T, Nakamura T, Higashiura Y, Tanaka M, Moniwa N, Ohnishi H, Saitoh S, Shimamoto K, Miura T. Annual change in plasma xanthine oxidoreductase activity is associated with changes in liver enzymes and body weight. Endocr J 2019; 66:777-786. [PMID: 31130575 DOI: 10.1507/endocrj.ej19-0053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Xanthine oxidoreductase (XOR), an enzyme of uric acid formation from hypoxanthine and xanthine, is recognized as a source of oxidative stress. Plasma activity of XOR has been reported to be a biomarker of metabolic disorders associated with obesity, liver dysfunction, insulin resistance, hyperuricemia and adipokines. We investigated longitudinal change in plasma XOR activity, which was determined by using mass spectrometry and liquid chromatography to detect [13C2, 15N2]-uric acid using [13C2, 15N2]-xanthine as a substrate, in 511 subjects (male/female: 244/267) of the Tanno-Sobetsu Study in the years 2016 and 2017. Plasma XOR activity in a basal state was significantly higher in men than in women, but no significant sex difference was observed in annual change in plasma XOR activity. Annual change in plasma activity of XOR was positively correlated with changes in each parameter, including body weight (r = 0.203, p < 0.001), body mass index, diastolic blood pressure, aspartate transaminase (AST) (r = 0.772, p < 0.001), alanine transaminase (r = 0.647, p < 0.001), γ-glutamyl transpeptidase, total cholesterol, triglycerides, uric acid, fasting glucose and HbA1c. Multivariate regression analysis demonstrated that change in AST and that in body weight were independent predictors of change in plasma XOR activity after adjustment of age, sex and changes in each variable with a significant correlation without multicollinearity. In conclusion, annual change in plasma XOR activity is independently associated with changes in liver enzymes and body weight in a general population. Improvement of liver function and reduction of body weight would decrease plasma XOR activity and its related oxidative stress as a therapeutic strategy.
Collapse
Affiliation(s)
- Masato Furuhashi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayuki Koyama
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Matsumoto
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | - Yukimura Higashiura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Marenao Tanaka
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norihito Moniwa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hirofumi Ohnishi
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shigeyuki Saitoh
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Division of Medical and Behavioral Subjects, Sapporo Medical University School of Health Sciences, Sapporo, Japan
| | | | - Tetsuji Miura
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|