1
|
Senger J, Seitl I, Pross E, Fischer L. Secretion of the cytoplasmic and high molecular weight β-galactosidase of Paenibacillus wynnii with Bacillus subtilis. Microb Cell Fact 2024; 23:170. [PMID: 38867249 PMCID: PMC11167759 DOI: 10.1186/s12934-024-02445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The gram-positive bacterium Bacillus subtilis is widely used for industrial enzyme production. Its ability to secrete a wide range of enzymes into the extracellular medium especially facilitates downstream processing since cell disruption is avoided. Although various heterologous enzymes have been successfully secreted with B. subtilis, the secretion of cytoplasmic enzymes with high molecular weight is challenging. Only a few studies report on the secretion of cytoplasmic enzymes with a molecular weight > 100 kDa. RESULTS In this study, the cytoplasmic and 120 kDa β-galactosidase of Paenibacillus wynnii (β-gal-Pw) was expressed and secreted with B. subtilis SCK6. Different strategies were focused on to identify the best secretion conditions. Tailormade codon-optimization of the β-gal-Pw gene led to an increase in extracellular β-gal-Pw production. Consequently, the optimized gene was used to test four signal peptides and two promoters in different combinations. Differences in extracellular β-gal-Pw activity between the recombinant B. subtilis strains were observed with the successful secretion being highly dependent on the specific combination of promoter and signal peptide used. Interestingly, signal peptides of both the general secretory- and the twin-arginine translocation pathway mediated secretion. The highest extracellular activity of 55.2 ± 6 µkat/Lculture was reached when secretion was mediated by the PhoD signal peptide and expression was controlled by the PAprE promoter. Production of extracellular β-gal-Pw was further enhanced 1.4-fold in a bioreactor cultivation to 77.5 ± 10 µkat/Lculture with secretion efficiencies of more than 80%. CONCLUSION For the first time, the β-gal-Pw was efficiently secreted with B. subtilis SCK6, demonstrating the potential of this strain for secretory production of cytoplasmic, high molecular weight enzymes.
Collapse
Affiliation(s)
- Jana Senger
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Ines Seitl
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Eva Pross
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany
| | - Lutz Fischer
- Institute of Food Science and Biotechnology, Department of Biotechnology and Enzyme Science, University of Hohenheim, Garbenstr. 25, 70599, Stuttgart, Germany.
| |
Collapse
|
2
|
Duan X, Luan S. Efficient secreted expression of natural intracellular β-galactosidase from Bacillus aryabhattai via non-classical protein secretion pathway in Bacillus subtilis. Int J Biol Macromol 2023; 248:125758. [PMID: 37453640 DOI: 10.1016/j.ijbiomac.2023.125758] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/20/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
In this study, the natural intracellular β-galactosidase (lacZBa) from Bacillus aryabhattai was expressed extracellularly in Bacillus subtilis. Sec and Tat signal peptides from different secretion pathways were incorporated to facilitate extracellular secretion of lacZBa, resulting in a yield of only 0.54 U/mL. Interestingly, it was discovered that lacZBa could be efficiently expressed and secreted in B. subtilis via a non-classical secretory pathway without the need for a signal peptide. The extracellular activity and secretion ratio were 5.3 U/mL and 65 %, respectively. Compared to E. coli, the expression of lacZBa in B. subtilis resulted in increased acid resistance and higher pH stability and thermostability, with a 1.7-fold increase in half-life at 50 °C and pH 6.0. Additionally, we combined single-factor experiments and response surface methodology to enhance extracellular expression of β-galactosidase in shake-flasks. The resulting optimal medium contained 4.46 % glucose, 1.47 % corn steep liquor, 1.5 % beef extract, 0.82 % CaCl2, and 0.1 % MgSO4. Under optimal conditions, the yield of extracellularly secreted β-galactosidase at the shake flask level was 17.41 U/mL, representing a 32.2-fold increase in initial extracellular enzyme activity. This study represents the first successful report of natural intracellular β-galactosidase being expressed through the non-classical secretory pathway in B. subtilis.
Collapse
Affiliation(s)
- Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Shuyue Luan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
3
|
Biocontrol of Candida albicans by Antagonistic Microorganisms and Bioactive Compounds. Antibiotics (Basel) 2022; 11:antibiotics11091238. [PMID: 36140017 PMCID: PMC9495215 DOI: 10.3390/antibiotics11091238] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is an endogenous opportunistic pathogenic fungus that is harmless when the host system remains stable. However, C. albicans could seriously threaten human life and health when the body’s immune function declines or the normal flora is out of balance. Due to the increasing resistance of candidiasis to existing drugs, it is important to find new strategies to help treat this type of systemic fungal disease. Biological control is considered as a promising strategy which is more friendly and safer. In this review, we compare the bacteriostatic behavior of different antagonistic microorganisms (bacteria and fungi) against C. albicans. In addition, natural products with unique structures have attracted researchers’ attention. Therefore, the bioactive nature products produced by different microorganisms and their possible inhibitory mechanisms are also reviewed. The application of biological control strategies and the discovery of new compounds with antifungal activity will reduce the resistance of C. albicans, thereby promoting the development of novel diverse antifungal drugs.
Collapse
|
4
|
Movahedpour A, Ahmadi N, Ghalamfarsa F, Ghesmati Z, Khalifeh M, Maleksabet A, Shabaninejad Z, Taheri-Anganeh M, Savardashtaki A. β-Galactosidase: From its source and applications to its recombinant form. Biotechnol Appl Biochem 2021; 69:612-628. [PMID: 33656174 DOI: 10.1002/bab.2137] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Carbohydrate-active enzymes are a group of important enzymes playing a critical role in the degradation and synthesis of carbohydrates. Glycosidases can hydrolyze glycosides into oligosaccharides, polysaccharides, and glycoconjugates via a cost-effective approach. Lactase is an important member of β-glycosidases found in higher plants, animals, and microorganisms. β-Galactosidases can be used to degrade the milk lactose for making lactose-free milk, which is sweeter than regular milk and is suitable for lactose-intolerant people. β-Galactosidase is employed by many food industries to degrade lactose and improve the digestibility, sweetness, solubility, and flavor of dairy products. β-Galactosidase enzymes have various families and are applied in the food-processing industries such as hydrolyzed-milk products, whey, and galactooligosaccharides. Thus, this enzyme is a valuable protein which is now produced by recombinant technology. In this review, origins, structure, recombinant production, and critical modifications of β-galactosidase for improving the production process are discussed. Since β-galactosidase is a valuable enzyme in industry and health care, a study of its various aspects is important in industrial biotechnology and applied biochemistry.
Collapse
Affiliation(s)
- Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahid Ahmadi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farideh Ghalamfarsa
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Khalifeh
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Shabaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Shahid Arefian Hospital, Urmia, Iran.,Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Huang X, Cao L, Qin Z, Li S, Kong W, Liu Y. Tat-Independent Secretion of Polyethylene Terephthalate Hydrolase PETase in Bacillus subtilis 168 Mediated by Its Native Signal Peptide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13217-13227. [PMID: 30465427 DOI: 10.1021/acs.jafc.8b05038] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Widespread utilization of polyethylene terephthalate (PET) has caused critical environmental pollution. The enzymatic degradation of PET is a promising solution to this problem. In this study, PETase, which exhibits much higher PET-hydrolytic activity than other enzymes, was successfully secreted into extracellular milieu from Bacillus subtilis 168 under the direction of its native signal peptide (named SPPETase). SPPETase is predicted to be a twin-arginine signal peptide. Intriguingly, inactivation of twin-arginine translocation (Tat) complexes improved the secretion amount by 3.8-fold, indicating that PETase was exported via Tat-independent pathway. To the best of our knowledge, this is the first report on the improvement of Tat-independent secretion by inactivating Tat components of B. subtilis 168 in LB medium. Furthermore, PET film degradation assay showed that the secreted PETase was fully active. This study paves the first step to construct an efficient engineered strain for PET degradation.
Collapse
Affiliation(s)
- Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Shuifeng Li
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
6
|
Zhao L, Zhou Y, Qin S, Qin P, Chu J, He B. β-Galactosidase BMG without galactose and glucose inhibition: Secretory expression in Bacillus subtilis and for synthesis of oligosaccharide. Int J Biol Macromol 2018; 120:274-278. [DOI: 10.1016/j.ijbiomac.2018.07.148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022]
|
7
|
Xia Y, He L, Mao J, Fang P, Ma X, Wang Z. Purification, characterization, and gene cloning of a new cold-adapted β-galactosidase from Erwinia sp. E602 isolated in northeast China. J Dairy Sci 2018; 101:6946-6954. [DOI: 10.3168/jds.2018-14605] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 04/15/2018] [Indexed: 12/22/2022]
|
8
|
Cao L, Ren G, Qin Z, Huang X, Kong W, Wang Z, Liang W, Bi X, Liu Y. Improving the Secretion Yield of the β-Galactosidase Bgal1-3 in Pichia pastoris for Use as a Potential Catalyst in the Production of Prebiotic-Enriched Milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10757-10766. [PMID: 29181978 DOI: 10.1021/acs.jafc.7b04694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this study, three kinds of milk were treated with the β-galactosidase Bgal1-3 (4 U/mL), resulting in 7.2-9.5 g/L galactooligosaccharides (GOS) at a lactose conversion of 90-95%. Then, Bgal1-3 was secreted from Pichia pastoris X33 under the direction of an α-factor signal peptide. After cultivation for 144 h in a flask culture with shaking, the extracellular activity of Bgal1-3 was 4.4 U/mL. Five more signal peptides (HFBI, apre, INU1A, MF4I, and W1) were employed to direct the secretion, giving rise to a more efficient signal peptide, W1 (11.2 U/mL). To further improve the secretion yield, recombinant strains harboring two copies of the bgal1-3 gene were constructed, improving the extracellular activity to 22.6 U/mL (about 440 mg/L). This study successfully constructed an engineered strain for the production of the β-galactosidase Bgal1-3, which is a promising catalyst in the preparation of prebiotic-enriched milk.
Collapse
Affiliation(s)
- Lichuang Cao
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Guanghui Ren
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Zongmin Qin
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Xin Huang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Wei Kong
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Zhijun Wang
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| | - Weiqu Liang
- Dongguan Agricultural Research Center , Dongguan, Guangdong 523086, P. R. China
| | - Xiaogang Bi
- The Third Affiliated Hospital of Sun Yat-Sen University , Guangzhou, Guangdong 510630, P. R. China
| | - Yuhuan Liu
- School of Life Sciences, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, National Engineering Center for Marine Biotechnology of South China Sea, Sun Yat-Sen University , Guangzhou, Guangdong 510275, P. R. China
| |
Collapse
|
9
|
Lough F, Perry JD, Stanforth SP, Dean JR. Detection of exogenous VOCs as a novel in vitro diagnostic technique for the detection of pathogenic bacteria. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Ren GH, Cao LC, Kong W, Wang ZJ, Liu YH. Efficient Secretion of the β-Galactosidase Bgal1-3 via both Tat-Dependent and Tat-Independent Pathways in Bacillus subtilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5708-5716. [PMID: 27380825 DOI: 10.1021/acs.jafc.6b01735] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, the twin-arginine (Tat) signal peptide PhoD was used to direct the secretion of the β-galactosidase Bgal1-3 into the growth medium of an engineered strain of Bacillus subtilis 168. After 24 h of cultivation, the extracellular activity reached 1.15 U/mL, representing 78% of the total activity. Bgal1-3 was exported via both Tat-dependent and Tat-independent pathways. To improve the secretion amounts, two more copies of the target gene were inserted into the designated loci on the chromosome, further improving the extracellular enzymatic activity to 2.15 U/mL. The engineered strain with three copies of bgal1-3 was genetically stable after 150 generations. To the best of our knowledge, this is the first report on the functional secretion of a heterologous protein via both Tat-dependent and Tat-independent pathways mediated by a Tat signal peptide in B. subtilis. Furthermore, this study provides us with a markerless engineered strain for the production of β-galactosidase.
Collapse
Affiliation(s)
- Guang-Hui Ren
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Li-Chuang Cao
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Wei Kong
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Zhi-Jun Wang
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| | - Yu-Huan Liu
- School of Life Sciences and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University , Guangzhou 510275, P. R. China
| |
Collapse
|
11
|
Kamran A, Bibi Z, Aman A, Qader SAU. Lactose hydrolysis approach: Isolation and production of β-galactosidase from newly isolated Bacillus strain B-2. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2016. [DOI: 10.1016/j.bcab.2015.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Wang G, Xia Y, Gu Z, Zhang H, Chen YQ, Chen H, Ai L, Chen W. A new potential secretion pathway for recombinant proteins in Bacillus subtilis. Microb Cell Fact 2015; 14:179. [PMID: 26555397 PMCID: PMC4641360 DOI: 10.1186/s12934-015-0374-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/30/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Secretion of cytoplasmic expressed proteins into growth media has significant advantages. Due to the lack of an outer membrane, Bacillus subtilis is considered as a desirable 'cell factory' for the secretion of recombinant proteins. However, bottlenecks in the classical pathway for the secretion of recombinant proteins limit its use on a wide scale. In this study, we attempted to use four typical non-classically secreted proteins as signals to export three recombinant model proteins to the culture medium. RESULTS All four non-classically secreted proteins can direct the export of the intrinsically disordered nucleoskeletal-like protein (Nsp). Two of them can guide the secretion of alkaline phosphatase (PhoA). One can lead the secretion of the thermostable β-galactosidase BgaB, which cannot be secreted with the aid of typical Sec-dependent signal peptides. CONCLUSION Our results show that the non-classically secreted proteins lead the recombinant proteins to the culture medium, and thus non-classical protein secretion pathways can be exploited as a novel secretion pathway for recombinant proteins.
Collapse
Affiliation(s)
- Guangqiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China. .,State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Yongjun Xia
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, 214122, Jiangsu, People's Republic of China.
| | - Lianzhong Ai
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China. .,Synergetic Innovation Center of Food Safety and Nutrition, Wuxi, 214122, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Dong YN, Chen HQ, Sun YH, Zhang H, Chen W. A differentially conserved residue (Ile42) of GH42 β-galactosidase from Geobacillus stearothermophilus BgaB is involved in both catalysis and thermostability. J Dairy Sci 2015; 98:2268-76. [DOI: 10.3168/jds.2014-9117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 12/19/2014] [Indexed: 12/31/2022]
|
14
|
Dong Q, Yan X, Zheng M, Yang Z. Characterization of an extremely thermostable but cold-adaptive β-galactosidase from the hyperthermophilic archaeon Pyrococcus furiosus for use as a recombinant aggregation for batch lactose degradation at high temperature. J Biosci Bioeng 2014; 117:706-10. [PMID: 24462527 DOI: 10.1016/j.jbiosc.2013.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
Abstract
β-Galactosidase (lactase), which catalyzes the hydrolysis of lactose into glucose and galactose, is one of the most important enzymes used in dairy processing. In this study, a gene that encoded an extremely thermostable β-galactosidase from Pyrococcus furiosus (Pflactase) was cloned and expressed in Escherichia coli BL21. The recombinant enzyme was purified by heat treatment and Ni-NTA affinity chromatography. The enzyme displayed optimal activity at 90°C and pH 7.0 in phosphate buffer. The specific activity of the recombinant enzyme on o-nitrophenyl-β-d-galactopyranoside was 10.2 U/mg at 0°C and 130.0dU/mg at 90°C. The half-lives of the enzyme were 31423.4, 8168.3, 4017.7, 547.4, 309.6, and 203.5 min at 70°C, 80°C, 85°C, 90°C, 95°C, and 100°C, respectively. The recombinant enzyme exhibited both β-galactosidase and β-glucosidase activity. The active inclusion bodies of β-galactosidase were easily isolated by nonionic detergent treatment and directly used for lactose conversion in a repetitive batch mode. More than 54% (90°C) or 88% (10°C) of the original enzyme activity was retained after 10 conversion cycles under optimum conditions. These results suggest that the recombinant thermostable β-galactosidase may be suitable for the hydrolysis of lactose in milk processing.
Collapse
Affiliation(s)
- Qing Dong
- Hubei Biopesticide Engineering Research Centre, 8 Nanhu Avenue, Wuhan 430064, China.
| | - Xufan Yan
- College of Life Sciences, Wuhan University, Luo-jia-shan, Wuhan 430072, China
| | - Minhui Zheng
- Hubei Biopesticide Engineering Research Centre, 8 Nanhu Avenue, Wuhan 430064, China
| | - Ziwen Yang
- Hubei Biopesticide Engineering Research Centre, 8 Nanhu Avenue, Wuhan 430064, China
| |
Collapse
|
15
|
Optimizing lactose hydrolysis by computer-guided modification of the catalytic site of a wild-type enzyme. Mol Divers 2013; 17:371-82. [PMID: 23585056 DOI: 10.1007/s11030-013-9437-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/11/2013] [Indexed: 12/29/2022]
Abstract
Lactose intolerance is a serious global health problem. A lactose hydrolysis enzyme, thermostable β-galactosidase, BgaB (from Geobacillus stearothermophilus) has attracted the attention of industrial biologists because of its potential application in processing lactose-containing products. However, this enzyme experiences galactose product inhibition. Through homology modeling and molecular dynamics (MD) simulation, we have identified the galactose binding sites in the thermostable β-galactosidase BgaB (BgaB). The binding sites are formed from Glu303, Asn310, Trp311, His354, Arg109, Phe341, Try272, Asn147, Glu148, and H354; these residues are all important for enzyme catalysis. A ligand-receptor binding model has been proposed to guide site-directed BgaB mutagenesis experiments. Based upon the model and the MD simulations, we recommend mutating Arg109, Phe341, Trp311, Asn147, Asn310, Try272, and His354 to reduce galactose product inhibition. In vitro site-directed mutagenesis experiments confirmed our predictions. The success rate for mutagenesis was 66.7 %. The best BgaB mutant, F341T, can hydrolyze lactose completely, and is the most promising enzyme for use by the dairy industry. Thus, our study is a successful example of optimizing enzyme catalytic chemical reaction by computer-guided modifying the catalytic site of a wild-type enzyme.
Collapse
|
16
|
Wang G, Chen H, Zhang H, Song Y, Chen W. The Secretion of an Intrinsically Disordered Protein with Different Secretion Signals in Bacillus subtilis. Curr Microbiol 2013; 66:566-72. [DOI: 10.1007/s00284-013-0315-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 01/12/2013] [Indexed: 11/25/2022]
|
17
|
Ansari SA, Satar R. Recombinant β-galactosidases – Past, present and future: A mini review. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.04.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
18
|
Oliveira C, Guimarães PM, Domingues L. Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnol Adv 2011; 29:600-9. [DOI: 10.1016/j.biotechadv.2011.03.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 01/24/2011] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
|
19
|
Dong YN, Liu XM, Chen HQ, Xia Y, Zhang HP, Zhang H, Chen W. Enhancement of the hydrolysis activity of β-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis. J Dairy Sci 2011; 94:1176-84. [PMID: 21338783 DOI: 10.3168/jds.2010-3775] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/08/2010] [Indexed: 11/19/2022]
Abstract
Thermostable β-galactosidase (BgaB) from Geobacillus stearothermophilus is characterized by its thermoactivity in the hydrolysis of lactose to produce lactose-free milk products. However, BgaB has limited activity toward lactose. We established a method for screening evolved mutants with high hydrolysis activity based on prediction of substrate binding sites. Seven amino acid residues were identified as candidates for substrate binding to galactose. To study the hydrolysis activity of these residues, we constructed mutants by site-saturation mutagenesis of these residue sites, and each variant was screened for its hydrolysis activity. The first round of mutagenesis showed that changes in amino acid residues of Arg109, Tyr272, and Glu351 resulted in altered hydrolysis activity, including greater activity toward ortho-nitrophenyl-β-d-galactopyranoside (oNPG). The mutants R109V and R109L displayed changes in the optimum pH from 7.0 to 6.5, and the mutant R109V/L displayed different substrate affinity and catalytic efficiency (k(cat)/K(m)). Mutant R109G showed complete loss of BgaB enzymatic activity, suggesting that Arg109 plays a significant role in maintaining hydrolysis activity. The optimum pH of mutant E351R increased from 7.0 to 7.5 and this mutant showed a prominent increase in catalytic efficiency with oNPG and lactose as substrates.
Collapse
Affiliation(s)
- Y-N Dong
- State Key Laboratory of Food Science and Technology, Hohhot 010018, P. R. China
| | | | | | | | | | | | | |
Collapse
|