1
|
Duan X, Liu C, Gong X, Yang Y, Jiao H, Lin Y, Hou X. mTORC2-AKT-LAT1 signalling participates in methionine-induced β-CASEIN expression in mammary epithelial cells of dairy cows. J Anim Physiol Anim Nutr (Berl) 2023; 107:1320-1327. [PMID: 36961053 DOI: 10.1111/jpn.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/15/2023] [Accepted: 03/22/2023] [Indexed: 03/25/2023]
Abstract
This study investigated the role of the mammalian target of rapamycin complex 2 (mTORC2)-protein kinase B (AKT) signalling in methionine (Met)-induced L-type amino acid transporter 1 (LAT1) expression and milk protein production. Primary mammary epithelial cells (MECs) from mammary parenchymal tissues of three lactating cows and MAC-T bovine MECs were cultured with or without 0.6 mM Met. Rapamycin-insensitive companion of mTOR (RICTOR) siRNA, the mTORC1 inhibitor rapamycin and the AKT activator SC79 were used to evaluate the effects of mTORC2-AKT signalling on Met-induced LAT1 expression and function. Each experiment was performed three times. Data were analysed with a two-sided unpaired t test or ANOVA with the Bonferroni multiple-comparison test. Western blotting showed that Met stimulation increased RICTOR expression (~244.67%; p < 0.05; control, 0.15 ± 0.026; Met, 0.517 ± 0.109) and AKT-S473 levels (~281.42%; p < 0.01; control, 0.253 ± 0.067; Met, 0.965 ± 0.019) in both primary MECs and MAC-T cells. Rapamycin-induced mTORC1 signalling inhibition decreased only Met-induced β-CASEIN expression by ~21.24% (p < 0.01; Met, 0.777 ± 0.01; Met and rapamycin, 0.612 ± 0.04) and did not affect Met-stimulated AKT-S473 levels, suggesting that mTORC2-AKT activation upon Met stimulation also contributes to milk protein synthesis. LAT1 participates in Met-induced β-CASEIN expression. In dairy cow MECs, mTORC2 inhibition by RICTOR siRNA decreased LAT1 levels on the plasma membrane by ~45.13% (p < 0.01; control, 0.359 ± 0.006; siRICTOR, 0.197 ± 0.004). However, SC79-induced AKT activation had the opposite effect (p < 0.01). In primary MECs and MAC-T cells, Met stimulation increased cytosolic and plasma membrane LAT1 expression respectively (MECs, 113.98% and 58.43%; MAC-T, 165.85% and 396.39%; p < 0.05). However, RICTOR siRNA significantly reduced Met-induced plasma membrane LAT1 expression (~76.48%; Met, 0.539 ± 0.05; Met and siRICTOR, 0.127 ± 0.012; p < 0.05). Thus, Met increased LAT1 expression and function via mTORC2-AKT signalling, upregulating milk protein synthesis in dairy cow MECs.
Collapse
Affiliation(s)
- Xiaoyu Duan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Chuanping Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Xiaoqing Gong
- Key Laboratory of Dairy Science of Education Ministry, Food Science College of Northeast Agricultural University, Harbin, China
| | - Yang Yang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Hongtao Jiao
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| | - Ye Lin
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
- Key Laboratory of Dairy Science of Education Ministry, Food Science College of Northeast Agricultural University, Harbin, China
| | - Xiaoming Hou
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
2
|
Nichols K, Dijkstra J, Breuer MJH, Lemosquet S, Gerrits WJJ, Bannink A. Essential amino acid profile of supplemental metabolizable protein affects mammary gland metabolism and whole-body glucose kinetics in dairy cattle. J Dairy Sci 2022; 105:7354-7372. [PMID: 35863921 DOI: 10.3168/jds.2021-21576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 11/19/2022]
Abstract
This study investigated mammary gland metabolism and whole-body (WB) rate of appearance (Ra) of glucose in dairy cattle in response to a constant supplemental level of metabolizable protein (MP) composed of different essential AA (EAA) profiles. Five multiparous rumen-fistulated Holstein-Friesian dairy cows (2.8 ± 0.4 lactations; 81 ± 11 d in milk; mean ± standard deviation) were abomasally infused according to a 5 × 5 Latin square design with saline (SAL) or 562 g/d of EAA delivered in different profiles where individual AA content corresponded to their relative content in casein. The profiles consisted of (1) a complete EAA mixture (EAAC), (2) Ile, Leu, and Val (ILV), (3) His, Ile, Leu, Met, Phe, Trp, Val (GR1+ILV), and (4) Arg, His, Lys, Met, Phe, Thr, Trp (GR1+ALT). A total mixed ration (58% corn silage, 16% alfalfa hay, and 26% concentrate on a dry matter basis) was formulated to meet 100 and 83% of net energy and MP requirements, respectively, and was fed at 90% of ad libitum intake on an individual cow basis. Each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of no infusion. Arterial and venous blood samples were collected on d 4 of each period for determination of mammary gland AA and glucose metabolism. On d 5 of each period, D-[U-13C]glucose (13 mmol priming dose; continuous 3.5 mmol/h for 520 min) was infused into a jugular vein and arterial blood samples were collected before and during infusion to determine WB Ra of glucose. Milk protein yield did not differ between EAAC, GR1+ILV, and GR1+ALT, or between SAL and ILV, and increased over SAL and ILV with EAAC and GR1+ILV. Mammary plasma flow increased with ILV infusion compared with EAAC and GR1+ILV. Infusion of EAAC tended to increase mammary gland net uptake of total EAA and decreased the mammary uptake to milk protein output ratio (U:O) of non-EAA compared with SAL. Infusion of ILV increased mammary net uptake and U:O of Ile, Leu, and Val markedly over all treatments. The U:O of total Ile, Leu, and Val increased numerically (25%) with GR1+ILV infusion compared with EAAC, and the U:O of total Arg, Lys, and Thr tended to decrease, primarily from decreased U:O of Lys. During GR1+ALT infusion, U:O of total Arg, Lys, and Thr was greater than that during EAAC infusion, whereas U:O of Ile, Leu, and Val did not differ from EAAC. Glucose WB Ra increased 16% with GR1+ALT over SAL, and increased numerically 8 and 12% over SAL with EAAC and GR1+ILV, respectively. The average proportion of lactose yield relative to glucose WB Ra did not differ across treatments and averaged 0.53. On average, 28% of milk galactose arose from nonglucose precursors, regardless of treatment. In conclusion, intramammary catabolism of group 2 AA increased to support milk component synthesis when the EAA profile of MP was incomplete with respect to casein. Further, WB and mammary gland glucose metabolism was flexible in support of milk component synthesis, regardless of absorptive EAA profile.
Collapse
Affiliation(s)
- K Nichols
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - J Dijkstra
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - M J H Breuer
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - S Lemosquet
- PEGASE, INRAE, Institut Agro, 35590 Saint Gilles, France
| | - W J J Gerrits
- Animal Nutrition Group, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - A Bannink
- Wageningen Livestock Research, Wageningen University and Research, PO Box 338, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
3
|
Farmer C, Palin MF, Hovey RC, Falt TD, Huber LA. Dietary supplementation with lysine (protein) stimulates mammary development in late pregnant gilts. J Anim Sci 2022; 100:skac051. [PMID: 35184195 PMCID: PMC9109004 DOI: 10.1093/jas/skac051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/24/2022] [Indexed: 12/29/2022] Open
Abstract
The goal of this project was to determine if standardized ileal digestible (SID) lysine provided at 40% above estimated requirements, with the concomitant increase in protein intake, from days 90 to 110 of gestation would stimulate mammary development in gilts. From day 90 of gestation, Yorkshire × Landrace gilts were fed 2.65 kg of either a conventional diet (CTL, control, n = 19) providing 18.6 g/d of SID Lys or a diet providing 26.0 g/d of SID Lys via additional soybean meal (HILYS, n = 19). Both diets were isoenergetic. Jugular blood samples obtained on days 90 and 110 of gestation were used to measure concentrations of insulin-like growth factor-1 (IGF-1), metabolites, and amino acids (AA). Gilts were necropsied on day 110 ± 1 of gestation to obtain mammary glands for compositional analyses, immunohistochemistry, and analysis of mRNA abundance for AA transporters and markers of cell proliferation and differentiation. The HILYS gilts gained more body weight (P < 0.01) during the experimental period compared with CTL gilts, and had greater fetal weights (1.29 vs. 1.21 ± 0.03 kg, P < 0.05). There was no difference in circulating IGF-1, glucose, or albumin (P > 0.10) between HILYS and CTL gilts on day 110 of gestation, whereas concentrations of urea and free fatty acids were greater (P < 0.01), and those of Trp and Ala were lower (P < 0.05), in HILYS than CTL gilts. The provision of lysine at 40% above estimated requirements increased total mammary parenchymal mass by 44%, as well as total parenchymal fat, protein, DNA, and RNA (P < 0.01). The mRNA abundance of ACACA was greater (P < 0.05) in HILYS than CTL gilts, while only the AA transporter SLC6A14 tended (P < 0.10) to be greater. Results demonstrate that providing dietary Lys above current National Research Council recommendations in late gestation increases mammary development in gilts. Results also indicate that Lys may have been limiting for protein retention. These data suggest that the use of a two-phase feeding strategy during gestation, whereby dietary Lys is increased from day 90, could benefit potential sow milk yield in the subsequent lactation.
Collapse
Affiliation(s)
- Chantal Farmer
- Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, Sherbrooke, QC J1M 0C8, Canada
| | - Marie-France Palin
- Agriculture and Agri-Food Canada, Sherbrooke R & D Centre, Sherbrooke, QC J1M 0C8, Canada
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Tara D Falt
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Lee-Anne Huber
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Chen Z, Zhou L, Yuan Q, Chen H, Lei H, Su J. Effect of fumonisin B 1 on oxidative stress and gene expression alteration of nutrient transporters in porcine intestinal cells. J Biochem Mol Toxicol 2021; 35:e22706. [PMID: 33443779 DOI: 10.1002/jbt.22706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022]
Abstract
Fumonisin B1 (FB1 ) is a common environmental mycotoxin produced by molds such as Fusarium verticillioides. The toxin poses health risks to domestic animals, including pigs, through FB1 -contaminanted feed. However, the cytotoxicity of FB1 to porcine intestines has not been fully analyzed. In the present study, the effects of FB1 on oxidative stress and nutrient transporter-associated genes of the porcine intestinal IPEC-J2 cells were explored. FB1 decreased IPEC-J2 proliferation but did not trigger reactive oxygen species (ROS) overproduction. Meanwhile, FB1 reduced the expression levels of the transporters l-type amino acid transporter-1 (y+ LAT1), solute carrier family 7 member 1 (SLC7A1), solute carrier family 1 member 5 (ASCT2), and excitatory amino acid carrier 1 (EAAC1); in addition, FB1 reduced the levels of the fatty acid transporters long-chain fatty acid transport protein 1 (FATP1) and long-chain fatty acid transport protein 4 (FATP4) as well as glucose transporters Na+ /glucose cotransporter 1 (SGLT1) and glucose transporter 2 (GLUT2). FB1 stimulation increased the expression levels of peptide transporter peptide transporter 1 (PepT1) and metal ion transport-related gene zinc transporter 1 (ZNT1). Moreover, metal ion transporter divalent metal transporter 1 (DMT1) expression was depressed by a higher dosage of FB1 . The data indicate that FB1 results in aberrant expression of nutrient transporters in IPEC-J2 cells, thereby exerting its toxicity even though it fails to exert ROS-dependent oxidative stress.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Lihua Zhou
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Qiaoling Yuan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Huiyu Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Hongyu Lei
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianming Su
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
5
|
Amino acid transportation, sensing and signal transduction in the mammary gland: key molecular signalling pathways in the regulation of milk synthesis. Nutr Res Rev 2020; 33:287-297. [DOI: 10.1017/s0954422420000074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe mammary gland, a unique exocrine organ, is responsible for milk synthesis in mammals. Neonatal growth and health are predominantly determined by quality and quantity of milk production. Amino acids are crucial maternal nutrients that are the building blocks for milk protein and are potential energy sources for neonates. Recent advances made regarding the mammary gland further demonstrate that some functional amino acids also regulate milk protein and fat synthesis through distinct intracellular and extracellular pathways. In the present study, we discuss recent advances in the role of amino acids (especially branched-chain amino acids, methionine, arginine and lysine) in the regulation of milk synthesis. The present review also addresses the crucial questions of how amino acids are transported, sensed and transduced in the mammary gland.
Collapse
|
6
|
Xie P, Han MX, Chen WX, Wan XP, Xu YG, Gong DQ. The profiling of amino acids in crop milk and plasma and mRNA abundance of amino acid transporters and enzymes related to amino acid synthesis in the crop tissue of male and female pigeons during incubation and chick-rearing periods. Poult Sci 2020; 99:1628-1642. [PMID: 32115035 PMCID: PMC7587674 DOI: 10.1016/j.psj.2019.10.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 01/11/2023] Open
Abstract
The present study was carried out to investigate the changes in amino acid (AA) contents of crop milk and plasma and mRNA abundance of AA transporters and AA synthesis-related enzymes in the crop tissue of male and female pigeons during incubation and chick-rearing periods. Forty-two pairs of adult White King pigeons with 2 fertile eggs per pair were randomly divided into 7 groups by different breeding stages. The AA content of crop milk decreased from day 1 (R1) to day 25 (R25) of chick rearing (P < 0.05). In both male and female adult pigeons, the contents of Thr, Leu, Val, His, Asp, and Pro in plasma increased to maximum levels on R25. Parental sex effect and interaction between stage and sex were observed in the AA contents of pigeon plasma (P < 0.05). For AA transporters, the mRNA abundances of SNAT2, ASCT1, LAT1, and y+LAT2 in the male crops reached the highest value on day 17 of incubation (I17), and the peak mRNA levels of PAT-1, xCT, b0,+AT, and CAT1 were found on R7 (P < 0.05). In females, the abundances of ASCT1, B0AT1, asc-1, and CAT1 mRNA peaked on R1, whereas the maximum levels of LAT1, PAT-1, b0,+AT, and y+LAT2 were observed on R7. For enzymes involved in AA synthesis, the highest gene expressions of glutamate dehydrogenase 1, acetolactate synthase in both parent pigeons, and L-threonine 3-dehydrogenase in female pigeon crops were attained on I17. The expressions of ornithine-δ-aminotransferase, glutamic-oxal(o)acetic transaminase 1, glutamic-oxal(o)acetic transaminase 2, asparagine synthetase, serine hydroxymethyltransferase 2, and glutamic-pyruvic transaminase 2 in both sexes and argininosuccinate lyase and L-threonine 3-dehydrogenase in males were the highest on R1. In conclusion, AA used for pigeon crop milk formation may originate from plasma and intracellular synthesis. The genes involved in AA transport and synthesis varied significantly with sexual effects, indicating that other factors should be considered in future explorations of the mechanism of protein formation in crop milk.
Collapse
Affiliation(s)
- P Xie
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China; College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - M X Han
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - W X Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - X P Wan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Y G Xu
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huaian 223300, China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian 223300, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Palombo V, Loor JJ, D'Andrea M, Vailati-Riboni M, Shahzad K, Krogh U, Theil PK. Transcriptional profiling of swine mammary gland during the transition from colostrogenesis to lactogenesis using RNA sequencing. BMC Genomics 2018; 19:322. [PMID: 29724161 PMCID: PMC5934875 DOI: 10.1186/s12864-018-4719-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/23/2018] [Indexed: 01/30/2023] Open
Abstract
Background Colostrum and milk are essential sources of antibodies and nutrients for the neonate, playing a key role in their survival and growth. Slight abnormalities in the timing of colostrogenesis/lactogenesis potentially threaten piglet survival. To further delineate the genes and transcription regulators implicated in the control of the transition from colostrogenesis to lactogenesis, we applied RNA-seq analysis of swine mammary gland tissue from late-gestation to farrowing. Three 2nd parity sows were used for mammary tissue biopsies on days 14, 10, 6 and 2 before (−) parturition and on day 1 after (+) parturition. A total of 15 mRNA libraries were sequenced on a HiSeq2500 (Illumina Inc.). The Dynamic Impact Approach and the Ingenuity Pathway Analysis were used for pathway analysis and gene network analysis, respectively. Results A large number of differentially expressed genes were detected very close to parturition (−2d) and at farrowing (+ 1d). The results reflect the extraordinary metabolic changes in the swine mammary gland once it enters into the crucial phases of lactogenesis and underscore a strong transcriptional component in the control of colostrogenesis. There was marked upregulation of genes involved in synthesis of colostrum and main milk components (i.e. proteins, fat, lactose and antimicrobial factors) with a pivotal role of CSN1S2, LALBA, WAP, SAA2, and BTN1A1. The sustained activation of transcription regulators such as SREBP1 and XBP1 suggested they help coordinate these adaptations. Conclusions Overall, the precise timing for the transition from colostrogenesis to lactogenesis in swine mammary gland remains uncharacterized. However, our transcriptomic data support the hypothesis that the transition occurs before parturition. This is likely attributable to upregulation of a wide array of genes including those involved in ‘Protein and Carbohydrate Metabolism’, ‘Immune System’, ‘Lipid Metabolism’, ‘PPAR signaling pathway’ and ‘Prolactin signaling pathway’ along with the activation of transcription regulators controlling lipid synthesis and endoplasmic reticulum biogenesis and stress response. Electronic supplementary material The online version of this article (10.1186/s12864-018-4719-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- V Palombo
- Dipartimento Agricoltura Ambiente e Alimenti, Università degli Studi del Molise, via Francesco De Sanctis s.n.c, 86100, Campobasso, Italy
| | - J J Loor
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - M D'Andrea
- Dipartimento Agricoltura Ambiente e Alimenti, Università degli Studi del Molise, via Francesco De Sanctis s.n.c, 86100, Campobasso, Italy
| | - M Vailati-Riboni
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - K Shahzad
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - U Krogh
- Department of Animal Science, Aarhus University, Foulum, DK-8830, Tjele, Denmark
| | - P K Theil
- Department of Animal Science, Aarhus University, Foulum, DK-8830, Tjele, Denmark.
| |
Collapse
|
8
|
Farmer C, Amezcua M, Bruckmaier R, Wellnitz O, Friendship R. Does duration of teat use in first parity affect milk yield and mammary gene expression in second parity? J Anim Sci 2017; 95:681-687. [PMID: 28380616 DOI: 10.2527/jas.2016.1119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It was recently shown that a teat that is not used in the first lactation will have a reduced development and milk yield in the second lactation. In the current study, the impact of imposing a suckling period of 2, 7, or 21 d during the first lactation on piglet performance, milk composition, endocrine status, and mammary gene expression of sows in their second lactation was studied. Pregnant Yorkshire gilts were divided into 3 groups according to lactation length: 1) 2-d lactation (2D; = 20), 2) 7-d lactation (7D; = 20), and 3) 21-d lactation (21D; = 21). After weaning, sows were bred and kept for a second parity. In both lactations, litters were standardized to 12 piglets with 12 functional teats and surplus teats were sealed. In the second lactation, piglets were weighed on d 2, 7, 14, 21 (weaning), 31, and 56 postpartum, and sow feed intake was recorded. On d 110 of gestation and on d 21 of lactation, mammary biopsies were performed on 10 sows per treatment to obtain parenchymal tissue samples for determination of mRNA abundance for , , , , , and genes. Milk samples and jugular blood samples were also obtained from sows on d 21 of lactation. Standard composition analyses (DM, fat, protein, and lactose) were done in milk. Concentrations of prolactin, IGF-1, glucose, and urea were measured in blood. There was a tendency for 21D sows to consume more feed than 2D or 7D sows during the first week of lactation ( < 0.10). There was no treatment effect on BW of piglets at any time until d 56 ( > 0.10). Concentrations of prolactin, IGF-1, urea, and glucose in sows on d 21 of lactation were not affected by treatment ( > 0.10). Dry matter, fat, protein, and lactose contents in milk were not altered by treatment ( > 0.10). On d 110 of gestation, gene expression was greater ( = 0.05) in 21D sows than in 7D sows. On d 21 of lactation, gene expression of was greater ( = 0.05) and that of tended to be lower ( < 0.10) in 7D sows than in 2D sows. The mRNA abundance of also tended to be lower ( < 0.10) in 2D sows than in 7D sows. Results indicate that increasing the duration of lactation from 2 d to 7 d or to 21 d in first-parity sows did not improve growth rate of their piglets in the subsequent lactation. This suggests that suckling of a teat for 2 d during the first lactation is sufficient to ensure optimal mammary development.
Collapse
|
9
|
Morammazi S, Masoudi AA, Vaez Torshizi R, Pakdel A. Differential Expression of the Alpha S1 Casein and Beta-Lactoglobulin Genes in Different Physiological Stages of the Adani Goats Mammary Glands. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:278-285. [PMID: 28959346 PMCID: PMC5434998 DOI: 10.15171/ijb.1171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background
Milk proteins genes have been the focus of the researches as the candidate target genes that play a decisive role when animal breeding is desired.
Objectives
In the present study, the transcriptional levels of Beta-lactoglobulin (BLG) and Alpha S1 casein (CSN1S1) genes were investigated during prenatal, milking and drying times in mammary glands of the Adani goats which showed high and low breeding values.
Materials and Methods
The breeding values of the animals were estimated first by applying multi-trait random regression model. Using the biopsy gun, the mammary gland samples were taken and real-time PCR was applied to search the expression of the genes. Fixed factors of the model were the breeding value groups, sampling times and their interactions.
Results
The interactions were significant for both genes. At milking time, the high breeding value group exhibited more transcriptional levels for BLG and less transcriptional levels for CSN1S1 gene compared with the low breeding value group. The expression patterns of these genes were also different between the two breeding value groups. The maximum level of BLG and CSN1S1 transcriptions were found to occur at drying time.
Conclusions
A difference in the gene expression was observed between the two groups which indicate the change in the nucleotide sequence for transcription factor binding sites, or miRNA binding sites, otherwise in the coding regions. Therefore, the variations in the coding and promoter regions of this gene should be investigated in the further studies.
Collapse
Affiliation(s)
- Salim Morammazi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.,Department of Animal Science, Faculty of Agricultural and Natural Resources, University of Persian Gulf, Bushehr, Iran
| | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Rasoul Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Abbas Pakdel
- Department of Animal Science, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
10
|
Huber L, de Lange CFM, Ernst CW, Krogh U, Trottier NL. Impact of improving dietary amino acid balance for lactating sows on efficiency of dietary amino acid utilization and transcript abundance of genes encoding lysine transporters in mammary tissue. J Anim Sci 2016; 94:4654-4665. [PMID: 27898953 DOI: 10.2527/jas.2016-0697] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lactating multiparous Yorkshire sows ( = 64) were used in 2 experiments to test the hypothesis that reducing dietary CP intake and improving AA balance through crystalline AA (CAA) supplementation improves apparent dietary AA utilization efficiency for milk production and increases transcript abundance of genes encoding Lys transporter proteins in mammary tissue. In Exp. 1, 40 sows were assigned to 1 of 4 diets: 1) high CP (HCP; 16.0% CP, as-fed basis; analyzed concentration), 2) medium-high CP (MHCP; 15.7% CP), 3) medium-low CP (MLCP; 14.3% CP), and 4) low CP (LCP; 13.2% CP). The HCP diet was formulated using soybean meal and corn as the only Lys sources. The reduced-CP diets contained CAA to meet estimated requirements for essential AA that became progressively limiting with reduction in CP concentration, that is, Lys, Ile, Met + Cys, Thr, Trp, and Val. Dietary standardized ileal digestible (SID) Lys concentration was 80% of the estimated requirement. In Exp. 2, 24 sows were assigned to the HCP or LCP diets. In Exp. 1, blood samples were postprandially collected 15 h on d 3, 7, 14, and 18 of lactation and utilization efficiency of dietary AA for milk production was calculated during early (d 3 to 7) and peak (d 14 to 18) lactation. Efficiency values were estimated from daily SID AA intakes and milk AA yield, with corrections for maternal AA requirement for maintenance and AA contribution from body protein losses. In Exp. 2, mammary tissue was biopsied on d 4 and 14 of lactation to determine the mRNA abundance of genes encoding Lys transporter proteins. In peak lactation, Lys, Thr, Trp, and Val utilization efficiency increased with decreasing dietary CP (linear for Trp and Val, < 0.05; in sows fed the MHCP diet vs. sows fed the HCP diet for Lys and Thr, < 0.05). Total essential and nonessential 15-h postprandial serum AA concentrations increased with decreasing dietary CP (linear, = 0.09 and < 0.05, respectively), suggesting increased maternal body protein mobilization. Transcript abundance of several genes involved in Lys transport in mammary tissue did not differ between sows fed the LCP and HCP diets. Feeding lactating sows low-CP diets supplemented with CAA increases the efficiency of utilizing dietary Lys, Thr, Trp, and Val for milk protein production but is unrelated to abundance in mRNA of genes encoding Lys transport proteins in the mammary gland. Dietary Lys utilization for milk protein production in lactating sows appears to be optimized when crystalline Lys is included at a minimum of 0.10% in a diet containing 15.70% CP.
Collapse
|
11
|
Morammazi S, Masoudi AA, Vaez Torshizi R, Pakdel A. Changes in the Expression of the Prolactin Receptor (PRLR) Gene in Different Physiological Stages in the Mammary Gland of the Iranian Adani Goat. Reprod Domest Anim 2016; 51:585-90. [PMID: 27333814 DOI: 10.1111/rda.12723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/29/2016] [Indexed: 01/28/2023]
Abstract
The actions of prolactin hormone are mediated by prolactin receptor (PRLR), and proliferation and differentiation of secretory mammary epithelium are dependent on the presence of its receptors. To understand the PRLR expression pattern in mammary gland of dairy goat during different lactation stages, in this study, we first estimated the milk yield breeding value by multitrait random regression model and then compared the expression of the gene in different physiological stage of mammary gland between high- and low-breeding value groups. We assayed the transcription level of the gene by quantitative real-time PCR method, and its outcomes were analysed by a statistical model containing breeding value groups, sampling times and their interactions as fixed effects. The results indicated that the expression levels of PRLR gene were significantly upregulated in the drying stage (p < 0.01). The transcription pattern of the gene was significantly different between the two breeding value groups (p < 0.01), so that the amount of PRLR mRNA was significantly higher in the low-breeding value groups of animals in the lactation stage (p < 0.01). Based on the results of this study, it could be suggested that the abundance of PRLR transcripts in mammary gland of goat might be changed by some physiological, environmental and genetic factors. Nucleotide variations in the promoter region might be resulted in various transcription activities of the gene which should be studied in a complementary research.
Collapse
Affiliation(s)
- S Morammazi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - A A Masoudi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - R Vaez Torshizi
- Department of Animal Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - A Pakdel
- Department of Animal Science, Faculty of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
12
|
Linking our understanding of mammary gland metabolism to amino acid nutrition. Amino Acids 2014; 46:2447-62. [DOI: 10.1007/s00726-014-1818-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/25/2014] [Indexed: 12/15/2022]
|
13
|
Shennan DB, Boyd CAR. The functional and molecular entities underlying amino acid and peptide transport by the mammary gland under different physiological and pathological conditions. J Mammary Gland Biol Neoplasia 2014; 19:19-33. [PMID: 24158403 DOI: 10.1007/s10911-013-9305-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/15/2013] [Indexed: 12/20/2022] Open
Abstract
This review describes the properties and regulation of the membrane transport proteins which supply the mammary gland with aminonitrogen to support metabolism under different physiological conditions (i.e. pregnancy, lactation and involution). Early studies focussed on characterising amino acid and peptide transport pathways with respect to substrate specificity, kinetics and hormonal regulation to allow a broad picture of the systems within the gland to be established. Recent investigations have concentrated on identifying the individual transporters at the molecular level (i.e. mRNA and protein). Many of the latter studies have identified the molecular correlates of the transport systems uncovered in the earlier functional investigations but in turn have also highlighted the need for more amino acid transport studies to be performed. The transporters function as either cotransporters and exchangers (or both) and act in a coordinated and regulated fashion to support the metabolic needs of the gland. However, it is apparent that a physiological role for a number of the transport proteins has yet to be elucidated. This article highlights the many gaps in our knowledge regarding the precise cellular location of a number of amino acid transporters within the gland. We also describe the role of amino acid transport in mammary cell volume regulation. Finally, the important role that individual mammary transport proteins may have in the growth and proliferation of mammary tumours is discussed.
Collapse
Affiliation(s)
- D B Shennan
- Brasenose College, 39 Caerlaverock Road, Prestwick, UK,
| | | |
Collapse
|
14
|
Yang J, Tan Q, Zhu W, Chen C, Liang X, Pan L. Cloning and molecular characterization of cationic amino acid transporter y⁺LAT1 in grass carp (Ctenopharyngodon idellus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:93-104. [PMID: 23817987 DOI: 10.1007/s10695-013-9827-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 06/18/2013] [Indexed: 06/02/2023]
Abstract
The solute carrier family 7A, member 7 gene encodes the light chain- y⁺L amino acid transporter-1 (y⁺LAT1) of the heterodimeric carrier responsible for cationic amino acid (CAA) transport across the basolateral membranes of epithelial cells in intestine and kidney. Rising attention has been given to y⁺LAT1 involved in CAA metabolic pathways and growth control. The molecular characterization and function analysis of y⁺LAT1 in grass carp (Ctenopharyngodon idellus) is currently unknown. In the present study, full-length cDNA (2,688 bp), which encodes y⁺LAT1 and contains a 5'-untranslated region (319 bp), an open reading frame (1,506 bp) and a 3'-untranslated region (863 bp), has been cloned from grass carp. Amino acid sequence of grass carp y⁺LAT1 contains 11 transmembrane domains and shows 95 %, 80 % and 75 % sequence similarity to zebra fish, amphibian and mammalian y⁺LAT1, respectively. The tissue distribution and expression regulation by fasting of y⁺LAT1 mRNA were analyzed using real-time PCR. Our results showed that y⁺LAT1 mRNA was highly expressed in midgut, foregut and spleen while weakly expressed in hindgut, kidney, gill, brain, heart, liver and muscle. Nutritional status significantly influenced y⁺LAT1 mRNA expression in fish tissues, such as down-regulation of y⁺LAT1 mRNA expression after fasting (14 days).
Collapse
Affiliation(s)
- Jixuan Yang
- Fisheries College, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | |
Collapse
|
15
|
Matsumoto T, Nakamura E, Nakamura H, Hirota M, San Gabriel A, Nakamura KI, Chotechuang N, Wu G, Uneyama H, Torii K. Production of free glutamate in milk requires the leucine transporter LAT1. Am J Physiol Cell Physiol 2013; 305:C623-31. [PMID: 23804198 DOI: 10.1152/ajpcell.00291.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The concentration of free glutamate (Glu) in rat's milk is ∼10 times higher than that in plasma. Previous work has shown that mammary tissue actively transports circulatory leucine (Leu), which is transaminated to synthesize other amino acids such as Glu and aspartate (Asp). To investigate the molecular basis of Leu transport and its conversion into Glu in the mammary gland, we characterized the expression of Leu transporters and [(3)H]Leu uptake in rat mammary cells. Gene expression analysis indicated that mammary cells express two Leu transporters, LAT1 and LAT2, with LAT1 being more abundant than LAT2. This transport system is sodium independent and transports large neutral amino acids. The Leu transport system in isolated rat mammary cells could be specifically blocked by the LAT1 inhibitors 2-aminobicyclo-[2.2.1]-heptane-2-carboxylic acid (BCH) and triiodothyronine (T3). In organ cultures, Glu secretion was markedly inhibited by these LAT1 inhibitors. Furthermore, the profiles of Leu uptake inhibition by amino acids in mammary cells were similar to those reported for LAT1. In vivo, concentrations of free Glu and Asp increased in milk by oral gavage with Leu at 6, 12, and 18 days of lactation. These results indicate that the main Leu transporter in mammary tissue is LAT1 and the transport of Leu is a limiting factor for the synthesis and release of Glu and Asp into milk. Our studies provide the bases for the molecular mechanism of Leu transport in mammary tissue by LAT1 and its active role on free Glu secretion in milk, which confer umami taste in suckling pups.
Collapse
Affiliation(s)
- Takuya Matsumoto
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Corporation, Kawasaki-ku, Kawasaki-shi, Japan; and
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Caito SW, Zhang Y, Aschner M. Involvement of AAT transporters in methylmercury toxicity in Caenorhabditis elegans. Biochem Biophys Res Commun 2013; 435:546-50. [PMID: 23669041 DOI: 10.1016/j.bbrc.2013.04.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 10/26/2022]
Abstract
Methylmercury (MeHg) is a potent neurotoxin that enters mammalian cells as a conjugate with L-cysteine through L-type large neutral amino acid transporter, LAT1, by a molecular mimicry mechanism by structurally resembling L-methionine. Caenorhabditis elegans (C. elegans) has been increasingly used to study the neurotoxic effects of MeHg, but little is known about uptake and transport of MeHg in the worm. This study examined whether MeHg uptake through LAT1 is evolutionarily conserved in nematodes. MeHg toxicity in C. elegans was blocked by pre-treatment of worms with l-methionine, suggesting a role for amino acid transporters in MeHg transport. Knockdown of aat-1, aat-2, and aat-3, worm homologues to LAT1, increased the survival of C. elegans following MeHg treatment and significantly attenuated MeHg content following exposure. These results indicate that MeHg is transported in the worm by a conserved mechanism dependent on functioning amino acid transporters.
Collapse
Affiliation(s)
- Samuel W Caito
- Division of Clinical Pharmacology and Pediatric Toxicology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-0414, USA
| | | | | |
Collapse
|
17
|
Vanklompenberg MK, Manjarin R, Trott JF, McMicking HF, Hovey RC. Late gestational hyperprolactinemia accelerates mammary epithelial cell differentiation that leads to increased milk yield. J Anim Sci 2013; 91:1102-11. [PMID: 23296835 DOI: 10.2527/jas.2012-5903] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The growth rate of piglets is limited by sow milk yield, which reflects the extent of epithelial growth and differentiation in the mammary glands (MG) during pregnancy. Prolactin (PRL) promotes both the growth and differentiation of the mammary epithelium, where the lactational success of pigs is absolutely dependent on PRL exposure during late gestation. We hypothesized that inducing hyperprolactinemia in primiparous gilts during late gestation by administering the dopamine antagonist domperidone (DOM) would increase MG epithelial cell proliferation and differentiation, subsequent milk yield, and piglet growth. A total of 19 Yorkshire-Hampshire gilts were assigned to receive either no treatment (CON, n = 9) or DOM (n = 10) twice daily from gestation d 90 to 110. Serial blood sampling during the treatment period and subsequent lactation confirmed that plasma PRL concentrations were increased in DOM gilts on gestation d 91 and 96 (P < 0.001). Piglets reared by DOM-treated gilts gained 21% more BW during lactation than controls (P = 0.03) because of increased milk production by these same gilts on d 14 (24%, P = 0.02) and 21 (32%, P < 0.001) of lactation. Milk composition did not differ between the 2 groups on d 1 or 20 of lactation. Alveolar volume within the MG of DOM-treated gilts was increased during the treatment period (P < 0.001), whereas epithelial proliferation was unaffected by treatment. Exposure to DOM during late gestation augmented the postpartum increase in mRNA expression within the MG for β-casein (P < 0.03), acetyl CoA carboxylase-α (P < 0.01), lipoprotein lipase (P < 0.06), α-lactalbumin (P < 0.08), and glucose transporter 1 (P < 0.06). These findings demonstrate that late gestational hyperprolactinemia enhances lactogenesis within the porcine MG and increases milk production in the subsequent lactation.
Collapse
Affiliation(s)
- M K Vanklompenberg
- Department of Animal Science, University of California, Davis 95616, USA
| | | | | | | | | |
Collapse
|
18
|
Manjarin R, Zamora V, Wu G, Steibel JP, Kirkwood RN, Taylor NP, Wils-Plotz E, Trifilo K, Trottier NL. Effect of amino acids supply in reduced crude protein diets on performance, efficiency of mammary uptake, and transporter gene expression in lactating sows. J Anim Sci 2012; 90:3088-100. [PMID: 22585816 DOI: 10.2527/jas.2011-4338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To test the hypothesis that reduction in dietary CP concentration coupled with crystalline AA inclusion increases the efficiency of AA use for milk production, mammary AA arteriovenous concentration differences (A-V), AA transport efficiency (A-V/A × 100), and transcript abundance of AA transporters and milk protein genes were determined in lactating sows fed 1 of 3 diets containing 9.5% (Deficient), 13.5% (Ideal), or 17.5% (Standard) CP, with a similar profile of indispensable and dispensable AA. On d 7 and 18, arterial and mammary venous blood and mammary tissue were sampled postfeeding. Transcript abundance of AA transporters b(0,+)AT (SLC7A9), y(+)LAT2 (SLC7A6), ATB(0,+) (SLC6A14), CAT-1 (SLC7A1), and CAT-2b (SLC7A2) and milk protein β-casein (CSN2) and LALBA (α-lactalbumin) were determined using reverse transcription quantitative PCR. Piglet ADG increased curvilinearly (linear and quadratic, P < 0.03) with increasing percent CP from Deficient to Standard. On d 7, Lys and Arg A-V and transport efficiency increased quadratically (P < 0.05) with increasing percent CP. On d 18, Lys A-V tended to increase (linear, P = 0.08) with increasing percent CP. Increasing CP increased Ile and Val A-V on d 7 (linear, P = 0.05 and P = 0.08, respectively) and Leu and Val on d 18 (linear, P = 0.07 and P = 0.04, respectively). On d 7, plasma concentrations of branched chain AA (BCAA):Lys decreased quadratically (P < 0.05). Expression of genes SLC7A9, SLC7A6, SLC6A14, SLC7A1, SLC7A2, CSN2, and LALBA was unaffected by diet. In conclusion, decreasing the dietary CP from 17.5% to 13.5% with inclusion of crystalline AA did not affect piglet ADG, AA transporter, or milk protein gene expression but increased mammary transport efficiency and A-V of Lys and Arg on d 7 of lactation. This increase was associated with a decrease in plasma concentration of BCAA:Lys, suggesting a competitive mechanism between cationic and BCAA for transport of AA across mammary cells.
Collapse
Affiliation(s)
- R Manjarin
- Department of Animal Science, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Manjarin R, Trottier NL, Weber PS, Liesman JS, Taylor NP, Steibel JP. A simple analytical and experimental procedure for selection of reference genes for reverse-transcription quantitative PCR normalization data. J Dairy Sci 2012; 94:4950-61. [PMID: 21943746 DOI: 10.3168/jds.2011-4147] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/08/2011] [Indexed: 11/19/2022]
Abstract
Variation in cellular activity in a tissue induces changes in RNA concentration, which affects the validity of gene mRNA abundance analyzed by reverse transcription quantitative PCR (RT-qPCR). A common way of accounting for such variation consists of the use of reference genes for normalization. Programs such as geNorm may be used to select suitable reference genes, although a large set of genes that are not co-regulated must be analyzed to obtain accurate results. The objective of this study was to propose an alternative experimental and analytical protocol to assess the invariance of reference genes in porcine mammary tissue using mammary RNA and DNA concentrations as correction factors. Mammary glands were biopsied from 4 sows on d 110 of gestation (prepartum), on d 5 (early) and 17 (peak) of lactation, and on d 5 after weaning (postweaning). Relative expression of 7 potential reference genes, API5, MRPL39, VAPB, ACTB, GAPDH, RPS23, and MTG1, and one candidate gene, SLC7A1, was quantified by RT-qPCR using a relative standard curve approach. Variation in gene expression levels, measured as cycles to threshold at each stage of mammary physiological activity, was tested using a linear mixed model fitting RNA and DNA concentrations as covariates. Results were compared with those obtained with geNorm analysis, and genes selected by each method were used to normalize SLC7A1. Quantified relative mRNA abundance of GAPDH and MRPL39 remained unchanged across stages of mammary physiological activity after accounting for changes in tissue RNA and DNA concentration. In contrast, geNorm analysis selected MTG1, MRPL39, and VAPB as the best reference genes. However, when target gene SLC7A1 was normalized with genes selected either based on our proposed protocol or by geNorm, fold changes in mRNA abundance did not differ. In conclusion, the proposed analytical protocol assesses expression invariance of potential reference genes by accounting for variation in tissue RNA and DNA concentrations and thus represents an alternative method to select suitable reference genes for RT-qPCR analysis.
Collapse
Affiliation(s)
- R Manjarin
- Department of Animal Science, Michigan State University, East Lansing 48824, USA
| | | | | | | | | | | |
Collapse
|
20
|
Manjarín R, Steibel JP, Kirkwood RN, Taylor NP, Trottier NL. Transcript abundance of hormone receptors, mammalian target of rapamycin pathway-related kinases, insulin-like growth factor I, and milk proteins in porcine mammary tissue1. J Anim Sci 2012; 90:221-30. [DOI: 10.2527/jas.2011-4179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- R. Manjarín
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - J. P. Steibel
- Department of Animal Science, Michigan State University, East Lansing 48824
- Department of Fisheries and Wildlife, Michigan State University, East Lansing 48824
| | - R. N. Kirkwood
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - N. P. Taylor
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - N. L. Trottier
- Department of Animal Science, Michigan State University, East Lansing 48824
| |
Collapse
|