1
|
Akbar H, Jarosinski KW. Temporal Dynamics of Purinergic Receptor Expression in the Lungs of Marek's Disease (MD) Virus-Infected Chickens Resistant or Susceptible to MD. Viruses 2024; 16:1130. [PMID: 39066292 PMCID: PMC11281646 DOI: 10.3390/v16071130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Marek's disease virus (MDV) is an economic concern for the poultry industry due to its poorly understood pathophysiology. Purinergic receptors (PRs) are potential therapeutic targets for viral infections, including herpesviruses, prompting our investigation into their role in MDV pathogenesis. The current study is part of an experimental series analyzing the expression of PRs during MDV infection. To address the early or short-acting P2 PR responses during natural MDV infection, we performed an "exposure" experiment where age-matched chickens were exposed to experimentally infected shedders to initiate natural infection. In addition, select non-PR regulatory gene responses were measured. Two groups of naïve contact chickens (n = 5/breed/time point) from MD-resistant (White Leghorns: WL) and -susceptible (Pure Columbian) chicken lines were housed separately with experimentally infected PC (×PC) and WL (×WL) chickens for 6 or 24 h. Whole lung lavage cells (WLLC) were collected, RNA was extracted, and RT-qPCR assays were used to measure specific PR responses. In addition, other potentially important markers in pathophysiology were measured. Our study revealed that WL chickens exhibited higher P1 PR expression during natural infection. WL chickens also showed higher expression of P1A3 and P2X3 at 6 and 24 h when exposed to PC-infected chickens. P2X5 and P2Y1 showed higher expression at 6 h, while P2Y5 showed higher expression at 6 and 24 h; regardless of the chicken line, PC chickens exhibited higher expression of P2X2, P2Y8, P2Y10, P2Y13, and P2Y14 when exposed to either group of infected chickens. In addition, MDV infection altered the expression of DDX5 in both WL and PC groups exposed to PC-infected birds only. However, irrespective of the source of exposure, BCL2 and ANGPTL4 showed higher expression in both WL and PC. The expression of STAT1A and STAT5A was influenced by time and breed, with major changes observed in STAT5A. CAT and SOD1 expression significantly increased in both WL and PC birds, regardless of the source of infection. GPX1 and GPX2 expression also increased in both WL and PC, although overall lower expression was observed in PC chickens at 24 h compared to 6 h. Our data suggest systemic changes in the host during early infection, indicated by the altered expression of PRs, DDX5, BCL2, ANGPTL4, and other regulatory genes during early MDV infection. The relative expression of these responses in PC and WL chickens suggests they may play a key role in their response to natural MDV infection in the lungs and long-term pathogenesis and survival.
Collapse
Affiliation(s)
| | - Keith W. Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA;
| |
Collapse
|
2
|
Akbar H, Fasick JJ, Ponnuraj N, Jarosinski KW. Purinergic signaling during Marek's disease in chickens. Sci Rep 2023; 13:2044. [PMID: 36739336 PMCID: PMC9899245 DOI: 10.1038/s41598-023-29210-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Purinergic receptors (PRs) have been reported as potential therapeutic targets for many viral infections including herpesviruses, which urges the investigation into their role in Marek's disease (MD), a herpesvirus induced cancer in chickens that is an important pathogen for the poultry industry. MD is caused by MD virus (MDV) that has a similar viral life cycle as human varicella zoster virus in that it is shed from infected epithelial skin cells and enters the host through the respiratory route. In this report, PR responses during natural MDV infection and disease progression was examined in MD-resistant white Leghorns (WL) and MD-susceptible Pure Columbian (PC) chickens during natural infection. Whole lung lavage cells (WLLC) and liver tissue samples were collected from chickens infected but showing no clinical signs of MD (Infected) or presenting with clinical disease (Diseased). RNA was extracted followed by RT-qPCR analysis with gene specific primers against members of the P1, P2X, and P2Y PR families. Differential expression (p < 0.05) was observed in breed and disease conditions. Some PRs showed tissue specific expression (P1A1, P2X1, and P2X6 in WLLC) whereas others responded to MDV infection only in MD-susceptible (PC) chickens (P1A2A, P2X1, P2X5, P2X7). P2Y PRs had differential expression in both chicken lines in response to MDV infection and MD progression. This study is the first to our knowledge to examine PR responses during MDV infection and disease progression. These results suggest PR signaling may an important area of research for MDV replication and MD.
Collapse
Affiliation(s)
- Haji Akbar
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Julia J Fasick
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Nagendraprabhu Ponnuraj
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Keith W Jarosinski
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Busato S, Ford HR, Abdelatty AM, Estill CT, Bionaz M. Peroxisome Proliferator-Activated Receptor Activation in Precision-Cut Bovine Liver Slices Reveals Novel Putative PPAR Targets in Periparturient Dairy Cows. Front Vet Sci 2022; 9:931264. [PMID: 35903133 PMCID: PMC9315222 DOI: 10.3389/fvets.2022.931264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022] Open
Abstract
Metabolic challenges experienced by dairy cows during the transition between pregnancy and lactation (also known as peripartum), are of considerable interest from a nutrigenomic perspective. The mobilization of large amounts of non-esterified fatty acids (NEFA) leads to an increase in NEFA uptake in the liver, the excess of which can cause hepatic accumulation of lipids and ultimately fatty liver. Interestingly, peripartum NEFA activate the Peroxisome Proliferator-activated Receptor (PPAR), a transcriptional regulator with known nutrigenomic properties. The study of PPAR activation in the liver of periparturient dairy cows is thus crucial; however, current in vitro models of the bovine liver are inadequate, and the isolation of primary hepatocytes is time consuming, resource intensive, and prone to errors, with the resulting cells losing characteristic phenotypical traits within hours. The objective of the current study was to evaluate the use of precision-cut liver slices (PCLS) from liver biopsies as a model for PPAR activation in periparturient dairy cows. Three primiparous Jersey cows were enrolled in the experiment, and PCLS from each were prepared prepartum (−8.0 ± 3.6 DIM) and postpartum (+7.7± 1.2 DIM) and treated independently with a variety of PPAR agonists and antagonists: the PPARα agonist WY-14643 and antagonist GW-6471; the PPARδ agonist GW-50156 and antagonist GSK-3787; and the PPARγ agonist rosiglitazone and antagonist GW-9662. Gene expression was assayed through RT-qPCR and RNAseq, and intracellular triacylglycerol (TAG) concentration was measured. PCLS obtained from postpartum cows and treated with a PPARγ agonist displayed upregulation of ACADVL and LIPC while those treated with PPARδ agonist had increased expression of LIPC, PPARD, and PDK4. In PCLS from prepartum cows, transcription of LIPC was increased by all PPAR agonists and NEFA. TAG concentration tended to be larger in tissue slices treated with PPARδ agonist compared to CTR. Use of PPAR isotype-specific antagonists in PCLS cultivated in autologous blood serum failed to decrease expression of PPAR targets, except for PDK4, which was confirmed to be a PPARδ target. Transcriptome sequencing revealed considerable differences in response to PPAR agonists at a false discovery rate-adjusted p-value of 0.2, with the most notable effects exerted by the PPARδ and PPARγ agonists. Differentially expressed genes were mainly related to pathways involved with lipid metabolism and the immune response. Among differentially expressed genes, a subset of 91 genes were identified as novel putative PPAR targets in the bovine liver, by cross-referencing our results with a publicly available dataset of predicted PPAR target genes, and supplementing our findings with prior literature. Our results provide important insights on the use of PCLS as a model for assaying PPAR activation in the periparturient dairy cow.
Collapse
Affiliation(s)
- Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Hunter R. Ford
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
| | - Alzahraa M. Abdelatty
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Charles T. Estill
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, United States
- *Correspondence: Massimo Bionaz
| |
Collapse
|
4
|
García-Roche M, Talmón D, Cañibe G, Astessiano AL, Mendoza A, Quijano C, Cassina A, Carriquiry M. Differential hepatic mitochondrial function and gluconeogenic gene expression in 2 Holstein strains in a pasture-based system. J Dairy Sci 2022; 105:5723-5737. [PMID: 35599026 DOI: 10.3168/jds.2021-21358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/17/2022] [Indexed: 12/25/2022]
Abstract
The objective of this study was to assess hepatic ATP synthesis in Holstein cows of North American and New Zealand origins and the gluconeogenic pathway, one of the pathways with the highest ATP demands in the ruminant liver. Autumn-calving Holstein cows of New Zealand and North American origins were managed in a pasture-based system with supplementation of concentrate that represented approximately 33% of the predicted dry matter intake during 2017, 2018, and 2019, and hepatic biopsies were taken during mid-lactation at 174 ± 23 days in milk. Cows of both strains produced similar levels of solids-corrected milk, and no differences in body condition score were found. Plasma glucose concentrations were higher for cows of New Zealand versus North American origin. Hepatic mitochondrial function evaluated measuring oxygen consumption rates showed that mitochondrial parameters related to ATP synthesis and maximum respiratory rate were increased for cows of New Zealand compared with North American origin. However, hepatic gene expression of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and pyruvate dehydrogenase kinase was increased in North American compared with New Zealand cows. These results altogether suggest an increased activity of the tricarboxylic cycle in New Zealand cows, leading to increased ATP synthesis, whereas North American cows pull tricarboxylic cycle intermediates toward gluconeogenesis. The fact that this occurs during mid-lactation could account for the increased persistency of North American cows, especially in a pasture-based system. In addition, we observed an augmented mitochondrial density in New Zealand cows, which could be related to feed efficiency mechanisms. In sum, our results contribute to the elucidation of hepatic molecular mechanisms in dairy cows in production systems with higher inclusion of pastures.
Collapse
Affiliation(s)
- Mercedes García-Roche
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO) and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11900, Montevideo, Uruguay.
| | - Daniel Talmón
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| | - Guillermo Cañibe
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| | - Ana Laura Astessiano
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| | - Alejandro Mendoza
- Centro de Investigaciones Biomédicas (CEINBIO) and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11900, Montevideo, Uruguay; Programa Nacional de Producción de Leche, Instituto Nacional de Investigación Agropecuaria, 39173, Semillero, Uruguay
| | - Celia Quijano
- Centro de Investigaciones Biomédicas (CEINBIO) and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11900, Montevideo, Uruguay
| | - Adriana Cassina
- Centro de Investigaciones Biomédicas (CEINBIO) and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11900, Montevideo, Uruguay
| | - Mariana Carriquiry
- Departamento de Producción Animal y Pasturas, Facultad de Agronomía, Universidad de la República, 12900, Montevideo, Uruguay
| |
Collapse
|
5
|
Erol SA, Anuk AT, Tanaçan A, Semiz H, Keskin HL, Neşelioğlu S, Erel Ö, Moraloğlu Tekin Ö, Şahin D. An evaluation of maternal serum dynamic thiol-disulfide homeostasis and ischemia modified albumin changes in pregnant women with COVID-19. Turk J Obstet Gynecol 2022; 19:21-27. [PMID: 35343216 PMCID: PMC8966320 DOI: 10.4274/tjod.galenos.2022.72929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: It is thought that oxidative stress, free radicals, reactive oxygen species and reactive nitrogen species affect the pathophysiology of coronavirus disease-2019 (COVID-19). This study aimed to evaluate the oxidative status in pregnant patients with COVID-19 infection according to the changes seen in the levels of maternal serum thiol-disulfide and ischemia-modified albumin (IMA). Materials and Methods: A study group was formed of 40 pregnant women with confirmed COVID-19 infection (study group) and a control group of 40 healthy pregnant women with no risk factors determined. In this prospective, case-controlled study, analyses were made of the maternal serum native thiol, total thiol, disulfide, IMA, and disulfide/native thiol concentrations. Results: The maternal serum native thiol and total thiol concentrations in the study group were determined to be statistically significantly lower (p=0.007 and p=0.006, respectively), and the disulfide/native thiol ratio was higher but not to a level of statistical significance (p=0.473). There was no difference between the two groups regarding IMA levels (p=0.731). Conclusion: The thiol-disulfide balance was seen to shift in the oxidant direction in pregnancies with COVID-19, which might support the view that ischemic processes play a role in the etiopathogenesis of this novel disease.
Collapse
|
6
|
Zhu Y, Bu D, Ma L. Integration of Multiplied Omics, a Step Forward in Systematic Dairy Research. Metabolites 2022; 12:metabo12030225. [PMID: 35323668 PMCID: PMC8955540 DOI: 10.3390/metabo12030225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/07/2023] Open
Abstract
Due to their unique multi-gastric digestion system highly adapted for rumination, dairy livestock has complicated physiology different from monogastric animals. However, the microbiome-based mechanism of the digestion system is congenial for biology approaches. Different omics and their integration have been widely applied in the dairy sciences since the previous decade for investigating their physiology, pathology, and the development of feed and management protocols. The rumen microbiome can digest dietary components into utilizable sugars, proteins, and volatile fatty acids, contributing to the energy intake and feed efficiency of dairy animals, which has become one target of the basis for omics applications in dairy science. Rumen, liver, and mammary gland are also frequently targeted in omics because of their crucial impact on dairy animals’ energy metabolism, production performance, and health status. The application of omics has made outstanding contributions to a more profound understanding of the physiology, etiology, and optimizing the management strategy of dairy animals, while the multi-omics method could draw information of different levels and organs together, providing an unprecedented broad scope on traits of dairy animals. This article reviewed recent omics and multi-omics researches on physiology, feeding, and pathology on dairy animals and also performed the potential of multi-omics on systematic dairy research.
Collapse
Affiliation(s)
- Yingkun Zhu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- School of Agriculture & Food Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR), and World Agroforestry Center (ICRAF), Beijing 100193, China
- Correspondence: (D.B.); (L.M.)
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
- Correspondence: (D.B.); (L.M.)
| |
Collapse
|
7
|
The Role of microRNAs in the Mammary Gland Development, Health, and Function of Cattle, Goats, and Sheep. Noncoding RNA 2021; 7:ncrna7040078. [PMID: 34940759 PMCID: PMC8708473 DOI: 10.3390/ncrna7040078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Milk is an integral and therefore complex structural element of mammalian nutrition. Therefore, it is simple to conclude that lactation, the process of producing milk, is as complex as the mammary gland, the organ responsible for this biochemical activity. Nutrition, genetics, epigenetics, disease pathogens, climatic conditions, and other environmental variables all impact breast productivity. In the last decade, the number of studies devoted to epigenetics has increased dramatically. Reports are increasingly describing the direct participation of microRNAs (miRNAs), small noncoding RNAs that regulate gene expression post-transcriptionally, in the regulation of mammary gland development and function. This paper presents a summary of the current state of knowledge about the roles of miRNAs in mammary gland development, health, and functions, particularly during lactation. The significance of miRNAs in signaling pathways, cellular proliferation, and the lipid metabolism in agricultural ruminants, which are crucial in light of their role in the nutrition of humans as consumers of dairy products, is discussed.
Collapse
|
8
|
Novel Facets of the Liver Transcriptome Are Associated with the Susceptibility and Resistance to Lipid-Related Metabolic Disorders in Periparturient Holstein Cows. Animals (Basel) 2021; 11:ani11092558. [PMID: 34573524 PMCID: PMC8470208 DOI: 10.3390/ani11092558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Energy and nutrient demands of the early lactation period can result in the development of metabolic disorders, such as ketosis and fatty liver, in dairy cows. Variability in the incidence of these disorders suggests that some cows have an ability to adapt. The objective of this study was to discover differences in liver gene expression that are associated with a cow’s susceptibility (disposition to disorder during typical conditions) or resistance (disposition to disorder onset and severity when presented a challenge) to metabolic disorders. Cows in a control treatment and a ketosis induction protocol treatment were retrospectively grouped into susceptibility and resistance groups, respectively, by a machine learning algorithm using lipid biomarker concentrations. Whole-transcriptome RNA sequencing was performed on liver samples from these cows. More susceptible cows had lower expression of glutathione metabolism genes, while less resistant cows had greater expression of eicosanoid-metabolism-related genes. Additionally, differentially expressed genes suggested a role for immune-response-related genes in conferring susceptibility and resistance to metabolic disorders. The overall inferred metabolism suggests that responses to oxidative stress may determine susceptibility and resistance to metabolic disorders, with novel implications for immunometabolism. Abstract Lipid-related metabolic disorders (LRMD) are prevalent in early lactation dairy cows, and have detrimental effects on productivity and health. Our objectives were to identify cows resistant or susceptible to LRMD using a ketosis induction protocol (KIP) to discover differentially expressed liver genes and metabolic pathways associated with disposition. Clustering cows based on postpartum lipid metabolite concentrations within dietary treatments identified cows more or less susceptible (MS vs. LS) to LRMD within the control treatment, and more or less resistant (MR vs. LR) within the KIP treatment. Whole-transcriptome RNA sequencing was performed on liver samples (−28, +1, and +14 days relative to calving) to assess differential gene and pathway expression (LS vs. MS; MR vs. LR; n = 3 cows per cluster). Cows within the MS and LR clusters had evidence of greater blood serum β-hydroxybutyrate concentration and liver triglyceride content than the LS and MR clusters, respectively. The inferred metabolism of differentially expressed genes suggested a role of immune response (i.e., interferon-inducible proteins and major histocompatibility complex molecules). Additionally, unique roles for glutathione metabolism and eicosanoid metabolism in modulating susceptibility and resistance, respectively, were implicated. Overall, this research provides novel insight into the role of immunometabolism in LRMD pathology, and suggests the potential for unique control points for LRMD progression and severity.
Collapse
|
9
|
Billa PA, Faulconnier Y, Ye T, Bourdon C, Pires JAA, Leroux C. Nutrigenomic analyses reveal miRNAs and mRNAs affected by feed restriction in the mammary gland of midlactation dairy cows. PLoS One 2021; 16:e0248680. [PMID: 33857151 PMCID: PMC8049318 DOI: 10.1371/journal.pone.0248680] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/03/2021] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to investigate the effects of feed restriction on mammary miRNAs and coding gene expression in midlactation cows. Five Holstein cows and 6 Montbéliarde cows underwent 6 days of feed restriction, during which feed allowance was reduced to meet 50% of their net energy for lactation requirements. Mammary biopsies were performed before and at the end of the restriction period. Mammary miRNA and mRNA analyses were performed using high-throughput sequencing and microarray analyses, respectively. Feed restriction induced a negative energy balance and decreased milk production and fat and protein yields in both breeds. Feed restriction modified the expression of 27 miRNAs and 374 mRNAs in mammary glands from Holstein cows, whereas no significant miRNA change was observed in Montbéliarde cows. Among the 27 differentially expressed miRNAs, 8 miRNAs were associated with dairy QTL. Analysis of target genes indicate that the 8 most abundantly expressed miRNAs control transcripts related to lipid metabolism, mammary remodeling and stress response. A comparison between the mRNAs targeted by the 8 most strongly expressed miRNAs and 374 differentially expressed mRNAs identified 59 mRNAs in common. The bioinformatic analyses of these 59 mRNAs revealed their implication in lipid metabolism and endothelial cell proliferation. These effects of feed restriction on mammary miRNAs and mRNAs observed in Holstein cows suggest a potential role of miRNAs in mammary structure and lipid biosynthesis that could explain changes in milk production and composition.
Collapse
Affiliation(s)
- Pierre-Alexis Billa
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Yannick Faulconnier
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U964, Université de Strasbourg, Illkirch, France
| | - Céline Bourdon
- INRAE, AgroParisTech, Université Paris-Saclay, UMR Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - José A. A. Pires
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Christine Leroux
- INRAE, Université Clermont Auvergne, VetAgro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
- * E-mail:
| |
Collapse
|
10
|
Soares R, Vargas G, Muniz M, Soares M, Cánovas A, Schenkel F, Squires E. Differential gene expression in dairy cows under negative energy balance and ketosis: A systematic review and meta-analysis. J Dairy Sci 2021; 104:602-615. [DOI: 10.3168/jds.2020-18883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/06/2020] [Indexed: 01/11/2023]
|
11
|
Islam S, Reddy UK, Natarajan P, Abburi VL, Bajwa AA, Imran M, Zahoor MY, Abdullah M, Bukhari AM, Iqbal S, Ashraf K, Nadeem A, Rehman H, Rashid I, Shehzad W. Population demographic history and population structure for Pakistani Nili-Ravi breeding bulls based on SNP genotyping to identify genomic regions associated with male effects for milk yield and body weight. PLoS One 2020; 15:e0242500. [PMID: 33232358 PMCID: PMC7685427 DOI: 10.1371/journal.pone.0242500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/03/2020] [Indexed: 11/20/2022] Open
Abstract
The domestic Nili-Ravi water buffalo (Bubalus bubalis) is the best dairy animal contributing 68% to total milk production in Pakistan. In this study, we identified genome-wide single nucleotide polymorphisms (SNPs) to estimate various population genetic parameters such as diversity, pairwise population differentiation, linkage disequilibrium (LD) distribution and for genome-wide association study for milk yield and body weight traits in the Nili-Ravi dairy bulls that they may pass on to their daughters who are retained for milking purposes. The genotyping by sequencing approach revealed 13,039 reference genome-anchored SNPs with minor allele frequency of 0.05 among 167 buffalos. Population structure analysis revealed that the bulls were grouped into two clusters (K = 2), which indicates the presence of two different lineages in the Pakistani Nili-Ravi water buffalo population, and we showed the extent of admixture of these two lineages in our bull collection. LD analysis revealed 4169 significant SNP associations, with an average LD decay of 90 kb for these buffalo genome. Genome-wide association study involved a multi-locus mixed linear model for milk yield and body weight to identify genome-wide male effects. Our study further illustrates the utility of the genotyping by sequencing approach for identifying genomic regions to uncover additional demographic complexity and to improve the complex dairy traits of the Pakistani Nili-Ravi water buffalo population that would provide the lot of economic benefits to dairy industry.
Collapse
Affiliation(s)
- Saher Islam
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Umesh K. Reddy
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Purushothaman Natarajan
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Lakshmi Abburi
- Department of Biology, West Virginia State University, Institute, West Virginia, United States of America
| | - Amna Arshad Bajwa
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Yasir Zahoor
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Abdullah
- Department of Livestock Production, University of Veterinary and Animal Sciences, Pattoki, Pakistan
| | - Aamir Mehmood Bukhari
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Sajid Iqbal
- Semen Production Unit, Qadirabad, District Sahiwal, Pakistan
- Livestock and Dairy Development Department, Government of the Punjab, Lahore, Pakistan
| | - Kamran Ashraf
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Asif Nadeem
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Habibur Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Imran Rashid
- Department of Parasitology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
12
|
Gao S, Zhou Z, Wang J, Loor J, Bionaz M, Ma L, Bu D. Diet Composition Affects Liver and Mammary Tissue Transcriptome in Primiparous Holstein Dairy Cows. Animals (Basel) 2020; 10:E1191. [PMID: 32674414 PMCID: PMC7401567 DOI: 10.3390/ani10071191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 11/17/2022] Open
Abstract
The objective of the present study was to evaluate the overall adaptations of liver and mammary tissue to a corn stover (CS) compared to a mixed forage (MF) diet in mid-lactation primiparous dairy cows. Twenty-four primiparous lactating Holstein cows were randomly allocated to 2 groups receiving either an alfalfa forage diet (MF, F:C = 60:40) with Chinese wildrye, alfalfa hay and corn silage as forage source or a corn stover forage diet (CS, F:C = 40:60). A subgroup of cows (n = 5/diet) was used for analysis of liver and mammary transcriptome using a 4 × 44K Bovine Agilent microarray chip. The results of functional annotation analysis showed that in liver CS vs. MF inhibited pathways related to lipid metabolism while induced the activity of the potassium channel. In mammary tissue, fatty acid metabolism was activated in CS vs. MF. In conclusion, the analysis of genes affected by CS vs. MF indicated mammary gland responding to lower level of linoleate from the diet (lower in CS vs. MF) by activating the associated biosynthesis metabolic pathway while the liver adaptively activated potassium transport to compensate for a lower K ingestion.
Collapse
Affiliation(s)
- Shengtao Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.G.); (J.W.)
| | - Zheng Zhou
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA;
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.G.); (J.W.)
| | - Juan Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 17019, USA;
| | - Massimo Bionaz
- Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA;
| | - Lu Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.G.); (J.W.)
| | - Dengpan Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.G.); (J.W.)
- Joint Laboratory on Integrated Crop-Tree-Livestock Systems of the Chinese Academy of Agricultural Sciences (CAAS), Ethiopian Institute of Agricultural Research (EIAR) and World Agroforestry Center (ICRAF), Beijing 100193, China
| |
Collapse
|
13
|
Liu G, Ding Y, Chen Y, Yang Y. Effect of energy intake and L-carnitine on fattening performance, carcass traits, meat quality, blood metabolites, and gene expression of lamb. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2019.106025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Guo C, Xue Y, Seddik HE, Yin Y, Hu F, Mao S. Dynamic Changes of Plasma Metabolome in Response to Severe Feed Restriction in Pregnant Ewes. Metabolites 2019; 9:metabo9060112. [PMID: 31185597 PMCID: PMC6630903 DOI: 10.3390/metabo9060112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
Maternal metabolic disorders in ewes induced by energy deficiency have a detrimental effect on the maternal health and lambs. However, the dynamic processes of metabolic disorders are unknown. Therefore, this study attempted to explore the dynamic changes of maternal metabolism based on metabolomics approach during energy deficiency in pregnant ewes. Twenty pregnant Hu sheep were fed a basic diet or a 70% restricted basic diet. The HPLC-MS platform was applied to identify blood metabolites. Principal component analysis of blood samples based on their metabolic profile showed that blood samples of feed restriction group differed after the treatment. In particular, when comparing both groups, there were 120, 129, and 114 differential metabolites at day 5, day 10, and day 114 between the two groups, respectively. Enrichment analysis results showed that four metabolic pathways (glycerophospholipid metabolism, linoleic acid metabolism, arginine and proline metabolism, and aminoacyl-tRNA biosynthesis) at day 5, four metabolic pathways (aminoacyl-tRNA biosynthesis, aminoacyl-tRNA biosynthesis, glycerophospholipid metabolism, and citrate cycle) at day 10, and nine metabolic pathways (aminoacyl-tRNA biosynthesis, synthesis and degradation of ketone bodies, glycerophospholipid metabolism, butanoate metabolism, linoleic acid metabolism, citrate cycle, alanine, aspartate and glutamate metabolism, valine, leucine and isoleucine biosynthesis, and arginine and proline metabolism) at day 15 were significantly enriched between the two groups. These findings revealed temporal changes of metabolic disorders in pregnant ewes caused by severe feed restriction, which may provide insights into mitigation measures.
Collapse
Affiliation(s)
- Changzheng Guo
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
- Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yanfeng Xue
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
- Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China.
| | - Hossam-Eldin Seddik
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
- Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yuyang Yin
- Huzhou Academy of Agricultural Sciences, Huzhou 313000, China.
| | - Fan Hu
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
- Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shengyong Mao
- Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, Nanjing Agricultural University, Nanjing 210095, China.
- National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
- Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
15
|
Pawłowski K, Pires JAA, Faulconnier Y, Chambon C, Germon P, Boby C, Leroux C. Mammary Gland Transcriptome and Proteome Modifications by Nutrient Restriction in Early Lactation Holstein Cows Challenged with Intra-Mammary Lipopolysaccharide. Int J Mol Sci 2019; 20:E1156. [PMID: 30845783 PMCID: PMC6429198 DOI: 10.3390/ijms20051156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 11/27/2022] Open
Abstract
: The objective is to study the effects of nutrient restrictions, which induce a metabolic imbalance on the inflammatory response of the mammary gland in early lactation cows. The aim is to decipher the molecular mechanisms involved, by comparing a control, with a restriction group, a transcriptome and proteome, after an intra-mammary lipopolysaccharide challenge. Multi-parous cows were either allowed ad libitum intake of a lactation diet (n = 8), or a ration containing low nutrient density (n = 8; 48% barley straw and dry matter basis) for four days starting at 24 ± 3 days in milk. Three days after the initiation of their treatments, one healthy rear mammary quarter of 12 lactating cows was challenged with 50 µg of lipopolysaccharide (LPS). Transcriptomic and proteomic analyses were performed on mammary biopsies obtained 24 h after the LPS challenge, using bovine 44K microarrays, and nano-LC-MS/MS, respectively. Restriction-induced deficits in energy, led to a marked negative energy balance (41 versus 97 ± 15% of Net Energy for Lactation (NEL) requirements) and metabolic imbalance. A microarray analyses identified 25 differentially expressed genes in response to restriction, suggesting that restriction had modified mammary metabolism, specifically β-oxidation process. Proteomic analyses identified 53 differentially expressed proteins, which suggests that the modification of protein synthesis from mRNA splicing to folding. Under-nutrition influenced mammary gland expression of the genes involved in metabolism, thereby increasing β-oxidation and altering protein synthesis, which may affect the response to inflammation.
Collapse
Affiliation(s)
- Karol Pawłowski
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences,02-776 Warsaw, Poland.
| | - José A A Pires
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Yannick Faulconnier
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Christophe Chambon
- INRA, INRA, Plateforme d'Exploration du Métabolisme, composante protéomique PFEMcp), F-63122 Saint-Genès Champanelle, France.
| | - Pierre Germon
- INRA Val de Loire, UMR ISP, F-37380 Nouzilly, France.
| | - Céline Boby
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Christine Leroux
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
16
|
Santos A, Giráldez F, Frutos J, Andrés S. Liver transcriptomic and proteomic profiles of preweaning lambs are modified by milk replacer restriction. J Dairy Sci 2019; 102:1194-1204. [DOI: 10.3168/jds.2018-15110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023]
|
17
|
Nguyen LT, Reverter A, Cánovas A, Venus B, Anderson ST, Islas-Trejo A, Dias MM, Crawford NF, Lehnert SA, Medrano JF, Thomas MG, Moore SS, Fortes MRS. STAT6, PBX2, and PBRM1 Emerge as Predicted Regulators of 452 Differentially Expressed Genes Associated With Puberty in Brahman Heifers. Front Genet 2018; 9:87. [PMID: 29616079 PMCID: PMC5869259 DOI: 10.3389/fgene.2018.00087] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/02/2018] [Indexed: 12/17/2022] Open
Abstract
The liver plays a central role in metabolism and produces important hormones. Hepatic estrogen receptors and the release of insulin-like growth factor 1 (IGF1) are critical links between liver function and the reproductive system. However, the role of liver in pubertal development is not fully understood. To explore this question, we applied transcriptomic analyses to liver samples of pre- and post-pubertal Brahman heifers and identified differentially expressed (DE) genes and genes encoding transcription factors (TFs). Differential expression of genes suggests potential biological mechanisms and pathways linking liver function to puberty. The analyses identified 452 DE genes and 82 TF with significant contribution to differential gene expression by using a regulatory impact factor metric. Brain-derived neurotrophic factor was observed as the most down-regulated gene (P = 0.003) in post-pubertal heifers and we propose this gene influences pubertal development in Brahman heifers. Additionally, co-expression network analysis provided evidence for three TF as key regulators of liver function during pubertal development: the signal transducer and activator of transcription 6, PBX homeobox 2, and polybromo 1. Pathway enrichment analysis identified transforming growth factor-beta and Wnt signaling pathways as significant annotation terms for the list of DE genes and TF in the co-expression network. Molecular information regarding genes and pathways described in this work are important to further our understanding of puberty onset in Brahman heifers.
Collapse
Affiliation(s)
- Loan T Nguyen
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Antonio Reverter
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Bronwyn Venus
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Stephen T Anderson
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Alma Islas-Trejo
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Marina M Dias
- Departamento de Zootecnia, Faculdade de Ciências Agráìrias e Veterináìrias, Universidade Estadual Paulista Júlio de Mesquita Filho, São Paulo, Brazil
| | - Natalie F Crawford
- Department of Animal Science, Colorado State University, Fort Collins, CO, United States
| | - Sigrid A Lehnert
- CSIRO Agriculture and Food, Queensland Bioscience Precinct, St. Lucia, QLD, Australia
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Milt G Thomas
- Department of Animal Science, Colorado State University, Fort Collins, CO, United States
| | - Stephen S Moore
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
18
|
Effects of a wide range of dietary forage-to-concentrate ratios on nutrient utilization and hepatic transcriptional profiles in limit-fed Holstein heifers. BMC Genomics 2018; 19:148. [PMID: 29454312 PMCID: PMC5816523 DOI: 10.1186/s12864-018-4529-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/05/2018] [Indexed: 12/31/2022] Open
Abstract
Background Improving the efficiency of animal production is a relentless pursuit of ruminant producers. Energy utilization and partition can be affected by dietary composition and nutrient availability. Furthermore, the liver is the central metabolic intersection in cattle. However, the specific metabolic changes in the liver under conditions of limit-feeding remain unclear and require further study. The present study aimed to elucidate the effects of a wide range of dietary forage:concentrate ratios (F:C) on energy utilization, and identify potential changes in molecular metabolism by analyzing hepatic transcriptional profiles. Twenty-four half-sib Holstein heifers were fed four F:C diets (20:80, 40:60, 60:40, and 80:20 on a dry matter basis), with similar intake levels of metabolizable energy (ME) and crude protein. Liver biopsy samples were obtained and RNA sequencing was conducted to identify the hepatic transcriptomic changes. Moreover, the ruminal fermentation profiles, growth characteristics, and levels of metabolites in the liver and plasma of the heifers were monitored. Results The proportion of acetate showed a linear increase (P < 0.01) with increasing dietary forage levels, whereas the proportion of propionate showed a linear decline (P ≤ 0.01). Lower levels of average daily gain and feed efficiency (P < 0.01) were observed in heifers fed high levels of forage, with a significant linear response. Using the Short Time-series Expression Miner software package, the expression trends of significant differentially expressed genes (DEGs) were generally divided into 20 clusters, according to their dynamic expression patterns. Functional classification analysis showed that lipid metabolism (particularly cholesterol and steroid metabolism which were in line with the cholesterol content in the liver and plasma) was significantly increased with increasing dietary forage levels and slightly reduced by the 80% forage diet. Nine DEGs were enriched in the related pathways, namely HMGCS1, HMGCR, MSMO1, MVK, MVD, IDI1, FDPS, LSS, and DHCR7. Conclusions The ruminal fermentation and feed efficiency results suggest that different mechanisms of energy utilization might occur in heifers fed different F:C diets with similar levels of ME intake. Increased cholesterol synthesis from acetate might be responsible for the reduced efficiency of energy utilization in heifers fed high-forage diets. Electronic supplementary material The online version of this article (10.1186/s12864-018-4529-9) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Han van der Kolk JH, Gross JJ, Gerber V, Bruckmaier RM. Disturbed bovine mitochondrial lipid metabolism: a review. Vet Q 2017; 37:262-273. [PMID: 28712316 DOI: 10.1080/01652176.2017.1354561] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In mammals, excess energy is stored primarily as triglycerides, which are mobilized when energy demands arise and cannot be covered by feed intake. This review mainly focuses on the role of long chain fatty acids in disturbed energy metabolism of the bovine species. Long chain fatty acids regulate energy metabolism as ligands of peroxisome proliferator-activated receptors. Carnitine acts as a carrier of fatty acyl groups as long-chain acyl-CoA derivatives do not penetrate the mitochondrial inner membrane. There are two different types of disorders in lipid metabolism which can occur in cattle, namely the hypoglycaemic-hypoinsulinaemic and the hyperglycaemic-hyperinsulinaemic type with the latter not always associated with ketosis. There is general agreement that fatty acid β-oxidation capability is limited in the liver of (ketotic) cows. In accord, supplemental L-carnitine decreased liver lipid accumulation in periparturient Holstein cows. Of note, around parturition concurrent oxidation of fatty acids in skeletal muscle is highly activated. Also peroxisomal β-oxidation in liver of dairy cows may be part of the hepatic adaptations to a negative energy balance (NEB) to break down fatty acids. An elevated blood concentration of nonesterified fatty acids is one of the indicators of NEB in cattle among others like increased β-hydroxy butyrate concentration, and decreased concentrations of glucose, insulin, and insulin-like growth factor-I. Assuming that liver carnitine concentrations might limit hepatic fatty acid oxidation capacity in dairy cows, further study of the role of acyl-CoA dehydrogenases and/or riboflavin in bovine ketosis is warranted.
Collapse
Affiliation(s)
- J H Han van der Kolk
- a Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty , University of Bern and Agroscope , Bern , Switzerland
| | - J J Gross
- b Veterinary Physiology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| | - V Gerber
- a Division of Clinical Veterinary Medicine, Swiss Institute for Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty , University of Bern and Agroscope , Bern , Switzerland
| | - R M Bruckmaier
- b Veterinary Physiology, Vetsuisse Faculty , University of Bern , Bern , Switzerland
| |
Collapse
|
20
|
Ha NT, Drögemüller C, Reimer C, Schmitz-Hsu F, Bruckmaier R, Simianer H, Gross J. Liver transcriptome analysis reveals important factors involved in the metabolic adaptation of the transition cow. J Dairy Sci 2017; 100:9311-9323. [DOI: 10.3168/jds.2016-12454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/20/2017] [Indexed: 11/19/2022]
|
21
|
Bouvier-Muller J, Allain C, Tabouret G, Enjalbert F, Portes D, Noirot C, Rupp R, Foucras G. Whole blood transcriptome analysis reveals potential competition in metabolic pathways between negative energy balance and response to inflammatory challenge. Sci Rep 2017; 7:2379. [PMID: 28539586 PMCID: PMC5443788 DOI: 10.1038/s41598-017-02391-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/11/2017] [Indexed: 11/25/2022] Open
Abstract
Negative Energy Balance (NEB) is considered to increase susceptibility to mastitis. The objective of this study was to improve our understanding of the underlying mechanisms by comparing transcriptomic profiles following NEB and a concomitant mammary inflammation. Accordingly, we performed RNA-seq analysis of blood cells in energy-restricted ewes and control-diet ewes at four different time points before and after intra mammary challenge with phlogogenic ligands. Blood leucocytes responded to NEB by shutting down lipid-generating processes, including cholesterol and fatty acid synthesis, probably under transcriptional control of SREBF 1. Furthermore, fatty acid oxidation was activated and glucose oxidation and transport inhibited in response to energy restriction. Among the differentially expressed genes (DEGs) in response to energy restriction, 64 genes were also differential in response to the inflammatory challenge. Opposite response included the activation of cholesterol and fatty acid synthesis during the inflammatory challenge. Moreover, activation of glucose oxidation and transport coupled with the increase of plasma glucose concentration in response to the inflammatory stimuli suggested a preferential utilization of glucose as the energy source during this stress. Leucocyte metabolism therefore undergoes strong metabolic changes during an inflammatory challenge, which could be in competition with those induced by energy restriction.
Collapse
Affiliation(s)
- Juliette Bouvier-Muller
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326, Castanet-Tolosan, France.,Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRA, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076, Toulouse, France
| | - Charlotte Allain
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326, Castanet-Tolosan, France
| | - Guillaume Tabouret
- Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRA, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076, Toulouse, France
| | - Francis Enjalbert
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326, Castanet-Tolosan, France
| | - David Portes
- INRA, Unité expérimentale 0321 Domaine de La Fage, F-12250, Roquefort sur Soulzon, France
| | | | - Rachel Rupp
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326, Castanet-Tolosan, France
| | - Gilles Foucras
- Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRA, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076, Toulouse, France.
| |
Collapse
|
22
|
Contreras GA, Thelen K, Schmidt SE, Strieder-Barboza C, Preseault CL, Raphael W, Kiupel M, Caron J, Lock AL. Adipose tissue remodeling in late-lactation dairy cows during feed-restriction-induced negative energy balance. J Dairy Sci 2016; 99:10009-10021. [DOI: 10.3168/jds.2016-11552] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
|
23
|
The role of rumen-protected choline in hepatic function and performance of transition dairy cows. Br J Nutr 2016; 116:35-44. [DOI: 10.1017/s0007114516001641] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractHigh-producing dairy cows enter a period of negative energy balance during the first weeks of lactation. Energy intake is usually sufficient to cover the increase in energy requirements for fetal growth during the period before calving, but meeting the demand for energy is often difficult during the early stages of lactation. A catabolic state predominates during the transition period, leading to the mobilisation of energy reserves (NEFA and amino acids) that are utilised mainly by the liver and muscle. Increased uptake of mobilised NEFA by the liver, combined with the limited capacity of hepatocytes to either oxidise fatty acids for energy or to incorporate esterified fatty acids into VLDL results in fatty liver syndrome and ketosis. This metabolic disturbance can affect the general health, and it causes economic losses. Different nutritional strategies have been used to restrict negative effects associated with the energy challenge in transition cows. The provision of choline in the form of rumen-protected choline (RPC) can potentially improve liver function by increasing VLDL exportation from the liver. RPC increases gene expression of microsomal TAG transfer protein and APOB100 that are required for VLDL synthesis and secretion. Studies with RPC have looked at gene expression, metabolic hormones, metabolite profiles, milk production and postpartum reproduction. A reduction in liver fat and enhanced milk production has been observed with RPC supplementation. However, the effects of RPC on health and reproduction are equivocal, which could reflect the lack of sufficient dose–response studies.
Collapse
|
24
|
Kern RJ, Lindholm-Perry AK, Freetly HC, Snelling WM, Kern JW, Keele JW, Miles JR, Foote AP, Oliver WT, Kuehn LA, Ludden PA. Transcriptome differences in the rumen of beef steers with variation in feed intake and gain. Gene 2016; 586:12-26. [PMID: 27033587 DOI: 10.1016/j.gene.2016.03.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/25/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND Feed intake and gain are economically important traits in beef production. The rumen wall interacts with feed, microbial populations, and fermentation products important to cattle nutrition. As such, it is likely to be a critical component in the beef steer's ability to utilize feedstuffs efficiently. To identify genes associated with steer feed intake and body weight gain traits, and to gain an understanding of molecules and pathways involved in feed intake and utilization, RNA sequencing (RNA-Seq) was performed on rumen papillae from 16 steers with variation in gain and feed intake. Four steers were chosen from each of the four Cartesian quadrants for gain×feed intake and used to generate individual RNA-Seq libraries. RESULTS Normalized read counts from all of the mapped reads from each of the four groups of animals were individually compared to the other three groups. In addition, differentially expressed genes (DEGs) between animals with high and low gain, as well as high and low intake were also evaluated. A total of 931 genes were differentially expressed in the analyses of the individual groups. Eighty-nine genes were differentially expressed between high and low gain animals; and sixty-nine were differentially expressed in high versus low intake animals. Several of the genes identified in this study have been previously associated with feed efficiency. Among those are KLK10, IRX3, COL1A1, CRELD2, HDAC10, IFITM3, and VIM. CONCLUSIONS Many of the genes identified in this study are involved with immune function, inflammation, apoptosis, cell growth/proliferation, nutrient transport, and metabolic pathways and may be important predictors of feed intake and gain in beef cattle.
Collapse
Affiliation(s)
- Rebecca J Kern
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | | | - Harvey C Freetly
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | - Warren M Snelling
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | - John W Kern
- Kern Statistical Services, Sauk Rapids, MN 56379, USA.
| | - John W Keele
- Department of Animal Science, University of Wyoming, Laramie, WY 82070, USA.
| | - Jeremy R Miles
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | - Andrew P Foote
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | - William T Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | - Larry A Kuehn
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA.
| | - Paul A Ludden
- Department of Animal Science, University of Wyoming, Laramie, WY 82070, USA.
| |
Collapse
|
25
|
Bionaz M, Osorio J, Loor JJ. TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques1,2. J Anim Sci 2015; 93:5531-53. [DOI: 10.2527/jas.2015-9192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. Osorio
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis 97333
| | - J. J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| |
Collapse
|
26
|
Selim S, Kokkonen T, Taponen J, Vanhatalo A, Elo K. Effect of prepartal ad libitum feeding of grass silage on transcriptional adaptations of the liver and subcutaneous adipose tissue in dairy cows during the periparturient period. J Dairy Sci 2015; 98:5515-28. [DOI: 10.3168/jds.2014-8986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/15/2015] [Indexed: 12/21/2022]
|
27
|
Roche JR, Meier S, Heiser A, Mitchell MD, Walker CG, Crookenden MA, Riboni MV, Loor JJ, Kay JK. Effects of precalving body condition score and prepartum feeding level on production, reproduction, and health parameters in pasture-based transition dairy cows. J Dairy Sci 2015; 98:7164-82. [PMID: 26233449 DOI: 10.3168/jds.2014-9269] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 06/02/2015] [Indexed: 12/28/2022]
Abstract
Precalving feeding level alters postcalving energy balance, dry matter intake, the liver and adipose tissue transcriptome, hepatic lipidosis, and the risk of metabolic diseases in both high-production cows consuming total mixed rations and moderate-production cows grazing pasture. We hypothesized that the reported benefits of a controlled restriction before calving are dependent on precalving body condition score (BCS): low BCS animals would not benefit from reduced feeding levels precalving, but high BCS cows would have metabolic and immunomodulatory profiles indicative of an improved health status. One hundred sixty-one days before calving, 150 cows were allocated randomly to 1 of 6 treatment groups (n = 25) in a 2 × 3 factorial arrangement: 2 precalving BCS categories (4.0 and 5.0; based on a 10-point scale: BCS4 and BCS5, respectively) and 3 levels of energy intake during the 3 wk preceding calving (75, 100, and 125% of estimated requirements). Cows in the BCS4 and BCS5 groups were managed through late lactation to ensure that target calving BCS was achieved at dry off. Cows were then fed to maintain this BCS target until 3 wk before expected calving date, at which point they were managed within their allotted precalving energy intake treatments by offering different allowances of fresh pasture/cow per day. Milk production, body weight, and BCS were measured weekly; blood was sampled weekly before and after calving and on d 0, 1, 2, 3, and 4 relative to calving. Aspirated plasma was assayed for nonesterified fatty acids, β-hydroxybutyrate, total protein, albumin, cholesterol, haptoglobin, IL-1β, IL-6, total antioxidant capacity, and reactive oxygen species. Liver was sampled wk 1, 2, and 4 postcalving for triacylglycerol analysis. Results confirm that precalving BCS and precalving feeding level have both independent and interdependent effects on production and health characteristics of transition dairy cows. Irrespective of precalving BCS, a controlled restriction precalving reduced the net release of nonesterified fatty acids from adipose tissue postpartum and increased plasma calcium concentrations, reducing the risk of milk fever. Fatter cows produced more milk but lost more BCS postcalving and had greater blood β-hydroxybutyrate concentrations and increased hepatic lipidosis. In comparison, after calving, indicators of reduced immune competence were accentuated in BCS4 cows subjected to a feed restriction before calving, probably increasing the risk of infectious diseases. It would appear from these results that optimally conditioned cows will benefit from a short-term (2-3 wk) controlled feed restriction (75-90% of requirements), whereas cows in less than optimal condition should be fed to requirements before calving.
Collapse
Affiliation(s)
- J R Roche
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240.
| | - S Meier
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| | - A Heiser
- AgResearch, Hopkirk Research Institute, Grasslands Research Centre, Palmerston North, New Zealand 4442
| | - M D Mitchell
- University of Queensland, Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Herston, Queensland, Australia 4029
| | - C G Walker
- DairyNZ Limited, c/o University of Auckland, 3A Symonds St., Auckland, New Zealand 1010
| | - M A Crookenden
- DairyNZ Limited, c/o University of Auckland, 3A Symonds St., Auckland, New Zealand 1010
| | - M Vailati Riboni
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - J J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801
| | - J K Kay
- DairyNZ Limited, Private Bag 3221, Hamilton, New Zealand 3240
| |
Collapse
|
28
|
Shahzad K, Bionaz M, Trevisi E, Bertoni G, Rodriguez-Zas SL, Loor JJ. Integrative analyses of hepatic differentially expressed genes and blood biomarkers during the peripartal period between dairy cows overfed or restricted-fed energy prepartum. PLoS One 2014; 9:e99757. [PMID: 24914544 PMCID: PMC4051754 DOI: 10.1371/journal.pone.0099757] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/16/2014] [Indexed: 12/14/2022] Open
Abstract
Using published dairy cattle liver transcriptomics dataset along with novel blood biomarkers of liver function, metabolism, and inflammation we have attempted an integrative systems biology approach applying the classical functional enrichment analysis using DAVID, a newly-developed Dynamic Impact Approach (DIA), and an upstream gene network analysis using Ingenuity Pathway Analysis (IPA). Transcriptome data was generated from experiments evaluating the impact of prepartal plane of energy intake [overfed (OF) or restricted (RE)] on liver of dairy cows during the peripartal period. Blood biomarkers uncovered that RE vs. OF led to greater prepartal liver distress accompanied by a low-grade inflammation and larger proteolysis (i.e., higher haptoglobin, bilirubin, and creatinine). Post-partum the greater bilirubinaemia and lipid accumulation in OF vs. RE indicated a large degree of liver distress. The re-analysis of microarray data revealed that expression of >4,000 genes was affected by diet × time. The bioinformatics analysis indicated that RE vs. OF cows had a liver with a greater lipid and amino acid catabolic capacity both pre- and post-partum while OF vs. RE cows had a greater activation of pathways/functions related to triglyceride synthesis. Furthermore, RE vs. OF cows had a larger (or higher capacity to cope with) ER stress likely associated with greater protein synthesis/processing, and a higher activation of inflammatory-related functions. Liver in OF vs. RE cows had a larger cell proliferation and cell-to-cell communication likely as a response to the greater lipid accumulation. Analysis of upstream regulators indicated a pivotal role of several lipid-related transcription factors (e.g., PPARs, SREBPs, and NFE2L2) in priming the liver of RE cows to better face the early postpartal metabolic and inflammatory challenges. An all-encompassing dynamic model was proposed based on the findings.
Collapse
Affiliation(s)
- Khuram Shahzad
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (MB); (JJL)
| | - Erminio Trevisi
- Istituto di Zootecnica and Centro di ricerca sulla nutrigenomica, Universitá Cattolica del Sacro Cuore, Piacenza, Italy
| | - Giuseppe Bertoni
- Istituto di Zootecnica and Centro di ricerca sulla nutrigenomica, Universitá Cattolica del Sacro Cuore, Piacenza, Italy
| | - Sandra L. Rodriguez-Zas
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- The Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Juan J. Loor
- Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail: (MB); (JJL)
| |
Collapse
|
29
|
Microfluidic high-throughput reverse-transcription quantitative PCR analysis of liver gene expression in lactating animals. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1205-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Akbar H, Cardoso FC, Meier S, Burke C, McDougall S, Mitchell M, Walker C, Rodriguez-Zas SL, Everts RE, Lewin HA, Roche JR, Loor JJ. Postpartal subclinical endometritis alters transcriptome profiles in liver and adipose tissue of dairy cows. Bioinform Biol Insights 2014; 8:45-63. [PMID: 24578603 PMCID: PMC3934763 DOI: 10.4137/bbi.s13735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/11/2022] Open
Abstract
Transcriptome alterations in liver and adipose tissue of cows with subclinical endometritis (SCE) at 29 d postpartum were evaluated. Bioinformatics analysis was performed using the Dynamic Impact Approach by means of KEGG and DAVID databases. Milk production, blood metabolites (non-esterified fatty acids, magnesium), and disease biomarkers (albumin, aspartate aminotransferase) did not differ greatly between healthy and SCE cows. In liver tissue of cows with SCE, alterations in gene expression revealed an activation of complement and coagulation cascade, steroid hormone biosynthesis, apoptosis, inflammation, oxidative stress, MAPK signaling, and the formation of fibrinogen complex. Bioinformatics analysis also revealed an inhibition of vitamin B3 and B6 metabolism with SCE. In adipose, the most activated pathways by SCE were nicotinate and nicotinamide metabolism, long-chain fatty acid transport, oxidative phosphorylation, inflammation, T cell and B cell receptor signaling, and mTOR signaling. Results indicate that SCE in dairy cattle during early lactation induces molecular alterations in liver and adipose tissue indicative of immune activation and cellular stress.
Collapse
Affiliation(s)
- Haji Akbar
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
| | - Felipe C. Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
| | | | | | | | - Murray Mitchell
- Liggins Institute, University of Auckland, Auckland, New Zealand
- University of Queensland Centre for Clinical Research, Brisbane, St. Lucia, Queensland, Australia
| | | | | | - Robin E. Everts
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
| | - Harris A. Lewin
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
| | | | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, Illinois, USA
- Division of Nutritional Sciences, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
31
|
Seo J, Osorio JS, Schmitt E, Corrêa MN, Bertoni G, Trevisi E, Loor JJ. Hepatic purinergic signaling gene network expression and its relationship with inflammation and oxidative stress biomarkers in blood from peripartal dairy cattle. J Dairy Sci 2013; 97:861-73. [PMID: 24359819 DOI: 10.3168/jds.2013-7379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/05/2013] [Indexed: 01/08/2023]
Abstract
The liver plays a central role in allowing dairy cattle to make a successful transition into lactation. In liver, as in other tissues, extracellular nucleotides and nucleosides trigger cellular responses through adenosine and ATP receptors. Adenosine triphosphate and certain nucleotides serve as signals that can heighten purinergic receptor activation in several pathologic processes. We evaluated the mRNA expression of genes associated with the purinergic signaling network in liver tissue during the peripartal period. Seven multiparous Holstein cows were dried off at d -50 relative to expected parturition and fed a controlled-energy diet (net energy for lactation=1.24 Mcal/kg of DM) for ad libitum intake during the entire dry period. After calving, all cows were fed a common lactation diet (net energy for lactation=1.65 Mcal/kg of DM) until 30 DIM. Biopsies of liver were harvested at d -10, 7, and 21 for mRNA expression of 9 purinergic receptors, 7 ATP and adenosine transport channels, and 10 enzymes associated with ATP hydrolysis. Blood collected at d -21, -10, 7, 14, and 21 was used to measure concentrations of inflammation and oxidative stress biomarkers. The expression of type 1 purinergic receptors (ADORA2A and ADORA3), several nucleoside hydrolases [ectonucleoside triphosphate diphosphohydrolase 7 (ENTPD7), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), ENPP3, and adenosine deaminase (ADA)], and a type 2 purinergic receptor (P2RX7) was downregulated after calving. In contrast, the expression of type 2 purinergic receptors (P2RX4 and PR2Y11), an ATP release channel (gap junction hemichannel GJB1), and an adenosine uptake protein (SLC29A1) followed the opposite response, increasing after calving and remaining elevated through 21 d. Haptoglobin, ceruloplasmin, and reactive oxygen metabolite concentrations increased gradually from d -21 d through at least d 7. The opposite response was observed for albumin, paraoxonase, α-tocopherol, and nitric oxide, which decreased gradually to a nadir at 7 and 14 d. Our results suggest that alterations after calving of the expression of hepatic purinergic signaling genes could be functionally important because in nonruminants, they play roles in bile formation, glucose metabolism, cholesterol uptake, inflammation, and steatosis. The correlation analysis provided evidence of a link between purinergic signaling genes and biomarkers of inflammation and oxidative stress.
Collapse
Affiliation(s)
- J Seo
- Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Daehak-dong, Kwanak-gu, Seoul 151-742, Republic of Korea; Mammalian NutriPhysioGenomics, Department of Animal Sciences, and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana 61801
| | - J S Osorio
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana 61801
| | - E Schmitt
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Rondônia, BR 364, Km 5.5, Zona Rural, Caixa Postal 127, CEP 76815-800, Porto Velho, Rondônia, Brazil
| | - M N Corrêa
- Universidade Federal de Pelotas, NUPEEC, Departamento Clínicas Veterinária, Campus Universitário, 96010-900, Pelotas, Rio Grande do Sul, Brazil
| | - G Bertoni
- Istituto di Zootecnica, Facoltà di Agraria, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - E Trevisi
- Istituto di Zootecnica, Facoltà di Agraria, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, and Division of Nutritional Sciences, University of Illinois, 1207 West Gregory Drive, Urbana 61801.
| |
Collapse
|
32
|
Laporta J, Rosa GJM, Naya H, Carriquiry M. Liver functional genomics in beef cows on grazing systems: novel genes and pathways revealed. Physiol Genomics 2013; 46:138-47. [PMID: 24326346 DOI: 10.1152/physiolgenomics.00120.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The adaptation of the liver to periods of negative energy balance is largely unknown in beef cattle on grazing systems. We evaluated liver transcriptome throughout gestation and early lactation of purebred and crossbred beef cows [Angus, Hereford, and their F1 crossbreeds (CR)], grazing high or low herbage allowances (HA) of native grasslands (4 and 2.5 kg dry matter/kg body wt annual mean; n = 16) using an Agilent 4 × 44k bovine array. A total of 4,661 transcripts were affected by days [272 ≥ 2.5-fold difference, false discovery rate (FDR) ≤ 0.10] and 47 pathways were altered during winter gestation (-165 to -15 days relative to calving), when cows experienced decreased body condition score, decreased insulin, and increased nonesterified fatty acid concentrations. Gluconeogenesis and fatty acid oxidation pathways were upregulated, while cell growth, DNA replication, and transcription pathways were downregulated (FDR ≤ 0.25). We observed only small changes in the liver transcriptome during early lactation (+15 to +60 days). A total of 225 genes were differentially expressed (47 ≥ 2-fold difference, FDR ≤ 0.10) between HA. The majority of those were related to glucose and pyruvate metabolism and were upregulated in high HA, reflecting their better metabolic status. Two genes were upregulated in CR cows, but 148 transcripts (74 ≥ 2-fold change difference, FDR ≤ 0.10) were affected by the HA and cow genotype interaction. The transcriptional changes observed indicated a complex and previously unrecognized, hepatic adaptive program of grazing beef cows in different nutritional environments. Novel target candidate genes, metabolic pathways, and regulatory mechanisms were reported.
Collapse
Affiliation(s)
- Jimena Laporta
- Departamento de Producción Animal y Pasturas, Universidad de la República, Montevideo, Uruguay
| | | | | | | |
Collapse
|
33
|
Grala TM, Kay JK, Phyn CVC, Bionaz M, Walker CG, Rius AG, Snell RG, Roche JR. Reducing milking frequency during nutrient restriction has no effect on the hepatic transcriptome of lactating dairy cattle. Physiol Genomics 2013; 45:1157-67. [PMID: 24104205 DOI: 10.1152/physiolgenomics.00134.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to investigate if a reduced milking frequency altered the effect of dietary energy restriction on the hepatic transcriptome of grazing dairy cows during early lactation. Multiparous Holstein-Friesian and Holstein-Friesian × Jersey cows (n = 120) were milked twice daily (2×) from calving until 34 ± 6 days in milk (mean ± SD). Cows were then allocated to one of four treatments in a 2 × 2 factorial arrangement. Treatments consisted of two milking frequencies [2× or once daily (1×)] and two feeding levels for 3 wk: adequately fed (AF) or underfed (UF, 60% of AF). Liver tissue was biopsied from 12 cows per treatment after 3 wk of treatment, and the hepatic transcriptome was profiled with an Agilent 4 × 44k bovine microarray. Over 2,900 genes were differentially expressed in response to the energy restriction; however, no effects resulted from changes to milking frequency. This may indicate that after 3 wk of 1× milking, any changes to the liver transcriptome that may have occurred earlier have returned to normal. After 3 wk of energy restriction, gene expression patterns indicate that glucose-sparing pathways were activated, and gluconeogenesis was increased in UF cows. Genes involved in hepatic stress were upregulated in response to the energy restriction indicative of the pressure energy restriction places on liver function. Other pathways upregulated included "cytoskeletal remodeling," indicating that a 3 wk energy restriction resulted in molecular changes to assist tissue remodeling. Overall, 1× milking does not modify the hepatic transcriptome changes that occur in response to an energy restriction.
Collapse
Affiliation(s)
- T M Grala
- DairyNZ Limited - University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|