1
|
Abd El-Mola AA, Elnesr SS. Influence of sugarcane bagasse on in vitro degradability, rumen characteristics, nutrients digestibility, blood parameters and milk production of lactating buffaloes. Anim Biotechnol 2023; 34:3378-3386. [PMID: 36534611 DOI: 10.1080/10495398.2022.2149546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aimed to evaluate the use of sugarcane bagasse (SCB) as exclusive roughage in lactating buffaloes on digestibility, milk production and composition, and microbial protein. In vitro dry matter digestion (IVDMD) and organic matter digestion (IVOMD) for SCB as a replacement for barley straw (BS) of the control ration have been determined. In vivo experiment, 55 lactating buffaloes were randomly assigned into five groups. First group was fed the control ration (60% concentrate feed mixture (CFM) and 40% BS), second group was fed 60% CFM and 30% BS + 10% SCB, third group was fed 60% CFM and 20% BS + 20% SCB, fourth group was fed 60% CFM and 10% BS + 30% SCB and fifth group was fed 60% CFM and 40% SCB. Results indicated that IVDMD% and IVOMD% degradability were increased with the inclusion SCB in rations compared with the control. Full replacement of BS by SCB 40% significantly (p < 0.05) increased nutrients digestibility coefficient with improving ruminal basic parameters. Buffaloes fed SCB40 had higher milk component yields, 4% fat corrected milk and plasma proteins, and lower plasma creatinine and cholesterol than control buffaloes (p < 0.05). Finally, the inclusion of SCB up to 40% in lactating buffaloes rations favorably affected rumen fermentation characteristics (in vitro) and improved nutrients digestibility and milk production (in vivo).
Collapse
Affiliation(s)
| | - Shaaban S Elnesr
- Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
2
|
Kargar S, Taasoli G, Akhlaghi A, Zamiri M. In vitro rumen fermentation pattern: insights from concentrate level and plant oil supplement. Arch Anim Breed 2023; 66:1-8. [PMID: 36687214 PMCID: PMC9850243 DOI: 10.5194/aab-66-1-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
The addition of oil to ruminant diets and oil fatty acid profiles are major factors that negatively affect ruminal fermentation, while increased forage level attenuates the adverse effects. The aim of this study was to determine the effects of oil source supplementation and concentrate level in the diet on in vitro ruminal fermentation kinetics. Pomegranate, garlic or sunflower oils were added (2 % dry matter (DM) basis) to the diets containing 40 % or 60 % (DM basis) concentrates. In vitro gas production parameters, pH, ammonia nitrogen concentration and total protozoa count were measured. Additionally, metabolizable energy (ME), short-chain fatty acid (SCFA) production and organic matter digestibility (OMD) were determined. Rumen fermentation parameters and protozoal population counts were analyzed as a completely randomized design with a 2 × 3 factorial arrangement of treatments, and gas production parameters were analyzed as a 2 × 3 factorial arrangement in a randomized block design. The results showed that the HCPO (high (60 %) concentrate diet containing pomegranate oil) and HCSO (high (60 %) concentrate diet containing sunflower oil) diets produced the highest (5.40 mg dL - 1 ) and lowest (2.61 mg dL - 1 ) concentrations of NH 3 -N ( p > 0.01 ), respectively. Total protozoa count tended ( p = 0.07 ) to be highest in HCPO and lowest in HCSO diets (5.10 vs. 4.81 Log 10 g - 1 digesta). No interaction effects between the concentrate level and oil source were found on in vitro gas production parameters, pH, estimated ME, SCFA and OMD, and Entodinium and Diplodinium populations ( p > 0.05 ). It is concluded that dietary supplementation with highly unsaturated oil from three different sources at 2 % level (DM basis) had no apparent effects on in vitro ruminal fermentation patterns.
Collapse
Affiliation(s)
- Shahryar Kargar
- Department of Animal Science, School of Agriculture, Shiraz University,
Shiraz 71441–65186, Iran
| | - Golnaz Taasoli
- Department of Animal Science, Chaharmahal and Bakhtiari Agricultural and
Natural Resources Research and Education Center, Agricultural Research,
Education and Extension Organization (AREEO), Shahrekord 88156–89554, Iran
| | - Amir Akhlaghi
- Department of Animal Science, School of Agriculture, Shiraz University,
Shiraz 71441–65186, Iran
| | - Mohammad Javad Zamiri
- Department of Animal Science, School of Agriculture, Shiraz University,
Shiraz 71441–65186, Iran
| |
Collapse
|
3
|
El-Sherbiny M, Khattab MSA, Abd El Tawab AM, Elnahr M, Cieślak A, Szumacher-Strabel M. Oil-in-Water Nanoemulsion Can Modulate the Fermentation, Fatty Acid Accumulation, and the Microbial Population in Rumen Batch Cultures. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010358. [PMID: 36615551 PMCID: PMC9822118 DOI: 10.3390/molecules28010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
In this study, three oil-in-water nanoemulsions were tested in two stages: In the first stage, three levels (on the substrate dry matter (DM)), namely 3%, 6%, and 9%, of three different oils, olive oil (OO), corn oil (CO), and linseed oil (LO), in raw and nanoemulsified (N) forms were used separately in three consecutive rumen batch cultures trials. The second stage, which was based on the first stage's results, consisted of a batch culture trial that compared the raw and nanoemulsified (N) forms of all three oils together, provided at 3% of the DM. In the first stage, NOO, NCO, and NLO preserved higher unsaturated fatty acid (UFA) and less saturated fatty acid (SFA) compared to OO, CO, and LO, respectively; noticeably, NCO had UFA:SFA = 1.01, 1.16, and 1.34 compared to CO, which had UFA:SFA = 0.66, 0.69, and 0.72 when supplemented at 3%, 6%, 9% of DM, respectively. In the second stage, UFA:SFA = 1.04, 1.12, and 1.07 for NOO, NCO, NLO, as compared to UFA:SFA = 0.69, 0.68, and 0.72 for OO, CO, and LO supplemented at 3% of DM. In conclusion, oil-in-water nanoemulsions showed an ability to decrease the transformation of UFA to SFA in the biohydrogenation environment without affecting the rumen microorganisms.
Collapse
Affiliation(s)
- Mohamed El-Sherbiny
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
- Correspondence: (M.E.-S.); (M.S.-S.)
| | - Mostafa S. A. Khattab
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Ahmed M. Abd El Tawab
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Mostafa Elnahr
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Adam Cieślak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 28, 60-637 Poznań, Poland
| | - Małgorzata Szumacher-Strabel
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 28, 60-637 Poznań, Poland
- Correspondence: (M.E.-S.); (M.S.-S.)
| |
Collapse
|
4
|
Yousef MA, Farouk MH, Azzaz HH, Khattab MSA, Abd El Tawab AM, El-Sherbiny M. Feeding Corn Oil in a Nanoemulsified Form Alters the Unsaturated Fatty Acids in the Milk of Zaraibi Dairy Goats. Animals (Basel) 2022; 12:ani12192559. [PMID: 36230300 PMCID: PMC9558515 DOI: 10.3390/ani12192559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Increasing the polyunsaturated fatty acid content of ruminant milk represents a much needed step to increase the functional properties of the milk. However, boosting milk fatty acids through feeding strategies has remained a significant challenge for years; it requires new solutions to deliver unsaturated fatty acids in a much safer form for rumen microorganisms than the traditional supplemented raw oil form. The goal is to target less biohydrogenation, which results in less saturated fatty acid accumulation in the rumen and milk. In the present study, the ultrasonic nanoemulsification of corn oil was introduced as a replacement for the raw form of oil supplementation; it was used at 3% of the offered feed dry matter in a trial on dairy goats. The new form of corn oil supplementation was more effective than the raw form of corn oil in increasing milk productivity and fat percentage and preserving a more significant proportion of polyunsaturated fatty acids in the milk of dairy goats. Conversely, the raw form of corn oil resulted in milk fat depression and lower total solid content in addition to milk with higher proportions of saturated fatty acid. Abstract Oil in water nanoemulsion represents a new and unstudied form of oil supplementation to the ruminant diet; that is why the aim was to evaluate the potential of nanoemulsified corn oil in dairy goats’ diets on milk productivity and fatty acid proportion. Twenty-four lactating Zaraibi goats in early lactation were randomly allocated to the following treatments: control—a basal diet without any supplementation, CO—the control diet + corn oil supplied at 3% on a dry matter basis (DM), NCO—the control diet + nanoemulsified corn oil provided at 3% on a DM basis. A completely randomized design that lasted 30 days (25 days of adaptation + 5 days of sampling) was used with eight goats in each treatment. The control diet consisted of 50% concentrate and 50% Egyptian berseem clover. The NCO increased the milk production, fat percentage, and yield compared to the CO and the control. The proportions of oleic, linoleic, and linolenic acids were higher in the NCO compared to the control and CO. The NCO had less effect on the biohydrogenation intermediates’ profile than the CO; noticeably, higher proportions of unsaturated fatty acid (UFA) were associated with the NCO. In conclusion, the NCO increased milk production and decreased the transformation rate of UFA to saturated fatty acids in the biohydrogenation environment.
Collapse
Affiliation(s)
- Mahmoud Atef Yousef
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo 11884, Egypt
| | - Hossam H. Azzaz
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Mostafa S. A. Khattab
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Ahmed M. Abd El Tawab
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Mohamed El-Sherbiny
- Department of Dairy Science, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
- Correspondence:
| |
Collapse
|
5
|
Altering Methane Emission, Fatty Acid Composition, and Microbial Profile during In Vitro Ruminant Fermentation by Manipulating Dietary Fatty Acid Ratios. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8070310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study evaluated the effects of different dietary n-6/n-3 polyunsaturated fatty acid (PUFA) ratios on in vitro ruminant fermentation. Methane production, fatty acid composition, and microbial profiles were compared after the in vitro fermentation of rumen fluid collected from cows that had been fed isoenergetic and isoproteic experimental diets at three different n-6/n-3 ratios: 3.04 (HN6, high n-6 source), 2.03 (MN6, medium n-6 source), and 0.8 (LN6, low n-6 source). The fermented rumen fluid pH and total volatile fatty acid (VFA) levels were significantly decreased (p < 0.05) in the HN6 group as compared with those in the MN6 and LN6 groups. Additionally, the HN6 group produced a significantly lower (p < 0.05) proportion of methane than the MN6 group during in vitro fermentation. The MN6 and LN6 groups had significantly increased (p < 0.05) levels of C18:2n6 and C18:3n3 in the fermented rumen fluid, respectively, as compared with the HN6 group. The Chao 1 diversity index value was lower (p < 0.05) in the HN6 group than in the MN6 and LN6 groups. The observed species richness was significantly lower (p < 0.05) in the HN6 group than in the MN6 group. The reduced relative abundances of Lachnospiraceae UCG-006 and Selenomonas in the HN6 group resulted in lower pH and VFA levels (i.e., acetate, propionate, butyrate, and total VFA) during in vitro fermentation. Furthermore, n-6 and n-3 PUFAs were toxic to Butyrivibrio_2 growth, resulting in high levels of incomplete biohydrogenation. Taken together, the study findings suggest that supplementation of high-forage diets with high levels of n-6 PUFAs could reduce methane emissions, whereas both VFA concentration and pH are reduced.
Collapse
|
6
|
Effect of Cellulase Enzyme Produced from Penicilliumchrysogenum on the Milk Production, Composition, Amino Acid, and Fatty Acid Profiles of Egyptian Buffaloes Fed a High-Forage Diet. Animals (Basel) 2021; 11:ani11113066. [PMID: 34827797 PMCID: PMC8614441 DOI: 10.3390/ani11113066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Exogenous fibrolytic enzymes can improve nutrient digestibility of feeds high in fibrous content offered to Egyptian lactating buffaloes. The proposed cellulase exclusively produced in-farm using Penicillium Chrysogenum showed higher activity in previous in vitro studies. That is why it was chosen to get tested against a well-known commercial source of cellulase enzyme from the Egyptian markets for its efficiency in increasing milk productivity and composition. Profiles of amino acids and fatty acids were also recorded. The initial results highlighted a superiority of the produced enzyme (FENZ) against the commercial source (CENZ). It was also clear that FENZ can preserve higher proportions of fatty acids in the milk, primarily conjugated linoleic acid. Based on the idea rationale, our conclusion is to promote setting a small cellulase production unit in each farm in Egypt to decrease the cost of feeding by using agricultural and agro-industrial waste during the cellulase production and feeding process. Abstract The experiment was conducted to study the effects of supplementing a cellulase enzymes cocktail to lactating buffaloes’ diet, on the nutrient intake, nutrient digestibility, and milk production performance and composition. Twenty-four lactating Egyptian buffaloes were assigned into one of the following treatments: CON—control consisted of a total mixed ration, CENZ—the total mixed ration supplemented by a commercial source of cellulase enzyme, FENZ—the total mixed ration supplemented with cellulase enzyme cocktail produced in-farm. Supplementing the diet with the in-farm source of cellulase (FENZ) had a significantly higher impact on crude protein, neutral detergent fiber, and acid detergent fiber digestibility. However, FENZ tended to increase the EE digestibility compared to CENZ. FENZ showed significantly higher nutrient digestibility percentages compared to other groups. Supplementing the diet with cellulase enzymes (CON vs. ENZ) significantly increased the daily milk yield and the fat correct milk yield; both yields were significantly higher with FENZ than all groups. Oleic, linoleic, and linolenic acid concentration were significantly higher with cellulase enzymes supplementation (CON vs. ENZ) and the conjugated linoleic acid concentration. Supplementing fungal cellulase enzyme produced on a farm-scale has improved milk productivity, fat yield, and milk fat unsaturated fatty acids profile in lactating buffaloes.
Collapse
|
7
|
Hashem NM, Gonzalez-Bulnes A. Nanotechnology and Reproductive Management of Farm Animals: Challenges and Advances. Animals (Basel) 2021; 11:1932. [PMID: 34209536 PMCID: PMC8300313 DOI: 10.3390/ani11071932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Reproductive efficiency of farm animals has central consequences on productivity and profitability of livestock farming systems. Optimal reproductive management is based on applying different strategies, including biological, hormonal, nutritional strategies, as well as reproductive disease control. These strategies should not only guarantee sufficient reproductive outcomes but should also comply with practical and ethical aspects. For example, the efficiency of the biological- and hormonal-based reproductive strategies is mainly related to several biological factors and physiological status of animals, and of nutritional strategies, additional factors, such as digestion and absorption, can contribute. In addition, the management of reproductive-related diseases is challenged by the concerns regarding the intensive use of antibiotics and the development of antimicrobial resistant strains. The emergence of nanotechnology applications in livestock farming systems may present innovative and new solutions for overcoming reproductive management challenges. Many drugs (hormones and antibiotics), biological molecules, and nutrients can acquire novel physicochemical properties using nanotechnology; the main ones are improved bioavailability, higher cellular uptake, controlled sustained release, and lower toxicity compared with ordinary forms. In this review, we illustrate advances in the most common reproductive management strategies by applying nanotechnology, considering the current challenges of each strategy.
Collapse
Affiliation(s)
- Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria 21545, Egypt
| | - Antonio Gonzalez-Bulnes
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad CardenalHerrera-CEU, CEU Universities, C/Tirant lo Blanc, 7, 46115 Alfara del Patriarca, Valencia, Spain
| |
Collapse
|
8
|
Ebeid HM, Hassan FU, Li M, Peng L, Peng K, Liang X, Yang C. Camelina sativa L. Oil Mitigates Enteric in vitro Methane Production, Modulates Ruminal Fermentation, and Ruminal Bacterial Diversity in Buffaloes. Front Vet Sci 2020; 7:550. [PMID: 33005640 PMCID: PMC7479821 DOI: 10.3389/fvets.2020.00550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study was aimed to evaluate the effects of Camelina sativa oil (CO) on fermentation kinetics and methane (CH4) production in rations with different roughage (R) to concentrate (C) ratios. Three total mixed rations (TMRs) were used as substrates (R70:C30, R50:C50, and R30:C70) supplemented with different levels of CO (0, 2, 4, 6, and 8% on dry matter basis) in an in vitro batch culture system. The enteric CH4 production was determined at different times of incubation while fermentation parameters were measured at the end of incubation. Results revealed that CO significantly decreased (P < 0.05) CH4 production at 48 h in medium (R50:C50) and low- (R30:C70) roughage diets than control. Camelina oil at all levels significantly (P < 0.05) affected ammonia nitrogen (NH3-N) and microbial protein (MCP) in all rations. Propionate concentration was increased by supplementing 8% CO to R70:C30 TMR, but it decreased with increasing levels of CO for low- and medium-roughage diets. Acetate concentration was significantly (P < 0.05) higher at 4% CO supplementation, but it decreased with 8% CO level in R30:C70 TMR. For all rations, CO decreased (P < 0.001) total bacteria, protozoa, and methanogens. Total fungi counts were affected by CO in all rations, especially with a 6% level in two rations (R30:C70 and R50:C50) and 8% level with high-roughage ration (R70:C30). Supplementation of CO in medium-roughage ration (R50:C50) showed a linear (P < 0.05) decrease in bacterial richness and evenness indices along with Shannon diversity as compared to the control. Moreover, CO also increased Firmicutes to Bacteroidetes ratio in all TMRs more effectively at higher levels. Camelina oil also affected the relative abundance of Prevotella in both low- and medium-roughage diets while increasing the abundance of Ruminobacter and Pseudobutyrivibrio. The present study concluded that CO enhanced fermentation kinetics while decreasing enteric in vitro CH4 production from fibrous diets. Thus, it may be considered as a potentially effective and environmentally friendly way of mitigating CH4 emission from livestock.
Collapse
Affiliation(s)
- Hossam M Ebeid
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Dairy Science Department, National Research Centre, Giza, Egypt
| | - Faiz-Ul Hassan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China.,Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Mengwei Li
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Lijuan Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Kaiping Peng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xin Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Chengjian Yang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
9
|
A Ismail S, M Abdel-Fattah A, A Emran M, H Azzaz H, S El-Gamal M, M Hashem A. Effect of Partial Substitution of Ration's Soybean Meal by Biologically Treated Feathers on Rumen Fermentation Characteristics (<I>in vitro</I>). Pak J Biol Sci 2019; 21:110-118. [PMID: 30187720 DOI: 10.3923/pjbs.2018.110.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Feather wastes are the most abundant keratinous material in the nature and its accumulation causes multiple environmental problems. Nutritive value upgrading of such wastes through biological treatments may provide ruminant's rations with high quality and cost effective source of protein. Therefore, the main objective of this study was to investigate the potential uses of biologically treated feathers (BTF) as a feedstuff for ruminants through in vitro experiments. MATERIALS AND METHODS Keratinase production time course was performed by ten microbial isolates (3 fungal, 3 actinomyces and 4 bacterial isolates) under static and shaking conditions using turkey feather- synthetic medium. The chemical composition and amino acid analysis for the crude feathers, BTF and soybean meal were determined according to AOAC methods. Two in vitro experiments were conducted to study the effects of crude feathers, BTF and modified ruminant rations (in which soybean meal were substituted by the BTF in 10, 20 and 30%) on rumen fermentation characteristics. Ration's Dry Matter (DM), Organic Matter (OM), Neutral detergent fibre (NDF) and Acid detergent Fibre (ADF) degradability by rumen microorganisms were tested using batch culture technique. Ruminal final pH, ammonia-nitrogen, total volatile fatty acids and short chain fatty acids concentrations were determined after 24 h of incubation. The total gas production volume was determined using 100 mL glass syringes. RESULTS Bacillus licheniformis ALW1 was the most potent keratinase producer strain under static condition at 37°C for four days of incubation. Feather biological treatment by Bacillus licheniformis increased its content of some of essential-sulphur amino acids. The degradability of BTF by rumen microorganisms was 4 folds higher than crude feather degradability. There were no significant differences between control and partially substituted (R10 and R20) rations in all of rumen fermentation characteristics. CONCLUSION The utilization of BTF as substitute for costly soybean meal in ruminant's rations up to 20% had no negative effect on all rumen fermentation characteristics.
Collapse
|
10
|
Marrez D, Cieślak A, Gawad R, Ebeid H, Chrenková M, Gao M, Yanza Y, El-Sherbiny M, Szumacher-Strabel M. Effect of freshwater microalgae Nannochloropsis limnetica on the rumen fermentation in vitro. JOURNAL OF ANIMAL AND FEED SCIENCES 2017. [DOI: 10.22358/jafs/81275/2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Roy A, Mandal GP, Patra AK. Effects of different vegetable oils on rumen fermentation and conjugated linoleic acid concentration in vitro. Vet World 2017; 10:11-16. [PMID: 28246442 PMCID: PMC5301169 DOI: 10.14202/vetworld.2017.11-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 12/08/2016] [Indexed: 01/21/2023] Open
Abstract
Aim: The objective of this study was to investigate the effect of different vegetable oils on rumen fermentation and concentrations of beneficial cis-9 trans-11 C18:2 conjugated linoleic acid (CLA) and trans-11 C18:1 fatty acid (FA) in the rumen fluid in an in vitro condition. Materials and Methods: Six vegetable oils including sunflower, soybean, sesame, rice bran, groundnut, and mustard oils were used at three dose levels (0%, 3% and 4% of substrate dry matter [DM] basis) in three replicates for each treatment in a completely randomized design using 6 × 3 factorial arrangement. Rumen fluid for microbial culture was collected from four goats fed on a diet of concentrate mixture and berseem hay at a ratio of 60:40 on DM basis. The in vitro fermentation was performed in 100 ml conical flakes containing 50 ml of culture media and 0.5 g of substrates containing 0%, 3% and 4% vegetable oils. Results: Oils supplementation did not affect (p>0.05) in vitro DM digestibility, and concentrations of total volatile FAs and ammonia-N. Sunflower oil and soybean oil decreased (p<0.05) protozoal numbers with increasing levels of oils. Other oils had less pronounced effect (p>0.05) on protozoal numbers. Both trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations were increased (p<0.05) by sunflower and soybean oil supplementation at 4% level with the highest concentration observed for sunflower oil. The addition of other oils did not significantly (p>0.05) increase the trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations as compared to the control. The concentrations of stearic, oleic, linoleic, and linolenic acids were not altered (p>0.05) due to the addition of any vegetable oils. Conclusion: Supplementation of sunflower and soybean oils enhanced beneficial trans-11 C18:1 FA and cis-9, trans-11 CLA concentrations in rumen fluid, while sesame, rice bran, groundnut, and mustard oils were ineffective in this study.
Collapse
Affiliation(s)
- Amitava Roy
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata - 700 037, West Bengal, India
| | - Guru Prasad Mandal
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata - 700 037, West Bengal, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Belgachia, Kolkata - 700 037, West Bengal, India
| |
Collapse
|