1
|
Meng Y, Lyu CC, He YT, Che HY, Jiang H, Zhang JB, Tang HY, Yuan B. ALG5 Regulates STF-62247-Induced Milk Fat Synthesis via the mTOR Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14620-14629. [PMID: 38885170 DOI: 10.1021/acs.jafc.3c07812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Milk fat content is a critical indicator of milk quality. Exploring the key regulatory genes involved in milk fat synthesis is essential for enhancing milk fat content. STF-62247 (STF), a thiazolamide compound, has the potential to bind with ALG5 and upregulate lipid droplets in fat synthesis. However, the effect of STF on the process of milk fat synthesis and whether it acts through ALG5 remains unknown. In this study, the impact of ALG5 on milk fat synthesis and its underlying mechanism were investigated using bovine mammary epithelial cells (BMECs) and mouse models through real-time PCR, western blotting, Oil Red O staining, and triglyceride analysis. Experimental findings revealed a positive correlation between STF and ALG5 with the ability to synthesize milk fat. Silencing ALG5 led to decreased expression of FASN, SREBP1, and PPARγ in BMECs, as well as reduced phosphorylation levels in the PI3K/AKT/mTOR signaling pathway. Moreover, the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway were restored when ALG5 silencing was followed by the addition of STF. These results suggest that STF regulates fatty acid synthesis in BMECs by affecting the PI3K/AKT/mTOR signaling pathway through ALG5. ALG5 is possibly a new factor in milk fat synthesis.
Collapse
Affiliation(s)
- Yu Meng
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Chen-Chen Lyu
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Yun-Tong He
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Hao-Yu Che
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Hao Jiang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| | - Hong-Yu Tang
- College of Animal Sciences, Jilin University, Changchun 130062, Jilin, P. R. China
| | - Bao Yuan
- Department of Laboratory Animals, College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Model, Jilin University, Changchun 130062 Jilin, P. R. China
| |
Collapse
|
2
|
Li P, Fang X, Hao G, Li X, Cai Y, Yan Y, Zan L, Yang R, Liu B. Methionine Promotes Milk Protein Synthesis via the PI3K-mTOR Signaling Pathway in Human Mammary Epithelial Cells. Metabolites 2023; 13:1149. [PMID: 37999245 PMCID: PMC10673520 DOI: 10.3390/metabo13111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/05/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
Breast milk is widely considered to be the most natural, safe, and complete food for infants. However, current breastfeeding rates fall short of the recommendations established by the World Health Organization. Despite this, there are few studies that have focused on the promotion of human lactation through nutrient supplementation. Therefore, the aim of this study was to investigate the effect of methionine on milk synthesis in human mammary epithelial cells (MCF-10A cells) and to explore the underlying mechanisms. To achieve this, MCF-10A cells were cultured with varying concentrations of methionine, ranging from 0 to 1.2 mM. Our results indicated that 0.6 mM of methionine significantly promoted the synthesis of milk protein. An RNA-seq analysis revealed that methionine acted through the PI3K pathway. This finding was validated through real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting. In addition, PI3K inhibition assays confirmed that methionine upregulated the expression of both mTOR and p-mTOR through activation of PI3K. Taken together, these findings suggest that methionine positively regulates milk protein synthesis in MCF-10A cells through the PI3K-mTOR signaling pathway.
Collapse
Affiliation(s)
- Peizhi Li
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (P.L.); (Y.Y.); (L.Z.)
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou 313001, China;
- Huzhou Key Laboratory of Aquatic Product Quality Improvement and Processing Technology, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Xiaohui Li
- Center of Animal Experiment, College of Basic Medical Sciences, Jilin University, Changchun 130021, China;
| | - Yue Cai
- HaMi Inspection and Testing Center, Hami 839000, China;
| | - Yuhao Yan
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (P.L.); (Y.Y.); (L.Z.)
| | - Liting Zan
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (P.L.); (Y.Y.); (L.Z.)
| | - Runjun Yang
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Boqun Liu
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China; (P.L.); (Y.Y.); (L.Z.)
| |
Collapse
|
3
|
Li B, Khan MZ, Khan IM, Ullah Q, Cisang ZM, Zhang N, Wu D, Huang B, Ma Y, Khan A, Jiang N, Zahoor M. Genetics, environmental stress, and amino acid supplementation affect lactational performance via mTOR signaling pathway in bovine mammary epithelial cells. Front Genet 2023; 14:1195774. [PMID: 37636261 PMCID: PMC10448190 DOI: 10.3389/fgene.2023.1195774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023] Open
Abstract
Mammary glands are known for their ability to convert nutrients present in the blood into milk contents. In cows, milk synthesis and the proliferation of cow mammary epithelial cells (CMECs) are regulated by various factors, including nutrients such as amino acids and glucose, hormones, and environmental stress. Amino acids, in particular, play a crucial role in regulating cell proliferation and casein synthesis in mammalian epithelial cells, apart from being building blocks for protein synthesis. Studies have shown that environmental factors, particularly heat stress, can negatively impact milk production performance in dairy cattle. The mammalian target of rapamycin complex 1 (mTORC1) pathway is considered the primary signaling pathway involved in regulating cell proliferation and milk protein and fat synthesis in cow mammary epithelial cells in response to amino acids and heat stress. Given the significant role played by the mTORC signaling pathway in milk synthesis and cell proliferation, this article briefly discusses the main regulatory genes, the impact of amino acids and heat stress on milk production performance, and the regulation of mTORC signaling pathway in cow mammary epithelial cells.
Collapse
Affiliation(s)
- Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Ibrar Muhammad Khan
- Anhui Province Key Laboratory of Embryo Development and Reproduction Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, The University of Agriculture, Dera Ismail Khan, Pakistan
| | - Zhuo-Ma Cisang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Nan Zhang
- Tibet Autonomous Region Animal Husbandry Station, Lhasa, China
| | - Dan Wu
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Bingjian Huang
- Liaocheng Research Institute of Donkey High‐Efficiency Breeding and Ecological Feeding, Agricultural Science and Engineering School, Liaocheng University, Liaocheng, China
- College of Life Sciences, Liaocheng University, Liaocheng, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Nan Jiang
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, Lhasa, China
| | - Muhammad Zahoor
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Milk yield variation partially attributed to blood oxygen-mediated neutrophil activation in lactating dairy goats. Br J Nutr 2023; 129:369-380. [PMID: 35604023 DOI: 10.1017/s0007114522001015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Blood oxygen is an essential component for numerous biological processes of mammalian animals. Milk production of ruminants largely relies on the supply of nutrients, such as glucose, amino acids and fatty acids. To define the regulatory role of blood oxygen availability in regard to milk production, seventy-five healthy Guanzhong dairy goats with similar body weight, days in milk and parities were selected. For each animal, milk yield was recorded and milk sample was collected to determine compositions. Milk vein blood was collected to determine parameters including blood gas, physio-biochemistry and haematology. Another blood sample was prepared for transcriptome and RT-qPCR. Results showed that both pressure of oxygen (pO2) in the milk vein (positively) and numbers of neutrophils in mammary vein (negatively) were associated with milk yield of the animals. To learn the role of pO2 in blood cell functionality, twelve animals (six with higher yield (H-group) and six with lower yield (L-group)) from seventy-five goats were selected. Compared with animals in L-group, goats in H-group were higher in pO2 but lower in pCO2, lactate, lactate dehydrogenase activity and neutrophil abundance in milk vein, compared with L-group. The blood transcriptome analysis suggested that compared with L-group, animals in H-group were depressed in functionality including neutrophil activation and metabolic pathways including glycolysis, NF-κB and HIF-1. Our result revealed that lower milk production could be associated with neutrophil activation responding to low pO2 in the mammary vein. In the meantime, we highlighted the potential importance of blood oxygen as a milk yield regulator.
Collapse
|
5
|
Pan F, Li P, Hao G, Liu Y, Wang T, Liu B. Enhancing Milk Production by Nutrient Supplements: Strategies and Regulatory Pathways. Animals (Basel) 2023; 13:ani13030419. [PMID: 36766308 PMCID: PMC9913681 DOI: 10.3390/ani13030419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
The enhancement of milk production is essential for dairy animals, and nutrient supplements can enhance milk production. This work summarizes the influence of nutrient supplements-including amino acids, peptides, lipids, carbohydrates, and other chemicals (such as phenolic compounds, prolactin, estrogen and growth factors)-on milk production. We also attempt to provide possible illuminating insights into the subsequent effects of nutrient supplements on milk synthesis. This work may help understand the strategy and the regulatory pathway of milk production promotion. Specifically, we summarize the roles and related pathways of nutrients in promoting milk protein and fat synthesis. We hope this review will help people understand the relationship between nutritional supplementation and milk production.
Collapse
Affiliation(s)
- Fengguang Pan
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Peizhi Li
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Guijie Hao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Huzhou 313001, China
- Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Yinuo Liu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Tian Wang
- Department of Laboratory Animals, College of Animal Sciences, Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (B.L.)
| | - Boqun Liu
- Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
- Correspondence: (T.W.); (B.L.)
| |
Collapse
|
6
|
Sun M, Cao Y, Xing Y, Mu X, Hao Y, Yang J, Niu X, Li D. Effects of L-arginine and arginine-arginine dipeptide on amino acids uptake and αS1-casein synthesis in bovine mammary epithelial cells. J Anim Sci 2023; 101:skad339. [PMID: 37782762 PMCID: PMC10590174 DOI: 10.1093/jas/skad339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023] Open
Abstract
Arginine (Arg), as an important functional amino acids (AA), is essential for milk protein synthesis in lactating ruminants. Arg shares transporters with cationic and neutral AA in mammary epithelial cells. Therefore, competitive inhibition might exist among these AA in uptake by mammary epithelial cells. In this study, cultured bovine mammary epithelial cells (BMEC) were used as the model to investigate whether the availability of L-Arg (0.7, 1.4, 2.8, 5.6, and 11.2 mM) affects the uptake of other AA and if this related to αS1-casein synthesis, and whether Arginine-Arginine (Arg-Arg) substituting part of free L-Arg can alleviate competitive inhibition among Arg and other AA, so as to promote αS1-casein synthesis. Our results showed that 2.8 mM L-Arg generated the greatest positive effects on αS1-casein synthesis and the activation of mammalian target of rapamycin (mTOR) signaling pathway (P < 0.01). With L-Arg supply increasing from 0.7 to 11.2 mM, the net-uptake of other AA (except Glu and Ala) decreased linearly and quadratically (Plinear < 0.01; Pquadratic < 0.01). Compared with 2.8 mM, the net-uptake of essential amino acids (EAA) and total amino acids (TAA) were lower at 11.2 mM L-Arg group, while greater at 1.4 mM L-Arg group (P < 0.01). Arg-Arg dipeptide replacing 10% free L-Arg increased αS1-casein synthesis (P < 0.05), net-uptake of EAA and TAA, as well as phosphorylation level of mTOR and p70 ribosomal protein S6 kinase (P70S6K) and mRNA expression of oligopeptide transporter 2 (PepT2; P < 0.01). These observations suggested that the increased αS1-casein synthesis by 10% Arg-Arg dipeptide might be related to the increase of AA availability and the activation of mTOR signaling pathway in BMEC.
Collapse
Affiliation(s)
- Mei Sun
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Yue Cao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Yuanyuan Xing
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
- Key Laboratory of Animal Nutrition and Feed Science, Universities of Inner Mongolia Autonomous Region, Hohhot, 010000, China
| | - Xiaojia Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Yihong Hao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Jing Yang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Xiaoyu Niu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Dabiao Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
- Key Laboratory of Animal Nutrition and Feed Science, Universities of Inner Mongolia Autonomous Region, Hohhot, 010000, China
| |
Collapse
|
7
|
Zhang J, Deng L, Zhang X, Cao Y, Li M, Yao J. Multiple Essential Amino Acids Regulate Mammary Metabolism and Milk Protein Synthesis in Lactating Dairy Cows. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Regulation of Milk Protein Synthesis by Free and Peptide-Bound Amino Acids in Dairy Cows. BIOLOGY 2021; 10:biology10101044. [PMID: 34681143 PMCID: PMC8533557 DOI: 10.3390/biology10101044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Milk protein (MP) synthesis in the mammary gland of dairy cows is a complex biological process. As the substrates for protein synthesis, amino acids (AAs) are the most important nutrients for milk synthesis. Free AAs (FAAs) are the main precursors of MP synthesis, and their supplies are supplemented by peptide-bound AAs (PBAAs) in the blood. Utilization of AAs in the mammary gland of dairy cows has attracted the great interest of researchers because of the goal of increasing MP yield. Supplying sufficient and balanced AAs is critical to improve MP concentration and yield in dairy cows. Great progress has been made in understanding limiting AAs and their requirements for MP synthesis in dairy cows. This review focuses on the effects of FAA and PBAA supply on MP synthesis and their underlying mechanisms. Advances in our knowledge in the field can help us to develop more accurate models to predict dietary protein requirements for dairy cows MP synthesis, which will ultimately improve the nitrogen utilization efficiency and lactation performance of dairy cows.
Collapse
|
9
|
He M, Nie X, Wang H, Yan S, Zhang Y. Effects of a High-Grain Diet With a Buffering Agent on Milk Protein Synthesis in Lactating Goats. Front Vet Sci 2021; 8:696703. [PMID: 34295935 PMCID: PMC8291223 DOI: 10.3389/fvets.2021.696703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Chinese dairy industries have developed rapidly, providing consumers with high-quality sources of nutrition. However, many problems have also appeared during the development process, especially the low quality of milk. To improve milk quality, a large amount of concentrated feed is usually added to the diet within a certain period of time, which increases the milk production to a certain extent. However, long-term feeding with high-concentration feed can lead to subacute rumen acidosis. Therefore, the present study aimed to determine the effect of adding a buffer on subacute rumen acidosis, and the improvement of milk production and milk quality. We also aimed to study the mechanism of promoting mammary gland lactation. A total of 12 healthy mid-lactating goats were randomly divided into two groups, they were high-grain diet group (Control) and buffering agent group. To understand the effects of high-grain diets with buffers on amino acids in jugular blood and the effects of amino acids on milk protein synthesis, Milk-Testing™ Milkoscan 4000, commercial kits, and high-performance liquid chromatography (HPLC) measurements were integrated with the milk protein rate, the amino acid concentration in jugular venous blood samples, quantitative real-time PCR, comparative proteomics, and western blotting to study differentially expressed proteins and amino acids in mammary gland tissues of goats fed high-grain diets. Feeding lactating goats with buffering agent increased the percentage of milk protein in milk, significantly increased the amino acid content of jugular blood (p < 0.05), and increase the amino acid transporter levels in the mammary gland. Compared with the high-grain group, 2-dimensional electrophoresis technology, matrix-assisted laser desorption/ionization-time of flight/time of flight proteomics analyzer, and western blot analysis further verified that the expression levels of beta casein (CSN2) and lactoferrin (LF) proteins in the mammary glands of lactating goats were higher when fed a high-grain diets and buffers. The mechanism of increased milk protein synthesis was demonstrated to be related to the activation of mammalian target of rapamycin (mTOR) pathway signals.
Collapse
Affiliation(s)
- Meilin He
- The Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xintian Nie
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Huanhuan Wang
- The Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Shuping Yan
- The Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Yuanshu Zhang
- The Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Effects of L-Histidine and Sodium Acetate on β-Casein Expression in Nutrient-Restricted Bovine Mammary Epithelial Cells. Animals (Basel) 2021; 11:ani11051444. [PMID: 34069937 PMCID: PMC8157603 DOI: 10.3390/ani11051444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/15/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Nutrient restriction is known to decrease the milk production and milk quality of dairy cows. However, providing cows with abundant nutrients also has a disadvantage because it will increase feed costs. Under such a situation, the use of feed additives can be a good strategy to reduce the feed cost. The objective of this study was to investigate the effects of histidine and sodium acetate on β-casein expression in nutrient-restricted bovine mammary epithelial cells. The results indicate that histidine has the potential to increase the β-casein levels in bovine mammary cells when the nutrient is restricted, suggesting that histidine is a potential feed additive for cows in a nutrient-insufficient environment. Abstract Nutrient restriction is a challenging condition for the mammary glands of dairy cows. In this condition, supplementing amino acids and energy sources might be a good strategy to improve the concentration of one of the most important caseins in bovine milk. Therefore, the objective of this study was to investigate the effects of L-histidine (His) and sodium acetate (Ace) in a nutrient-restricted (NR) immortalized bovine mammary epithelial cell line (MAC-T cells). The treatments for the MAC-T cells are as follows: experiment (1) 0–5% diluted basal medium; experiment (2) supplementation of 0–9.6 mM of His or Ace in NR or normal conditions; experiment (3) supplementation of 0–9.6 mM of Ace plus 0.15 mM of His in NR or normal conditions. The 1% diluted medium showed no significant effect on the cell viability with the basal medium; thus, it was selected as the NR condition. The relative expression of β-casein was significantly increased in the NR condition with the inclusion of 0.15 mM His alone or with Ace compared to that in control. The supplementation of Ace increased the β-casein level under normal conditions. However, it did not change the expression of β-casein under the NR condition. The results suggest that His has the potential to increase the β-casein expression under the NR condition.
Collapse
|
11
|
Conejos JRV, Ghassemi Nejad J, Kim JE, Moon JO, Lee JS, Lee HG. Supplementing with L-Tryptophan Increases Medium Protein and Alters Expression of Genes and Proteins Involved in Milk Protein Synthesis and Energy Metabolism in Bovine Mammary Cells. Int J Mol Sci 2021; 22:ijms22052751. [PMID: 33803156 PMCID: PMC7963161 DOI: 10.3390/ijms22052751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to investigate the effects of supplementing with L-tryptophan (L-Trp) on milk protein synthesis using an immortalized bovine mammary epithelial (MAC-T) cell line. Cells were treated with 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mM of supplemental L-Trp, and the most efficient time for protein synthesis was determined by measuring cell, medium, and total protein at 0, 24, 48, 72, and 96 h. Time and dose tests showed that the 48 h incubation time and a 0.9 mM dose of L-Trp were the optimal values. The mechanism of milk protein synthesis was elucidated through proteomic analysis to identify the metabolic pathway involved. When L-Trp was supplemented, extracellular protein (medium protein) reached its peak at 48 h, whereas intracellular cell protein reached its peak at 96 h with all L-Trp doses. β-casein mRNA gene expression and genes related to milk protein synthesis, such as mammalian target of rapamycin (mTOR) and ribosomal protein 6 (RPS6) genes, were also stimulated (p < 0.05). Overall, there were 51 upregulated and 59 downregulated proteins, many of which are involved in protein synthesis. The results of protein pathway analysis showed that L-Trp stimulated glycolysis, the pentose phosphate pathway, and ATP synthesis, which are pathways involved in energy metabolism. Together, these results demonstrate that L-Trp supplementation, particularly at 0.9 mM, is an effective stimulus in β-casein synthesis by stimulating genes, proteins, and pathways related to protein and energy metabolism.
Collapse
Affiliation(s)
- Jay Ronel V. Conejos
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
- Institute of Animal Science, College of Agriculture and Food Sciences, University of the Philippines Los Baños, College Batong Malake, Los Baños, Laguna 4031, Philippines
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
| | - Jung-Eun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
| | - Jun-Ok Moon
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Korea;
| | - Jae-Sung Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
- Correspondence: ; Tel.: +82-2-450-0523 or +82-2-457-8567
| |
Collapse
|
12
|
Lan W, Wang Z, Liu J, Liu H. Methionyl-Methionine Exerts Anti-Inflammatory Effects through the JAK2-STAT5-NF-κB and MAPK Signaling Pathways in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13742-13750. [PMID: 33183007 DOI: 10.1021/acs.jafc.0c05962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Methionyl-methionine (Met-Met) is a functional dipeptide. Although the role of a dipeptide in milk protein synthesis is clearly established, whether Met-Met has an anti-inflammatory effect and a protective mechanism in bovine mammary epithelial cell (MAC-T) inflammation remains unknown. The purpose of this study was to determine the beneficial effects and underlying mechanisms of Met-Met on lipopolysaccharide (LPS)-induced MAC-T cell inflammation. RNA-seq, siRNA interference, and western blotting were performed to determine the anti-inflammatory mechanisms of Met-Met in the context of LPS exposure. Pretreatment with 2 mM Met-Met could reduce the increase in TNF-α (3.14 ± 0.55 vs 1.54 ± 0.26, P < 0.01), IL-1β (2.30 ± 0.21 vs 1.86 ± 0.11, P < 0.05), and IL-8 (3.49 ± 0.29 vs 0.62 ± 0.20, P < 0.01) after 1 μg/mL LPS exposure. RNA-seq analyses indicated that the overlapping genes were primarily enriched in the nuclear factor kappa-B (NF-κB), mitogen-activated protein kinase (MAPK), and IL-17 pathways. The suppression of NF-κB, P38, and JNK by Met-Met was mediated through the Janus kinase 2-signal transducers and activators of transcription 5 (JAK2-STAT5) pathway. Moreover, the Met-Met-mediated decrease in the LPS-induced activation of p-IκB, NF-κB, and JNK was reversed by knocking down JAK2. Collectively, Met-Met has beneficial effects on MAC-T cell inflammation by activating the JAK2-STAT5 pathway and then inhibiting the NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Wei Lan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Dai W, Zhao F, Liu J, Liu H. ASCT2 Is Involved in SARS-Mediated β-Casein Synthesis of Bovine Mammary Epithelial Cells with Methionine Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13038-13045. [PMID: 31597423 DOI: 10.1021/acs.jafc.9b03833] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The methionine (Met) uptake into mammary cells depends upon the corresponding amino acid (AA) transporters, which play a regulatory role in the mammary protein production beyond transport. Our previous studies have identified that seryl-tRNA synthetase (SARS) could be a novel mediator to regulate essential AA-stimulated casein synthesis in primary bovine mammary epithelial cells (BMECs). However, the regulatory mechanisms of Met in milk protein production in dairy cows remain further clarified. Here, we aimed to investigate the effects of Met on milk protein synthesis in BMECs and explore the underlying mechanism. The effects of Met on the AA transporter, casein synthesis, and the related signaling pathway were evaluated in the BMECs treated with 0.6 mM Met for 6 h combined with or without the inhibition of AA transporter (ASCT2, a neutral AA transporter) activity by the corresponding inhibitor (GPNA). Besides, the effects of SARS on the cells were mainly evaluated in the BMECs treated with 0.6 mM Met for 6 h together with or without SARS knockdown by RNAi interference. The gene expression of AA transporters and pathway-related genes were analyzed by the real-time quantitative polymerase chain reaction method, and the protein expression of related proteins were determined by the western blot assay. Results showed that 0.6 mM Met remarkably enhanced cell growth and β-casein synthesis compared to the supply of other Met concentrations. Among 13 amino acid transporters, 0.6 mM Met highly increased ASCT2 expression. This Met-stimulated ASCT2 expression and the enhanced mammary intracellular Met uptake were both decreased by the addition of 500 μM GPNA, an inhibitor of ASCT2. In the presence of 0.6 mM Met, the inhibition of ASCT2 activity (by GPNA) and SARS expression (by RNAi) both reduced β-casein synthesis. Additionally, 0.6 mM Met increased the gene expression of mTOR, S6K1, 4EBP1, and Akt; in contrast, the inhibition of ASCT2 by GPNA lowered the gene expression of these four genes. Collectively, this work suggests that ASCT2 is involved in the SARS-mediated Met stimulation of β-casein synthesis through enhancing mammary Met uptake and activating the mTOR signaling pathway in BMECs.
Collapse
Affiliation(s)
- Wenting Dai
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Fengqi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Jianxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Hongyun Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| |
Collapse
|
14
|
Effect of Heat Stress on Dairy Cow Performance and on Expression of Protein Metabolism Genes in Mammary Cells. Animals (Basel) 2020; 10:ani10112124. [PMID: 33207608 PMCID: PMC7696625 DOI: 10.3390/ani10112124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Environmental temperatures are increasing, and consequent global warming also has negative effects on dairy cattle farms, which may result in reduced production and poorer milk quality. The protein content of casein, in particular, is important in influencing the coagulation properties of milk and, therefore, the production and quality of cheese. The aim of this study was to assess the effect of heat stress on animal performance and on the expression of selected genes involved in milk protein metabolism. Eight dairy cows were kept under thermoneutral conditions for 8 days. The same animals were then maintained under mild heat stress conditions for an additional 8 days. The results of this study revealed that mild heat stress reduced the feed intake and performance of dairy cows in terms of milk and protein yield, but not the expression of the target genes involved in milk protein metabolism, such as those coding for caseins. Abstract The aim of this study was to assess the effect of heat stress on dairy cow performance and on the expression of selected genes involved in milk protein metabolism. Eight Italian Holstein Friesian cows were kept under thermoneutral conditions (temperature–humidity index (THI) < 72, CON) for 8 days and under mild heat stress conditions (72 < THI < 78, HS) for an additional 8 days. The rectal temperature, feed intake, and milk yield were recorded during the last 3 days of the CON and HS periods. During the same time period, milk samples were collected to assess the composition and expression of selected genes involved in milk protein metabolism. Gene expression analyses were performed on somatic cells from milk, which are representative of mammary tissue. In terms of dairy cow performance, HS resulted in lower milk and protein yields and feed intake but higher rectal temperature than for CON (p < 0.05). Under HS, there were greater abundances of HSPA1A (p < 0.05) and BCL2 (p < 0.05), compared to CON, but similar levels of CSN2 (p > 0.05), CSN3 (p > 0.05), HSPA8 (p > 0.05), and STAT5B (p > 0.05) mRNA. Mild heat stress reduced the performance of dairy cows without affecting the expression of genes coding for caseins.
Collapse
|
15
|
Pszczolkowski VL, Zhang J, Pignato KA, Meyer EJ, Kurth MM, Lin A, Arriola Apelo SI. Insulin potentiates essential amino acids effects on mechanistic target of rapamycin complex 1 signaling in MAC-T cells. J Dairy Sci 2020; 103:11988-12002. [PMID: 33222863 DOI: 10.3168/jds.2020-18920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/06/2020] [Indexed: 01/05/2023]
Abstract
Different models of lactation offer conflicting evidence as to whether insulin signaling is required for AA to stimulate mechanistic target of rapamycin complex 1 (mTORC1) activity. We hypothesized that insulin potentiates essential AA stimulation of mTORC1 activity in the MAC-T mammary epithelial cell line. Here, our objective was to assess mTORC1 signaling activity in response to insulin and individual or grouped essential AA. Insulin and essential AA concentrations in the treatment medium ranged from normo- to supraphysiological, with insulin at 0, 1, 10, or 100 nmol/L and essential AA at approximately 0, 0.01, 0.05, 0.1, 1, or 3× reference plasma levels. Effects and interaction of insulin and total essential AA were tested in a 3 × 5 factorial design (n = 3 replicates/treatment); insulin and the individual AA Leu, Met, Ile, and Arg were likewise tested in 3 × 4 factorials (n = 4). As the remaining individual AA His, Lys, Phe, Thr, Trp, and Val were expected to not affect mTORC1, these were tested only at the highest insulin level, 100 nmol/L (n = 4). For all of these, linear and quadratic effects of total and individual AA were evaluated. Essential AA were subsequently grouped by their positive (Leu, Met, Ile, Arg, and Thr; TOR-AA) or absent-to-negative effects (His, Lys, Phe, Trp, and Val; NTOR-AA), and tested for interaction in a 2 × 2 factorial design (n = 4), with each AA at its respective 1× plasma level, and insulin held at 100 nmol/L. All experiments consisted of 1 h treatment incubation, followed by Western blotting of cell lysates to measure phosphorylation and abundance of the mTORC1 pathway proteins Akt (Ser473); ribosomal protein S6 kinase p70 (S6K1, Thr389); eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1, Ser65); and ribosomal protein S6 (S6, Ser240/244). The Akt phosphorylation was overall increased by insulin, with a possible negative interaction with both total essential AA and the individual AA Leu. Total essential AA also increased S6K1 and 4E-BP1 phosphorylation in an insulin-dependent manner. The individual AA Leu, Met, Ile, and Arg increased S6K1 phosphorylation in an insulin-dependent manner. Similarly, Met and Arg increased 4E-BP1 phosphorylation in an insulin-dependent manner. Histidine, Lys, Trp, and Val did not affect S6K1 phosphorylation. However, S6K1 phosphorylation was linearly increased by Thr and quadratically decreased by Phe. Relative to the phosphorylation of S6K1 when cells were incubated with no essential AA, the NTOR-AA group had no effect, whereas the TOR-AA increased phosphorylation to the same degree observed with all 10 essential AA. Overall, we have found that insulin is required for essential AA to stimulate mTORC1 activity in MAC-T cells. In addition, the AA responsible for the bulk of mTORC1 activation in MAC-T are limited to Leu, Met, Ile, Arg, and Thr.
Collapse
Affiliation(s)
- Virginia L Pszczolkowski
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, 53706
| | - Jun Zhang
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706; State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China 100083
| | - Kayleigh A Pignato
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Emma J Meyer
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Madison M Kurth
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Amy Lin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706
| | - Sebastian I Arriola Apelo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 53706; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, 53706.
| |
Collapse
|
16
|
McFadden JW, Girard CL, Tao S, Zhou Z, Bernard JK, Duplessis M, White HM. Symposium review: One-carbon metabolism and methyl donor nutrition in the dairy cow. J Dairy Sci 2020; 103:5668-5683. [PMID: 32278559 DOI: 10.3168/jds.2019-17319] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/10/2020] [Indexed: 12/17/2022]
Abstract
The present review focuses on methyl donor metabolism and nutrition in the periparturient and lactating dairy cow. Methyl donors are involved in one-carbon metabolism, which includes the folate and Met cycles. These cycles work in unison to support lipid, nucleotide, and protein synthesis, as well as methylation reactions and the maintenance of redox status. A key feature of one-carbon metabolism is the multi-step conversion of tetrahydrofolate to 5-methyltetrahyrofolate. Homocysteine and 5-methyltetrahyrofolate are utilized by vitamin B12-dependent Met synthase to couple the folate and Met cycles and generate Met. Methionine may also be remethylated from choline-derived betaine under the action of betaine hydroxymethyltransferase. Regardless, Met is converted within the Met cycle to S-adenosylmethionine, which is universally utilized in methyl-group transfer reactions including the synthesis of phosphatidylcholine. Homocysteine may also enter the transsulfuration pathway to generate glutathione or taurine for scavenging of reactive oxygen metabolites. In the transition cow, a high demand exists for compounds with a labile methyl group. Limited methyl group supply may contribute to inadequate hepatic phosphatidylcholine synthesis and hepatic triglyceride export, systemic oxidative stress, and compromised milk production. To minimize the perils associated with methyl donor deficiency, the peripartum cow relies on de novo methylneogenesis from tetrahydrofolate. In addition, dietary supplementation of rumen-protected folic acid, vitamin B12, Met, choline, and betaine are potential nutritional approaches to target one-carbon pools and improve methyl donor balance in transition cows. Such strategies have merit considering research demonstrating their ability to improve milk production efficiency, milk protein synthesis, hepatic health, and immune response. This review aims to summarize the current understanding of folic acid, vitamin B12, Met, choline, and betaine utilization in the dairy cow. Methyl donor co-supplementation, fatty acid feeding strategies that may optimize methyl donor supplementation efficacy, and potential epigenetic mechanisms are also considered.
Collapse
Affiliation(s)
- J W McFadden
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| | - C L Girard
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada J1M 0C8
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - Z Zhou
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - J K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton 31793
| | - M Duplessis
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, Canada J1M 0C8
| | - H M White
- Department of Dairy Science, University of Wisconsin, Madison 53706
| |
Collapse
|
17
|
Laminin-dependent integrin β1 signaling regulates milk protein synthesis via prolactin/STAT5 pathway in bovine mammary epithelial cells. Biochem Biophys Res Commun 2020; 524:288-294. [DOI: 10.1016/j.bbrc.2020.01.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022]
|
18
|
Kim J, Lee JE, Lee JS, Park JS, Moon JO, Lee HG. Phenylalanine and valine differentially stimulate milk protein synthetic and energy-mediated pathway in immortalized bovine mammary epithelial cells. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2020; 62:263-275. [PMID: 32292933 PMCID: PMC7142277 DOI: 10.5187/jast.2020.62.2.263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 11/20/2022]
Abstract
Studies on promoting milk protein yield by supplementation of amino acids have
been globally conducted. Nevertheless, there is a lack of knowledge of what
pathways affected by individual amino acid in mammary epithelial cells that
produce milk in practice. Phenylalanine (PHE) and valine (VAL) are essential
amino acids for dairy cows, however, researches on mammary cell levels are still
lacking. Thus, the aim of this study was conducted to evaluate the effects of
PHE and VAL on milk protein synthesis-related and energy-mediated cellular
signaling in vitro using immortalized bovine mammary epithelial
(MAC-T) cells. To investigate the effects of PHE and VAL, the following
concentrations were added to treatment medium: 0, 0.3, 0.6, 0.9, 1.2, and 1.5
mM. The addition of PHE or VAL did not adversely affect cell viability compared
to control group. The concentrations of cultured medium reached its maximum at
0.9 mM PHE and 0.6 mM VAL (p < 0.05). Therefore,
aforementioned 2 treatments were analyzed for proteomics. Glucose transporter 1
and mammalian target of rapamycin mRNA expression levels were up-regulated by
PHE (166% and 138%, respectively) (p < 0.05). Meanwhile,
sodium-dependent neutral amino acids transporter type 2 (ASCT2)
and β-casein were up-regulated by VAL (173% in ASCT2,
238% in and 218% in β-casein) (p < 0.05). A total of
134, 142, and 133 proteins were detected in control group, PHE treated group,
and VAL treated group, respectively. Among significantly fold-changed proteins,
proteins involved in translation initiation or energy metabolism were detected,
however, expressed differentially between PHE and VAL. Thus, pathway analysis
showed different stimulatory effects on energy metabolism and transcriptional
pathways. Collectively, these results showed different stimulatory effects of
PHE and VAL on protein synthesis-related and energy-mediated cellular signaling
in MAC-T cells.
Collapse
Affiliation(s)
- Jungeun Kim
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.,Team of An Educational Program for Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Jeong-Eun Lee
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Korea
| | - Jae-Sung Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Jin-Seung Park
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Korea
| | - Jun-Ok Moon
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Korea
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea.,Team of An Educational Program for Specialists in Global Animal Science, Brain Korea 21 Plus Project, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
19
|
Wang B, Shi L, Men J, Li Q, Hou X, Wang C, Zhao F. Controlled synchronization of prolactin/STAT5 and AKT1/mTOR in bovine mammary epithelial cells. In Vitro Cell Dev Biol Anim 2020; 56:243-252. [DOI: 10.1007/s11626-020-00432-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/27/2020] [Indexed: 01/01/2023]
|
20
|
Cai J, Wang D, Zhao FQ, Liang S, Liu J. AMPK-mTOR pathway is involved in glucose-modulated amino acid sensing and utilization in the mammary glands of lactating goats. J Anim Sci Biotechnol 2020; 11:32. [PMID: 32166025 PMCID: PMC7060552 DOI: 10.1186/s40104-020-0434-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Abstract
Background The local supply of energy-yielding nutrients such as glucose seems to affect the synthesis of milk components in the mammary gland (MG). Thus, our study was conducted to investigate the effects of locally available MG glucose supply (LMGS) on amino acid (AA) sensing and utilization in the MG of lactating dairy goats. Six dosages of glucose (0, 20, 40, 60, 80, and 100 g/d) were infused into the MG through the external pudendal artery to investigate the dose-dependent changes in mammary AA uptake and utilization (Exp.1) and the changes in mRNA and protein expression of the AMPK-mTOR pathway (Expt.2). Results In Exp.1, total milk AA concentration was highest when goats were infused with 60 g/d glucose, but lower when goats were infused with 0 and 100 g/d glucose. Increasing LMGS quadratically changed the percentages of αS2-casein and α-lactalbumin in milk protein, which increased with infusions from 0 to 60 g/d glucose and then decreased with infusions between 60 and 100 g/d glucose. The LMGS changed the AA availability and intramammary gland AA utilization, as reflected by the mammary AA flux indexes. In Exp.2, the mRNA expression of LALBA in the MG increased quadratically with increasing LMGS, with the highest expression at dose of 60 g/d glucose. A high glucose dosage (100 g/d) activated the general control nonderepressible 2 kinase, an intracellular sensor of AA status, resulting in a reduced total milk AA concentration. Conclusions Our new findings suggest that the lactating MG in dairy goats may be affected by LMGS through regulation of the AA sensory pathway, AA utilization and protein synthesis, all being driven by the AMPK-mTOR pathway.
Collapse
Affiliation(s)
- Jie Cai
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Diming Wang
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Feng-Qi Zhao
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China.,2Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT 05405 USA
| | - Shulin Liang
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| | - Jianxin Liu
- 1Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058 People's Republic of China
| |
Collapse
|
21
|
Seryl-tRNA synthetase is involved in methionine stimulation of β-casein synthesis in bovine mammary epithelial cells. Br J Nutr 2019; 123:489-498. [PMID: 31711551 PMCID: PMC7015878 DOI: 10.1017/s0007114519002885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the well-characterised mechanisms of amino acids (AA) regulation of milk protein synthesis in mammary glands (MG), the underlying specific AA regulatory machinery in bovine MG remains further elucidated. As methionine (Met) is one of the most important essential and limiting AA for dairy cows, it is crucial to expand how Met exerts its regulatory effects on dairy milk protein synthesis. Our previous work detected the potential regulatory role of seryl-tRNA synthetase (SARS) in essential AA (EAA)-stimulated bovine casein synthesis. Here, we investigated whether and how SARS participates in Met stimulation of casein production in bovine mammary epithelial cells (BMEC). With or without RNA interference against SARS, BMEC were treated with the medium in the absence (containing all other EAA and devoid of Met alone)/presence (containing 0·6 mm of Met in the medium devoid of Met alone) of Met. The protein abundance of β-casein and members of the mammalian target of rapamycin (mTOR) and general control nonderepressible 2 (GCN2) pathways was determined by immunoblot assay after 6 h treatment, the cell viability and cell cycle progression were determined by cell counting and propidium iodide-staining assay after 24 h treatment, and protein turnover was determined by l-[ring-3H5]phenylalanine isotope tracing assay after 48 h treatment. In the absence of Met, there was a general reduction in cell viability, total protein synthesis and β-casein production; in contrast, total protein degradation was enhanced. SARS knockdown strengthened these changes. Finally, SARS may work to promote Met-stimulated β-casein synthesis via affecting mTOR and GCN2 routes in BMEC.
Collapse
|
22
|
Yu M, Luo C, Huang X, Chen D, Li S, Qi H, Gao X. Amino acids stimulate glycyl‐tRNA synthetase nuclear localization for mammalian target of rapamycin expression in bovine mammary epithelial cells. J Cell Physiol 2018; 234:7608-7621. [DOI: 10.1002/jcp.27523] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Mengmeng Yu
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Chaochao Luo
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Xin Huang
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Dongying Chen
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Shanshan Li
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Hao Qi
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| | - Xuejun Gao
- The Key Laboratory of Dairy Science of Education Ministry, Life College, Northeast Agricultural University Harbin China
| |
Collapse
|
23
|
Dai W, White R, Liu J, Liu H. Seryl-tRNA synthetase-mediated essential amino acids regulate β-casein synthesis via cell proliferation and mammalian target of rapamycin (mTOR) signaling pathway in bovine mammary epithelial cells. J Dairy Sci 2018; 101:10456-10468. [DOI: 10.3168/jds.2018-14568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/25/2018] [Indexed: 01/14/2023]
|
24
|
Zhou Y, Zhou Z, Peng J, Loor JJ. Methionine and valine activate the mammalian target of rapamycin complex 1 pathway through heterodimeric amino acid taste receptor (TAS1R1/TAS1R3) and intracellular Ca 2+ in bovine mammary epithelial cells. J Dairy Sci 2018; 101:11354-11363. [PMID: 30268610 DOI: 10.3168/jds.2018-14461] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 08/14/2018] [Indexed: 11/19/2022]
Abstract
Amino acids play a key role in regulating milk protein synthesis partly through activation of the mammalian target of rapamycin (mTOR) signaling pathway. However, the involvement of extracellular AA sensing receptors in this process is not well understood. In nonruminants, it is well established that the AA taste 1 receptor member 1/3 (TAS1R1/TAS1R3) heterodimer contributes to the sensing of most l-AA. Whether this receptor is functional in bovine mammary cells is unknown. The objective of this study was to determine essential AA signaling through TAS1R1/TAS1R3 and their roles in regulating mTOR signaling pathway and casein mRNA abundance in primary bovine mammary epithelial cells and the Mac-T cell line. The bovine mammary epithelial cells were stimulated with complete Dulbecco's modified Eagle's medium (+EAA), medium without EAA (-EAA), or medium supplemented with only 1 of the 10 essential AA, respectively. The nonessential AA levels were the same across all treatments. Small interference RNA targeting TAS1R1 were designed and transfected into bovine primary mammary epithelial cells (bPMEC). Supplementation of a complete mixture of essential AA or Arg, Val, Leu, His, Phe, Met, and Ile individually led to greater mTOR phosphorylation. Phosphorylation of ribosomal protein S6 kinase β-1 was greater in the presence of Val, Leu, Trp, Met, and Ile. Valine, Leu, Met, and Ile led to greater eIF4E-binding protein 1 phosphorylation. Although +EAA and a few individual AA tested induced increases in intracellular calcium, Met and Val were the most potent. Knockdown of TAS1R1 decreased intracellular calcium in bPMEC cultured with both Val and Met. Phosphorylation of mTOR, ribosomal protein S6 kinase β-1, and eIF4E-binding protein 1 was lower when TAS1R1 was knocked-down in bPMEC supplemented with Val and Met. In addition, small interference RNA silencing of TAS1R1 resulted in lower β-casein (CSN2) abundance. The TAS1R1/TAS1R3 receptor may sense extracellular AA and activate mTOR signaling in bovine mammary cells, likely by elevating intracellular calcium concentration. This mechanism appears to have a role in Met- and Val-induced changes in CSN2 mRNA abundance. Further in vivo studies will have to be performed to assess the relevance of this mechanism in the mammary gland.
Collapse
Affiliation(s)
- Y Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China 430070; Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801
| | - Z Zhou
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634.
| | - J Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China 430070
| | - J J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana 61801.
| |
Collapse
|
25
|
Dong X, Zhou Z, Wang L, Saremi B, Helmbrecht A, Wang Z, Loor J. Increasing the availability of threonine, isoleucine, valine, and leucine relative to lysine while maintaining an ideal ratio of lysine:methionine alters mammary cellular metabolites, mammalian target of rapamycin signaling, and gene transcription. J Dairy Sci 2018; 101:5502-5514. [DOI: 10.3168/jds.2017-13707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
|