1
|
Klein GS, Leal KW, Rodrigues CA, Draszevski TMR, Brunetto ALR, Vitt MG, Klein MS, Cauduro VH, Flores EMM, da Silva GB, Bagatini MD, Chitolina ABDM, Baldissera MD, Da Silva AS. Organic Zinc and Selenium Supplementation of Late Lactation Dairy Cows: Effects on Milk and Serum Minerals Bioavailability, Animal Health and Milk Quality. Animals (Basel) 2025; 15:499. [PMID: 40002983 PMCID: PMC11852322 DOI: 10.3390/ani15040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
This study determined whether organic zinc and selenium supplementation of late lactation dairy cows positively affects immunity, oxidative status, milk quality (especially mineral levels), biochemical and hematologic parameters, and production efficiency. Twenty Jersey cows were divided into three groups: Control (n = 6)-without organic supplementation; Zinc (n = 7)-zinc supplementation (zinc amino acid chelate) and Selenium (n = 7)-selenium supplementation (selenium amino acid complex). The basal diet contained inorganic minerals. Blood and milk samples were collected on days 1, 14 and 28. Serum selenium concentration was higher in the Selenium group, and zinc level in milk was higher in the Zinc group. On day 28, supplementations resulted in higher lymphocyte counts, and lower serum creatine kinase, myeloperoxidase activity, levels of reactive oxygen species, thiobarbituric acid-reactive substances, and iron. In milk, lower somatic cell count was also observed when cows were zinc or selenium supplemented compared to the control. Lower serum cholinesterase activity and higher heavy chain immunoglobulin concentration were observed on days 14 and 28. Selenium supplementation resulted in a higher immunoglobulin A concentration on days 14 and 28, and lower ceruloplasmin concentration on day 28 compared to Control, as well as a lower haptoglobin concentration on day 28. The Selenium group also had lower milk fat content compared to the Control. Supplementations changed the milk fatty acid profile, producing a higher unsaturated fatty acid/saturated fatty acid ratio. There was no effect on lactation persistence. It is concluded that mineral supplementation with selenium and zinc benefits immune, antioxidant, and anti-inflammatory responses. Conversely, milk quality was affected both positively and negatively.
Collapse
Affiliation(s)
- Gabriel S. Klein
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (G.S.K.); (C.A.R.); (T.M.R.D.)
| | - Karoline W. Leal
- Graduate Program in Veterinary Medicine, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil;
| | - Camila A. Rodrigues
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (G.S.K.); (C.A.R.); (T.M.R.D.)
| | - Taynara M. R. Draszevski
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (G.S.K.); (C.A.R.); (T.M.R.D.)
| | - Andrei L. R. Brunetto
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (A.L.R.B.); (M.G.V.)
| | - Maksuel G. Vitt
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (A.L.R.B.); (M.G.V.)
| | - Mathias S. Klein
- Graduate Course of Specialization in Plant Production Systems, Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul, Sertão 99170-000, Brazil;
| | - Vitoria H. Cauduro
- Graduate Program in Chemistry, Department of Chemistry, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil
| | - Erico M. M. Flores
- Department of Chemistry, Universidade Federal de Santa Maria, Santa Maria 97105-900, Brazil;
| | - Gilnei B. da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, Universidade do Estado de Santa Catarina, Lages 88520-000, Brazil;
| | - Margarete D. Bagatini
- Graduate Program in Biomedical Sciences, Universidade Federal da Fronteira Sul, Chapecó 89815-899, Brazil;
| | | | - Matheus D. Baldissera
- Laboratory of Bioprospecting and Experimental Biology, Universidade Franciscana, Santa Maria 97010-032, Brazil;
| | - Aleksandro S. Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó 89815-630, Brazil; (G.S.K.); (C.A.R.); (T.M.R.D.)
| |
Collapse
|
2
|
Oconitrillo M, Wickramasinghe J, Omale S, Beitz D, Appuhamy R. Effects of Elevating Zinc Supplementation on the Health and Production Parameters of High-Producing Dairy Cows. Animals (Basel) 2024; 14:395. [PMID: 38338038 PMCID: PMC10854765 DOI: 10.3390/ani14030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
This study's objective was to determine the effects of increasing the dietary added zinc (Zn) on the milk production, milk somatic cell count (SCC), and immunoglobulin and antioxidant marker concentrations in the blood of dairy cows. Twelve Holstein cows (67 ± 2.5 days in milk) were assigned randomly to (1) a diet containing Zn-methionine at 76 mg/kg of DM (CTL) or (2) CTL top-dressed with about 21 mg/kg of DM extra Zn-methionine (+Zn) for 70 d. The concentrations of reduced (GSH) and oxidized (GSSG) glutathione, malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and immunoglobulins in the blood were measured on d 0, 35, and 70. Compared to CTL, +Zn decreased the dry matter intake (DMI) throughout the trial and the milk yield (MY) during the first phase of feeding (0-35 d). It, however, increased the milk yield during the last phase (36-70 d). The +Zn tended to have lower and greater milk protein yields than CTL during the first and last feeding phases, respectively. The +Zn tended to decrease the SCC and was associated with lower plasma GSH: GSSG and lower serum SOD concentrations relative to CTL. The +Zn did not affect the immunoglobulins, MDA, or CAT. Despite the early DMI and MY reduction, the prolonged Zn-methionine supplementation at about 100 mg/kg of DM improved the milk yield, possibly as a result of the improved udder health of dairy cows.
Collapse
Affiliation(s)
| | | | | | | | - Ranga Appuhamy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA; (M.O.); (J.W.); (S.O.); (D.B.)
| |
Collapse
|
3
|
Ahmed S, Jiang X, Liu G, Yang H, Sadiq A, Yi D, Farooq U, Yiyu S, Zubair M. The protective role of maternal genetic immunization on maternal-fetal health and welfare. Int J Gynaecol Obstet 2023; 163:763-777. [PMID: 37218379 DOI: 10.1002/ijgo.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023]
Abstract
Pregnancy is a critical period associated with alterations in physiologic, biologic, and immunologic processes, which can affect maternal-fetal health through development of several infectious diseases. At birth, neonates have an immature immune system that makes them more susceptible to severe viral infections and diseases. For this reason, different maternal nutritional and immunization interventions have been used to improve the immune and health status of the mother and her neonate through passive immunity. Here, we reviewed the protective role of maternal immunization with different types of vaccines, especially genetic vaccines, during pregnancy in maternal-fetal health, immune response, colostrum quality, immune response, and anti-oxidative status. For this purpose, we have used different scientific databases (PubMed and Google Scholar) and other official web pages. We customized the search period range from the year 2000 to 2023 using the key words "maternal immunization" OR "gestation period/pregnancy" OR "genetic vaccination" OR "maternal-fetal health" OR "micronutrients" OR "neonatal immunity" "oxidative stress" OR "colostrum quality". The evidence demonstrated that inactivated or killed vaccines produced significant immune protection in the mother and fetus. Furthermore, most recent studies have suggested that the use of genetic vaccines (mRNA and DNA) during pregnancy is efficient at triggering the immune response in mother and neonate without the risk of undesired pregnancy outcomes. However, factors such as maternal redox balance, nutritional status, and the timing of immunization play essential roles in regulating immune response inflammatory status, antioxidant capacity, and the welfare of both the pregnant mother and her newborn.
Collapse
Affiliation(s)
- Sohail Ahmed
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Smart Farming for Agricultural Animals, Wuhan, China
| | - Guiqiong Liu
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huiguo Yang
- Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Amber Sadiq
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ding Yi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Umar Farooq
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Sha Yiyu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Laboratory of Sheep and Goat Genetics, Breeding and Reproduction, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Zubair
- Department of Veterinary Clinical Sciences, University of Poonch, Rawalakot, Pakistan
| |
Collapse
|
4
|
Liu J, Yu X, Ma F, Wo Y, Jin Y, Hashem NM, Sun P. Early supplementation with zinc proteinate does not change rectal microbiota but increases growth performance by improving antioxidant capacity and plasma zinc concentration in preweaned dairy calves. Front Vet Sci 2023; 10:1236635. [PMID: 37829355 PMCID: PMC10565034 DOI: 10.3389/fvets.2023.1236635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
The present study evaluated the effects of early supplementation with zinc proteinate (ZnP) or zinc oxide (ZnO) for 2 weeks on the growth performance, redox status, plasma trace element concentrations, and rectal microbiota of preweaned dairy calves. A total of 60 newborn healthy female Holstein dairy calves, with initial body weight (BW): 41.33 ± 0.62 kg, were randomly allocated to 5 groups of 12 each: a control group (CON); three groups supplemented with 261 (L-ZnP), 523 (M-ZnP), and 784 (H-ZnP) mg/day ZnP, equivalent to 40, 80, and 120 mg/day zinc, respectively; and one group supplemented with 232 mg/day ZnO, equivalent to 180 mg/day zinc (ZnO). Zinc supplements were administered on days 1-14, and the calves were followed up until day 70. Zinc supplementation increased total dry matter intake (DMI) and starter DMI compared with the CON group (p < 0.01). The final BW, average daily gain, and feed efficiency were higher in the M-ZnP, H-ZnP, and ZnO groups (p < 0.05). The incidence of diarrhea on days 1-28 was reduced by zinc administration (p < 0.01), whereas the incidence on days 29-56 was lower in the M-ZnP and ZnO groups (p < 0.05). Serum glutathione peroxidase activity, total antioxidant capacity, immunoglobulin G and plasma zinc concentrations were increased linearly (p < 0.05), while the serum concentration of malondialdehyde was decreased linearly (p < 0.01), as the dose of ZnP increased. ZnP yielding 80 mg/day zinc had similar effects as ZnO yielding 180 mg/day zinc, except that final BW was higher in the ZnO group (p < 0.05). At the phylum level, ZnO decreased the relative abundance of Firmicutes while increasing the abundance of Bacteroidetes (p < 0.05). At the genus level, ZnO increased the relative abundances of Prevotella, Subdoligranulum, and Odoribacter (p < 0.05). These findings indicated that early supplementation with ZnP did not affect the rectal microbiota of preweaned dairy calves but increased their growth performance, antioxidant capacity, and plasma zinc concentration. In summary, ZnP is an organic zinc source with greater bioavailability than ZnO for preweaned dairy calves. Early dietary supplementation with ZnP yielding 80 mg/day zinc is recommended.
Collapse
Affiliation(s)
- Junhao Liu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yeqianli Wo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nesrein M. Hashem
- Department of Animal and Fish Production, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
5
|
Liu J, Ma F, Degen A, Sun P. The Effects of Zinc Supplementation on Growth, Diarrhea, Antioxidant Capacity, and Immune Function in Holstein Dairy Calves. Animals (Basel) 2023; 13:2493. [PMID: 37570301 PMCID: PMC10417456 DOI: 10.3390/ani13152493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The current study examined the effects of supplementary zinc proteinate (ZnPro) and zinc oxide (ZnO) on growth performance, diarrhea, antioxidant capacity, immune function, and mineral element concentrations of calves aged 1 to 28 days. A total of twenty-four newborn calves were divided randomly into 3 groups (n = 8; 2 males and 6 females per group), and each received: 0 mg/d Zn (CON), 627 mg/d ZnPro (80 mg/d Zn; ZnPro group), and 101 mg/d ZnO (80 mg/d Zn; ZnO group). The calves received the additive in their milk during the first 28 days of life. Compared with the CON group: ZnPro and ZnO improved average daily gain (ADG) and decreased the feed:gain ratio (FGR) between days 1 and 14 (p < 0.05), while the ADG increased and FGR decreased only in the ZnPro group between days 1 and 28 (p < 0.05). The incidence of diarrhea decreased (p < 0.05) in the ZnPro and ZnO groups between days 15 and 28 as well as days 1 and 28, but decreased (p < 0.05) only in the ZnPro group between days 1 and 14. The serum immunoglobulin G (IgG) concentration of the ZnPro and ZnO groups increased on days 14 and 28 (p < 0.05). ZnPro supplementation increased serum IgM concentration during the whole study, while ZnO enhanced serum IgM concentration only on day 14 (p < 0.05). In the ZnO group, the serum concentration of cytokines interleukin (IL)-10 increased on day 14, while that of IL-1β increased on day 28 (p < 0.05). In addition, ZnPro reduced the serum malondialdehyde (MDA) concentration on days 14 and 28 (p < 0.05). Both ZnPro and ZnO increased the serum concentrations of alkaline phosphatase (ALP) and metallothionein (MT) on day 14 (p < 0.05). With zinc supplementation, plasma Zn concentration increased (p < 0.05) on days 14 and 28 of age. We concluded that supplementary ZnPro and ZnO reduced incidences of diarrhea and promoted the immune function, but ZnPro improved the growth performance and antioxidant capacity of Holstein dairy calves to a greater extent.
Collapse
Affiliation(s)
- Junhao Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel
| | - Peng Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
6
|
Hou P, Li B, Wang Y, Li D, Huang X, Sun W, Liang X, Zhang E. The Effect of Dietary Supplementation with Zinc Amino Acids on Immunity, Antioxidant Capacity, and Gut Microbiota Composition in Calves. Animals (Basel) 2023; 13:ani13091570. [PMID: 37174607 PMCID: PMC10177098 DOI: 10.3390/ani13091570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to investigate the effect of dietary supplementation with zinc (Zn) amino acids at different concentrations on immunity, antioxidant capacity, and gut microbiota composition in calves. Twenty-four one-month-old healthy Angus calves of comparable body weight were randomly divided into three groups (four males and four females in each group) based on the amount of Zn supplementation added to the feed the animals received: group A, 40 mg/kg DM; group B, 80 mg/kg DM; and group C, 120 mg/kg DM. The experiment ended when calves reached three months of age (weaning period). The increase in dietary Zn amino acid content promoted the growth of calves, and the average daily weight gain increased by 36.58% (p < 0.05) in group C compared with group A. With the increase in the content of dietary Zn amino acids, the indexes of serum immune functions initially increased and then decreased; in particular, the content of immunoglobulin M in group A and group B was higher than that in group C (p < 0.05), whereas the content of interleukin-2 in group B was higher than that in the other two groups (p < 0.05). In addition, the content of superoxide dismutase and total antioxidant capacity in the serum of calves in group B was higher than that in group C (p < 0.05), and the MDA level was lower than in group C (p < 0.05). Moreover, alpha diversity in the gut microbiota of calves in group B was higher than that in group A and group C (p < 0.05); the dominant phyla were Firmicutes and Bacteroidota, whereas the dominant genera were Unclassified-Lachnospiraceae and Ruminococcus. Linear discriminant analysis showed that the relative abundance of Bacteroides in the gut microbiota of calves in group B was higher than that in group A, and the relative abundance of Prevotellaceae-UCG-003 was higher compared to that in experimental group C. Thus, dietary supplementation of 80 mg/kg of Zn amino acids to calves could improve the immune function and antioxidant capacity, as well as enrich and regulate the equilibrium of gut microbiota, thus promoting the healthy growth of calves.
Collapse
Affiliation(s)
- Pengxia Hou
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Bo Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yan Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Dan Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Wenyang Sun
- Ningxia Academy of Agriculture and Forestry Science, Institute of Animal, Yinchuan 750002, China
| | - Xiaojun Liang
- Ningxia Academy of Agriculture and Forestry Science, Institute of Animal, Yinchuan 750002, China
| | - Enping Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
7
|
van Bömmel-Wegmann S, Zentek J, Gehlen H, Barton AK, Paßlack N. Effects of dietary zinc chloride hydroxide and zinc methionine on the immune system and blood profile of healthy adult horses and ponies. Arch Anim Nutr 2023; 77:17-41. [PMID: 36790082 DOI: 10.1080/1745039x.2023.2168993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The effects of dietary zinc on the immune function of equines have not been evaluated in detail so far. In the present study, eight healthy adult ponies and two healthy adult horses were fed a diet supplemented with either zinc chloride hydroxide or zinc methionine in six feeding periods of four weeks each (according to maintenance zinc requirement, 120 mg zinc/kg dry matter, and 240 mg zinc/kg dry matter, for both dietary zinc supplements, respectively). All animals received the six diets, with increasing amounts of zinc chloride hydroxide in the feeding periods 1-3, and with increasing amounts of zinc methionine in the feeding periods 4-6. At the end of each feeding period, blood samples were collected for a blood profile and the measurement of selected immune variables. Increasing dietary zinc chloride hydroxide doses increased the glutathione concentrations in the erythrocyte concentrate and the glutathione peroxidase activity in the erythrocyte lysate, decreased the numbers of total leukocytes and granulocytes in the blood, and also decreased the interleukin-2 concentrations in the plasma of the animals. The dietary supplementation of increasing doses of zinc methionine enhanced the mitogen-stimulated proliferative activity of peripheral blood mononuclear cells, and decreased the glutathione concentrations in the erythrocyte concentrate and the glutathione peroxidase activity in the plasma of the animals. The percentage of blood monocytes with oxidative burst after in vitro stimulation with E. coli decreased with increasing dietary zinc concentrations, independently of the zinc compound used. The blood profile demonstrated effects of the zinc supplements on the red blood cells and the bilirubin metabolism of the horses and ponies, which require further investigation. Overall, high doses of dietary zinc modulate the equine immune system, for the most part also depending on the zinc compound used.
Collapse
Affiliation(s)
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Freie Universität Berlin, Berlin, Germany
| | | | - Nadine Paßlack
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
8
|
Li F, Zhang B, Zhang Y, Zhang X, Usman S, Ding Z, Hao L, Guo X. Probiotic effect of ferulic acid esterase-producing Lactobacillus plantarum inoculated alfalfa silage on digestion, antioxidant, and immunity status of lactating dairy goats. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:38-47. [PMID: 36091259 PMCID: PMC9404276 DOI: 10.1016/j.aninu.2022.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/13/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
A feeding experiment was conducted to determine the effects of inoculating alfalfa silage with a ferulic acid esterase-producing inoculum on feed digestibility, rumen fermentation, antioxidant, and immunity status of lactating dairy goats. Twenty dairy goats were distributed into 2 experimental groups consisting of control diet (Lp MTD/1, including Lactobacillus plantarum MTD/1 inoculated silage) against diet containing silage treated with ferulic acid esterase-producing L. plantarum A1 (Lp A1). Alfalfa silage inoculated with a ferulic acid esterase-producing Lp A1 had better fermentation quality than the Lp MTD/1 inoculation. The application of Lp A1 improved silage antioxidant capacity as indicated by greater total antioxidant capacity (T-AOC), superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) activities in Lp A1 treated silage versus Lp MTD/1 treatment. Compared with Lp MTD/1 treated group, inoculation of silage with Lp A1 increased apparent total tract digestibility of dietary dry matter, organic matter and crude protein, and ruminal concentrations of total volatile fatty acids, acetate, propionate and isobutyrate as well. The results of current study also demonstrated improved antioxidant capacity and immune performance of dairy goats with Lp A1 inoculation. Feeding Lp A1-treated silage increased dairy goats' serum antioxidase activity, such as T-AOC, SOD, GSH-Px and catalase, and the serum concentration of immunoglobulin A, while decreased tumor necrosis factor α, interleukin (IL)-2 and IL-6. In addition, compared with Lp MTD/1, diet containing alfalfa silage inoculated with Lp A1 endowed dairy goats' milk with greater fat and protein contents, improved dairy goat milk quality without affecting feed efficiency.
Collapse
Affiliation(s)
- Fuhou Li
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Baibing Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Yixin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Xia Zhang
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Samaila Usman
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Ding
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, The Academy of Animal and Veterinary Sciences, State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Xusheng Guo
- State Key Laboratory of Grassland Agro-ecosystems, School of Life Sciences, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
9
|
Trace minerals source in calf starters interacts with birth weights to affect growth performance. Sci Rep 2022; 12:18763. [PMID: 36335246 PMCID: PMC9637111 DOI: 10.1038/s41598-022-23459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The present study was conducted to investigate the effects of partial replacement of inorganic minerals (IM) with trace minerals in advance chelate components form in starter diets for calves of different birth weights on performance, health, and behavior of Holstein calves. Fifty-two calves were assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement with two mineral sources (IM or advanced chelated minerals (ACMS)) and two birth weights (low or normal birth weight; LBW or NBW). Calves were weaned on d 56 and remained until d 71 of the study. Results showed that NBW calves had higher feed intake, withers and hip height, larger heart girth and lower fecal score than LBW calves throughout the study. Calves receiving ACMS tended to have higher feed intake, larger hip width, lower eye and nose scores, and lower rectal temperature throughout the study than IM calves. In addition, ACMS calves had larger abdominal girths at d 56 of the study compared to IM calves. Interactions between birth weights and mineral sources for preweaning average daily gain (ADG) and weaning and final BW showed that ACMS supplementation improved ADG and BW in LBW calves. Non-nutritive oral behavior was lower in ACMS calves compared to IM calves during all periods. Overall, ACMS feeding decreased non-nutritive oral behavior and improved calf health status during the study. In addition, feeding ACMS to dairy calves with LBW increased their ADG to a similar extent as to NBW calves, suggesting an improvement in their efficiency.
Collapse
|
10
|
Danesh Mesgaran M, Kargar H, Janssen R, Danesh Mesgaran S, Ghesmati A, Vatankhah A. Rumen-protected zinc–methionine dietary inclusion alters dairy cow performances, and oxidative and inflammatory status under long-term environmental heat stress. Front Vet Sci 2022; 9:935939. [PMID: 36172606 PMCID: PMC9510689 DOI: 10.3389/fvets.2022.935939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy cows are susceptible to heat stress due to the levels of milk production and feed intake. Dietary supplemental amino acids, particularly rate-limiting amino acids, for example, methionine (Met), may alleviate the potential negative consequences. Zinc (Zn) is beneficial to the immune system and mammary gland development during heat stress. We investigated the impact of a source of a rumen-protected Zn-Met complex (Loprotin, Kaesler Nutrition GmbH, Cuxhaven, Germany) in high-producing Holstein cows during a long-term environmental heat stress period. A total of 62 multiparous lactating Holstein cows were allocated in a completely randomized design to two dietary treatments, namely, basal diet without (control) and basal diet with the supplemental Zn-Met complex (RPZM) at 0.131% of diet DM. Cows in the RPZM group had higher energy-corrected milk (46.71 vs. 52.85 ± 1.72 kg/d for control and RPZM groups, respectively) as well as milk fat and protein concentration (27.28 vs. 32.80 ± 1.82 and 30.13 vs. 31.03 ± 0.25 g/kg for control and RPZM groups, respectively). The Zn-Met complex supplemented cows had lower haptoglobin and IL-1B concentration than the control (267 vs. 240 ± 10.53 mcg/mL and 76.8 vs. 60.0 ± 3.4 ng/L for control and RPZM groups, respectively). RPZM supplementation resulted in better oxidative status, indicated by higher total antioxidant status and lower malondialdehyde concentrations (0.62 vs. 0.68 ± 0.02 mmol/L and 2.01 vs. 1.76 ± 0.15 nmol/L for control and RPZM groups, respectively). Overall, the results from this study showed that RPZM dietary inclusion could maintain milk production and milk composition of animals during periods of heat stress. Enhanced performance of animals upon Zn-Met complex supplementation could be partly due to improved oxidative and immune status.
Collapse
Affiliation(s)
- Mohsen Danesh Mesgaran
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
- *Correspondence: Mohsen Danesh Mesgaran
| | - Hassan Kargar
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | | | - Aghil Ghesmati
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
11
|
Wo Y, Jin Y, Gao D, Ma F, Ma Z, Liu Z, Chu K, Sun P. Supplementation With Zinc Proteinate Increases the Growth Performance by Reducing the Incidence of Diarrhea and Improving the Immune Function of Dairy Calves During the First Month of Life. Front Vet Sci 2022; 9:911330. [PMID: 35847636 PMCID: PMC9284037 DOI: 10.3389/fvets.2022.911330] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Two experiments were conducted to identify the optimal dose of zinc proteinate (ZP) in the diet for dairy calves and then to compare early supplementation with the ZP or zinc methionine (ZM) on the growth performance, incidence of diarrhea, antioxidant status, and immune function of dairy calves during their first month of life. In Experiment 1, forty newborn female Holstein dairy calves were randomly divided into four groups (n = 10): a control group (without ZP supplementation, ZP0) or groups that received ZP supplementation at 40, 80, and 120 mg zinc/day, respectively (ZP40, ZP80, and ZP120). The experiment lasted 14 days, and the growth performance, incidence of diarrhea, and serum zinc concentration were analyzed. In Experiment 2, thirty-six newborn female Holstein dairy calves were randomly allocated to three groups (n = 12): a negative control group (without zinc supplementation, CON), a positive control group (supplemented with 80 mg zinc/day in the form of zinc methionine, ZM), and a ZP group (supplemented with 80 mg zinc/day in the form of ZP). The experiment lasted 28 days, and the growth performance, incidence of diarrhea, serum zinc concentration, serum antioxidant indicators, and concentrations of plasma immunoglobulins and cytokines were determined on days 7, 14, 21, and 28. Results showed that in Experiment 1, supplementation with ZP to yield 80 mg zinc/day increased the ADG (P < 0.01) and serum zinc concentration (P < 0.01), and decreased the F/G (P < 0.01) and the incidence of diarrhea (P < 0.05) during days 1–14. In Experiment 2, compared with the CON group, ZP increased the ADG (P < 0.01), serum zinc concentration (P < 0.01), and plasma immunoglobulin G (IgG; P < 0.01) and IgM (P < 0.01) concentrations, but reduced the incidence of diarrhea (P < 0.01), serum malondialdehyde (P < 0.01), and plasma interleukin-1β (P < 0.01) concentrations during days 1–28. Overall, ZP supplementation to yield 80 mg zinc/day improves the growth performance and immune function, and decrease the incidence of diarrhea of dairy calves, which was comparable to the same dose of zinc in the form of ZM.
Collapse
Affiliation(s)
- Yeqianli Wo
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhang Jin
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Duo Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhu Ma
- Beijing Dairy Cow Center, Beijing, China
| | - Zhuo Liu
- Shijiazhuang Junlebao Dairy Co., Ltd., Shijiazhuang, China
| | | | - Peng Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Peng Sun
| |
Collapse
|
12
|
Mion B, Van Winters B, King K, Spricigo JFW, Ogilvie L, Guan L, DeVries TJ, McBride BW, LeBlanc SJ, Steele MA, Ribeiro ES. Effects of replacing inorganic salts of trace minerals with organic trace minerals in pre- and postpartum diets on feeding behavior, rumen fermentation, and performance of dairy cows. J Dairy Sci 2022; 105:6693-6709. [PMID: 35787325 DOI: 10.3168/jds.2022-21908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022]
Abstract
Our objectives were to evaluate the effects of complete replacement of supplementary inorganic salts of trace minerals (STM) by organic trace minerals (OTM) in both pre- and postpartum diets on feeding behavior, ruminal fermentation, rumination activity, energy metabolism, and lactation performance in dairy cows. Pregnant cows and heifers (n = 273) were blocked by parity and body condition score and randomly assigned to either STM or OTM diets at 45 ± 3 d before their expected calving date. Both groups received the same diet, except for the source of trace minerals (TM). The STM group was supplemented with Co, Cu, Mn, and Zn sulfates and Na selenite, whereas the OTM group was supplemented with Co, Cu, Mn, and Zn proteinates and selenized yeast. Treatments continued until 156 days in milk and pre- and postpartum diets were formulated to meet 100% of recommended levels of each TM in both treatments, taking into consideration both basal and supplemental levels. Automatic feed bins were used to assign treatments to individual cows and to measure feed intake and feeding behavior. Rumination activity was monitored by sensors attached to a collar from wk -3 to 3 relative to calving. Blood metabolites were evaluated on d -21, -10, -3, 0, 3, 7, 10, 14, 23, and 65 relative to calving. Ruminal fluid samples were collected using an ororuminal sampling device on d -21, 23, and 65 relative to calving, for measurement of ruminal pH and concentration of volatile fatty acids. Cows were milked twice a day and milk components were measured monthly. Cows supplemented with OTM tended to have longer daily feeding time (188 vs. 197 min/d), and greater dry matter intake (DMI; 12.9 vs. 13.3 kg), and had a more positive energy balance (3.6 vs. 4.2 Mcal/d) and shorter rumination time per kg of dry matter (DM; 40.1 vs. 37.5 min/kg of DM) than cows supplemented with STM during the prepartum period. In the postpartum period, OTM increased DMI in multiparous cows (24.1 vs. 24.7 kg/d) but not in primiparous cows (19.1 vs. 18.7 kg/d). The difference in DMI of multiparous cows was more evident in the first 5 wk of lactation, when it averaged 1 kg/d. Milk yield was not affected by treatment in multiparous cows (44.1 vs. 44.2 kg/d); however, primiparous cows supplemented with OTM had lesser yields than primiparous cows supplemented with STM (31.9 vs. 29.8 kg/d). Cows supplemented with OTM had a greater percentage of protein in milk (3.11 vs. 3.17%), reduced concentration of nonesterified fatty acids in serum (0.45 vs. 0.40 mmol/L), and rumination activity (30.1 vs. 27.8 min/kg of DM) than cows supplemented with STM. At the end of the transition period, cows supplemented with OTM had reduced molar proportion of acetate, reduced pH, and tended to have a greater concentration of total volatile fatty acids in ruminal fluid. In conclusion, complete replacement of STM by OTM caused modest changes in rumen fermentation, feeding behavior, energy metabolism, and performance of dairy cows, improving postpartum DMI in multiparous cows and reducing circulating levels of nonesterified fatty acids. The pre-absorptive effects of TM source and the parity specific responses on performance warrant further research.
Collapse
Affiliation(s)
- B Mion
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - B Van Winters
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - K King
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - J F W Spricigo
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - L Ogilvie
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2R3
| | - T J DeVries
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - B W McBride
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - S J LeBlanc
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - M A Steele
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - E S Ribeiro
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada N1G 2W1.
| |
Collapse
|
13
|
Lee C, Copelin JE, Socha MT. Effect of zinc sources and experimental conditions on zinc balance in growing wethers. Transl Anim Sci 2022; 6:txac005. [PMID: 35198860 PMCID: PMC8859999 DOI: 10.1093/tas/txac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 11/12/2022] Open
Abstract
Three experiments were conducted with growing wethers to evaluate apparent excretion and retention of Zn from various sources. In experiments 1 and 2, Zn-ethylene diamine (ZE), Zn hydroxychloride (ZHYD), Zn-lysine/glutamate (ZAA), and Zn-glycinate (ZG) were used and ZnSO4 (ZS), ZHYD, ZAA, and ZG were used in experiment 3. In experiment 1, eight wethers were used in a replicated 4 × 4 Latin square design. In experiments 2 and 3, 40 wethers were used in a randomized block design. In experiment 1, each period (total four periods) consisted of 14-d diet adaptation and 4 d of total collection of feces and urine. In experiments 2 and 3, wethers received a basal diet for 14 d and received experimental diets for 9 d (diet adaptation), followed by 4 d of total collection of feces and urine. Total collection was conducted in wooden metabolic cages. All data were analyzed using the MIXED procedure of SAS as a Latin square design for experiment 1 and a completed randomized block design for experiments 2 and 3. In all experiments, dry matter intake did not differ among treatments except that it tended to be different in experiment 2. In experiment 1, no difference in Zn excretion (88%) and retention (11%) as proportion of Zn intake was observed among Zn sources. In experiment 2, total tract digestibility of crude protein was greater (P < 0.01) for ZAA than ZE and ZG (82.0% vs. 79.1% and 77.8%, respectively) and greater (P < 0.01) for ZHYD than ZG (80.2% vs. 77.8%). However, total tract digestibility of neutral detergent fiber was low (on average 16%) for all treatments with no difference among treatments in experiment 2. Apparent excretion and retention of Zn as proportion of Zn intake did not differ among treatments, and Zn retention (~1.4% of Zn intake) was very low for all treatments. In experiment 3, ZHYD and ZAA had greater retention of Zn (17.8% vs. 1.5%; P = 0.01) than ZG. Fecal Zn excretion was greater (97.3% vs. 81.2%; P = 0.01) for ZG vs. ZHYD and ZAA, and Zn retention for ZG was only 1.5% of Zn intake. In conclusion, potential increases in Zn absorption and retention were observed for ZHYD and ZAA compared with ZS and ZG in experiment 3 and these differences were not found in experiments 1 and 2. Experiment 1 used a Latin square design and experiment 2 used a diet containing largely undigestible fiber. These experimental conditions may have affected Zn metabolism in wethers. Inconsistent results on Zn balance for ZG among the experiments warrant further studies regarding its bioavailability.
Collapse
Affiliation(s)
- Chanhee Lee
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Jacob E Copelin
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | | |
Collapse
|