1
|
Askari S, Zomorodi AR, Aflakian F. Alternative treatment candidates to antibiotic therapy for bovine mastitis in the post-antibiotic era: a comprehensive review. Microb Pathog 2025; 205:107684. [PMID: 40348206 DOI: 10.1016/j.micpath.2025.107684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 04/30/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Mastitis, an inflammation of mammary tissue frequently associated with infection, is a prevalent disease among dairy animals. Bacterial intra-mammary infection is identified as a primary cause of bovine mastitis (BM). In dairy cattle, antimicrobials are used for mastitis treatment during the lactating phase and for dry cow therapy. Although self-curing can occur, the success of mastitis treatment depends on several factors, including the type of bacteria responsible for the infection, the effectiveness of the administered antibiotics, and the host's overall immune response. Moreover, the growing resistance of microorganisms to antibiotics has restricted the available treatment options for managing intramammary infections. In addition, the utilization of critically essential antimicrobials in animals raised for food production may elevate the risk of human infections that are challenging to treat. Therefore, it is crucial to have alternative treatments with equivalent or superior effectiveness as part of any stewardship program. These may include the application of nanotechnology, stem cell technology, photodynamic and laser radiation or the use of traditional herbal medical plants, nutraceuticals, antibacterial peptides, bacteriocins, antibodies therapy, bacteriophages, phage lysins, and probiotics as alternatives to antibiotics. This review aims to discuss the potential of vaccination as an indirect strategy, along with nanotechnology, probiotics, stem cell therapy, antimicrobial peptides, photodynamic therapy, laser irradiation, and antibody treatments as direct approaches. These approaches are examined as possible alternative therapeutic options to antibiotic treatment for BM.
Collapse
Affiliation(s)
- Sepideh Askari
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Student Committee of Medical Education Development, Education Development Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran; Department of Chemical Engineering, Faculty of Advanced Technology, Quchan University of Technology, Quchan, Iran.
| |
Collapse
|
2
|
Soans SH, Chonche MJ, Sharan K, Srinivasan A, Archer AC. Apoptotic and anti-inflammatory effect of nisin-loaded sodium alginate-gum arabic nanoparticles against colon cancer cells. Int J Biol Macromol 2025; 305:141747. [PMID: 40049503 PMCID: PMC7617643 DOI: 10.1016/j.ijbiomac.2025.141747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/15/2025]
Abstract
Colon cancer is one of the leading causes of mortality and morbidity worldwide. Nisin, a polycyclic antibacterial peptide and food preservative has shown potential to combat cancer. However, it is susceptible to proteolytic cleavage in the gut. The current study investigates the protective and cytotoxic effects of nisin loaded sodium alginate gum arabic nanoparticles (Nis/ALG-GA NPs) in Caco2 cells. The physicochemical properties, loading efficiency and release kinetics were studied. Cytotoxicity (MTT assay), apoptotic effect (Ethidium bromide and acridine orange staining) and internalisation (FITC tagging) were evaluated. Gene expression of apoptotic markers and IL-10 were analysed by qPCR. The Nis/ALG-GA NPs were spherical, small with a smooth outer surface and mean size of 193 ± 4 nm. The loading efficacy was 88 ± 2 % exhibiting slow sustained release of the peptide under different gut pH conditions. The IC50 value obtained was 500 μg for 48 h and 80 μg for 72 h of incubation. The Nis/ALG-GA NPs were internalised into Caco2 cells and induced apoptosis with an increased expression of bax gene and converse decrease of bcl-2 gene. Anti-inflammatory gene IL10 was upregulated upon treatment with NPs. Thus, the Nis/ALG-GA NPs may be promising oral drug delivery systems against colon cancers.
Collapse
Affiliation(s)
- Sanya Hazel Soans
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India
| | - Muzaffar Jahangir Chonche
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience and Technology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ann Catherine Archer
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, India.
| |
Collapse
|
3
|
Wang Z, Ma Z, Tian Z, Jia H, Zhang L, Mao Y, Yang Z, Liu X, Li M. Microbial dysbiosis in the gut–mammary axis as a mechanism for mastitis in dairy cows. INT J DAIRY TECHNOL 2024. [DOI: 10.1111/1471-0307.13150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Mastitis is a significant and costly disease in dairy cows, reducing milk production and affecting herd health. Recent research highlights the role of gastrointestinal microbial dysbiosis in the development of mastitis. This review focuses on how microbial imbalances in the rumen and intestines can compromise the integrity of the gastrointestinal barriers, allowing harmful bacteria and endotoxins, such as lipopolysaccharide, to enter the bloodstream and reach the mammary gland, triggering inflammation. This process links gastrointestinal health to mammary gland inflammation through the gut–mammary axis. Furthermore, disruptions in glucose metabolism and immune responses are implicated in the progression of mastitis. This review underscores the potential for non‐antibiotic interventions aimed at restoring microbial balance to reduce mastitis incidence, providing new insights into improving dairy cow health and farm productivity. Our findings emphasise the critical need to explore preventive measures targeting the rumen and intestinal microbiota for effective mastitis control.
Collapse
Affiliation(s)
- Zhiwei Wang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Zheng Ma
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Zhichen Tian
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Haoran Jia
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Lei Zhang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
| | - Yongjiang Mao
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education, Yangzhou University Yangzhou Jiangsu 225009 China
| | - Zhangping Yang
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education, Yangzhou University Yangzhou Jiangsu 225009 China
| | - Xu Liu
- College of Veterinary Medicine Northwest A&F University Yangling Shanxi 712100 China
| | - Mingxun Li
- College of Animal Science and Technology Yangzhou University Yangzhou Jiangsu 225009 China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety the Ministry of Education, Yangzhou University Yangzhou Jiangsu 225009 China
| |
Collapse
|
4
|
Nisar S, Shah AH, Nazir R. The clinical praxis of bacteriocins as natural anti-microbial therapeutics. Arch Microbiol 2024; 206:451. [PMID: 39476181 DOI: 10.1007/s00203-024-04152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 11/10/2024]
Abstract
In recent decades, the excessive use of antibiotics has resulted in a rise in antimicrobial drug resistance (ADR). Annually, a significant number of human lives are lost due to resistant infectious diseases, leading to around 700,000 deaths, and it is estimated that by 2050, there could be up to 10 million casualties. Apart from their possible application as preservatives in the food sector, bacteriocins are gaining acknowledgment as potential clinical treatments. Not only this, these antimicrobial peptides have revealed in modulating the host immune system producing anti-inflammatory and anti-modulatory responses. At the same time, due to the ever-increasing global threat of antibiotic resistance, bacteriocins have gained attraction among researchers due to their potential clinical applications. Bacteriocins as antimicrobial peptides, represent one of the most important natural defense mechanisms among bacterial species, particularly lactic acid bacteria (LAB), that can fight against infection-causing pathogens. In this review, we are highlighting the potential of bacteriocins as novel therapeutics for inhibiting a wide range of clinically relevant and multi-drug-resistant pathogens (MDR). We also highlight the effectiveness and potential applications of current bacteriocin treatments in combating antimicrobial resistance (AMR), thereby promoting human health.
Collapse
Affiliation(s)
- Safura Nisar
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Abdul Haseeb Shah
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), School of Biological Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, India.
| |
Collapse
|
5
|
Li Y, Wang Y, Yan S, Li Y, Gao X, Yu J, Chen S, Li P, Gu Q. Nisin A elevates adenosine to achieve anti-inflammatory activity. Food Funct 2024; 15:10490-10503. [PMID: 39352047 DOI: 10.1039/d4fo01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Inflammation is a ubiquitous physiological status that exists during the occurrence, development and prognosis of numerous diseases. Clinical anti-inflammatory drugs mainly include antibiotics, antivirals, non-steroids and corticosteroids, and the treatments are often accompanied by side effects, including nausea, abdominal pain, allergy, nerve injury and organ dysfunction. Current studies have focused on continuously exploring efficient anti-inflammatory natural components with high biosafety, while nisin, a natural bioactive anti-microbial peptide produced by Lactococcus, has been reported to have anti-inflammatory activity via its superior anti-bacterial abilities. Several recent studies have focused on the potent direct anti-inflammation of nisin, whereas its effects and the corresponding mechanism still remain unclear. The cellular and Caenorhabditis elegans (C. elegans) models were constructed in this study to evaluate the anti-inflammatory effects of nisin A both in vitro and in vivo, while the inflammatory mechanism was further uncovered based on omics analysis. This study reveals the direct anti-inflammatory activity of nisin A and elucidates the regulatory actions of nisin A on adenosine, followed by alteration of the sphingolipid signaling pathway and purine metabolism, enhancing the deep understanding of nisin A with its anti-inflammatory capacity, providing new ideas for future nisin A-based anti-inflammatory strategies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Yadi Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Jiabin Yu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Shuxin Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Ping Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Hangzhou 310018, Zhejiang, People's Republic of China
- Green Valley Food Health Industry Research Institute, Lishui, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Pires AJ, Pereira G, Fangueiro D, Bexiga R, Oliveira M. When the solution becomes the problem: a review on antimicrobial resistance in dairy cattle. Future Microbiol 2024; 19:903-929. [PMID: 38661710 PMCID: PMC11290761 DOI: 10.2217/fmb-2023-0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Antibiotics' action, once a 'magic bullet', is now hindered by widespread microbial resistance, creating a global antimicrobial resistance (AMR) crisis. A primary driver of AMR is the selective pressure from antimicrobial use. Between 2000 and 2015, antibiotic consumption increased by 65%, reaching 34.8 billion tons, 73% of which was used in animals. In the dairy cattle sector, antibiotics are crucial for treating diseases like mastitis, posing risks to humans, animals and potentially leading to environmental contamination. To address AMR, strategies like selective dry cow therapy, alternative treatments (nanoparticles, phages) and waste management innovations are emerging. However, most solutions are in development, emphasizing the urgent need for further research to tackle AMR in dairy farms.
Collapse
Affiliation(s)
- Ana José Pires
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Gonçalo Pereira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - David Fangueiro
- LEAF Research Center, Terra Associate Laboratory, Instituto Superior de Agronomia, University of Lisbon, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ricardo Bexiga
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
| | - Manuela Oliveira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Av. da Universidade Técnica de Lisboa, 1300-477, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477, Lisbon, Portugal
- cE3c—Centre for Ecology, Evolution & Environmental Changes & CHANGE—Global Change & Sustainability Institute, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| |
Collapse
|
7
|
da Silva Oliveira W, Teixeira CRV, Mantovani HC, Dolabella SS, Jain S, Barbosa AAT. Nisin variants: What makes them different and unique? Peptides 2024; 177:171220. [PMID: 38636811 DOI: 10.1016/j.peptides.2024.171220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Nisin A is a lantibiotic bacteriocin typically produced by strains of Lactococcus lactis. This bacteriocin has been approved as a natural food preservative since the late 1980 s and shows antimicrobial activity against a range of food-borne spoilage and pathogenic microorganisms. The therapeutic potential of nisin A has also been explored increasingly both in human and veterinary medicine. Nisin has been shown to be effective in treating bovine mastitis, dental caries, cancer, and skin infections. Recently, it was demonstrated that nisin has an affinity for the same receptor used by SARS-CoV-2 to enter human cells and was proposed as a blocker of the viral infection. Several nisin variants produced by distinct bacterial strains or modified by bioengineering have been described since the discovery of nisin A. These variants present modifications in the peptide structure, biosynthesis, mode of action, and spectrum of activity. Given the importance of nisin for industrial and therapeutic applications, the objective of this study was to describe the characteristics of the nisin variants, highlighting the main differences between these molecules and their potential applications. This review will be useful to researchers interested in studying the specifics of nisin A and its variants.
Collapse
Affiliation(s)
| | | | | | - Silvio Santana Dolabella
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Sona Jain
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Ana Andréa Teixeira Barbosa
- Universidade Federal de Sergipe, São Cristóvão, SE, Brazil; Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
8
|
Yuan H, Bai G, Lin Y, Yu X, Yang Q, Dou R, Sun H, Zhao Z, Li Z, Chen Z, Xu L. Effects of dietary Nisin on growth performance, immune function, and gut health of broilers challenged by Clostridium perfringens. J Anim Sci 2024; 102:skae017. [PMID: 38266070 PMCID: PMC11254313 DOI: 10.1093/jas/skae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
Nisin (Ni) is a polypeptide bacteriocin produced by lactic streptococci (probiotics) that can inhibit the majority of gram-positive bacteria, and improve the growth performance of broilers, and exert antioxidative and anti-inflammatory properties. The present study investigated the potential preventive effect of Nisin on necrotic enteritis induced by Clostridium perfringens (Cp) challenge. A total of 288 Arbor Acres broiler chickens of 1-d-olds were allocated using 2 × 2 factorial arrangement into four groups with six replicates (12 chickens per replicate), including: (1) control group (Con, basal diet), (2) Cp challenge group (Cp, basal diet + 1.0 × 108 CFU/mL Cp), (3) Ni group (Ni, basal diet + 100 mg/kg Ni), and (4) Ni + Cp group (Ni + Cp, basal diet + 100 mg/kg Ni + 1.0 × 108 CFU/mL Cp). The results showed that Cp challenge decreased the average daily gain (ADG) of days 15 to 21 (P<0.05) and increased interleukin-6 (IL-6) content in the serum (P < 0.05), as well as a significant reduction in villus height (VH) and the ratio of VH to crypt depth (VCR) (P<0.05) and a significant increase in crypt depth (CD) of jejunum (P<0.05). Furthermore, the mRNA expressions of Occludin and Claudin-1 were downregulated (P<0.05), while the mRNA expressions of Caspase3, Caspase9, Bax, and Bax/Bcl-2 were upregulated (P<0.05) in the jejunum. However, the inclusion of dietary Ni supplementation significantly improved body weight (BW) on days 21 and 28, ADG of days 15 to 21 (P<0.05), decreased CD in the jejunum, and reduced tumor necrosis factor-α (TNF-α) content in the serum (P<0.05). Ni addition upregulated the mRNA levels of Claudin-1 expression and downregulated the mRNA expression levels of Caspase9 in the jejunum (P<0.05). Moreover, Cp challenge and Ni altered the cecal microbiota composition, which manifested that Cp challenge decreased the relative abundance of phylum Fusobacteriota and increased Shannon index (P<0.05) and the trend of phylum Proteobacteria (0.05
Collapse
Affiliation(s)
- Hua Yuan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Guangdong Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Yu Lin
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Xilong Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Qinghui Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Renkai Dou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Hao Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zeyu Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Zhihui Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Liangmei Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Winther AR, da Silva Duarte V, Porcellato D. Metataxonomic analysis and host proteome response in dairy cows with high and low somatic cell count: a quarter level investigation. Vet Res 2023; 54:32. [PMID: 37016420 PMCID: PMC10074679 DOI: 10.1186/s13567-023-01162-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Host response to invasive microbes in the bovine udder has an important role on the animal health and is essential to the dairy industry to ensure production of high-quality milk and reduce the mastitis incidence. To better understand the biology behind these host-microbiome interactions, we investigated the somatic cell proteomes at quarter level for four cows (collected before and after milking) using a shotgun proteomics approach. Simultaneously, we identified the quarter microbiota by amplicon sequencing to detect presence of mastitis pathogens or other commensal taxa. In total, 32 quarter milk samples were analyzed divided in two groups depending on the somatic cell count (SCC). The high SCC group (>100,000 cell/mL) included 10 samples and significant different proteome profiles were detected. Differential abundance analysis uncovers a specific expression pattern in high SCC samples revealing pathways involved in immune responses such as inflammation, activation of the complement system, migration of immune cells, and tight junctions. Interestingly, different proteome profiles were also identified in quarter samples containing one of the two mastitis pathogens, Staphylococcus aureus and Streptococcus uberis, indicating a different response of the host depending on the pathogen. Weighted correlation network analysis identified three modules of co-expressed proteins which were correlated with the SCC in the quarters. These modules contained proteins assigned to different aspects of the immune response, but also amino sugar and nucleotide sugar metabolism, and biosynthesis of amino acids. The results of this study provide deeper insights on how the proteome expression changes at quarter level in naturally infected cows and pinpoint potential interactions and important biological functions during host-microbe interaction.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway.
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, NMBU, Ås, Norway
| |
Collapse
|
10
|
Corrêa JAF, de Melo Nazareth T, Rocha GFD, Luciano FB. Bioactive Antimicrobial Peptides from Food Proteins: Perspectives and Challenges for Controlling Foodborne Pathogens. Pathogens 2023; 12:pathogens12030477. [PMID: 36986399 PMCID: PMC10052163 DOI: 10.3390/pathogens12030477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/26/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Bioactive peptides (BAPs) derived from food proteins have been extensively studied for their health benefits, majorly exploring their potential use as nutraceuticals and functional food components. These peptides possess a range of beneficial properties, including antihypertensive, antioxidant, immunomodulatory, and antibacterial activities, and are naturally present within dietary protein sequences. To release food-grade antimicrobial peptides (AMPs), enzymatic protein hydrolysis or microbial fermentation, such as with lactic acid bacteria (LAB), can be employed. The activity of AMPs is influenced by various structural characteristics, including the amino acid composition, three-dimensional conformation, liquid charge, putative domains, and resulting hydrophobicity. This review discusses the synthesis of BAPs and AMPs, their potential for controlling foodborne pathogens, their mechanisms of action, and the challenges and prospects faced by the food industry. BAPs can regulate gut microbiota by promoting the growth of beneficial bacteria or by directly inhibiting pathogenic microorganisms. LAB-promoted hydrolysis of dietary proteins occurs naturally in both the matrix and the gastrointestinal tract. However, several obstacles must be overcome before BAPs can replace antimicrobials in food production. These include the high manufacturing costs of current technologies, limited in vivo and matrix data, and the difficulties associated with standardization and commercial-scale production.
Collapse
Affiliation(s)
- Jessica Audrey Feijó Corrêa
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Tiago de Melo Nazareth
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - Giovanna Fernandes da Rocha
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| | - Fernando Bittencourt Luciano
- Laboratory of Agri-Food Research and Innovation, School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição 1155, Curitiba 80215-901, Brazil
| |
Collapse
|
11
|
Luo S, Wang Y, Kang X, Liu P, Wang G. Research progress on the association between mastitis and gastrointestinal microbes in dairy cows and the effect of probiotics. Microb Pathog 2022; 173:105809. [PMID: 36183956 DOI: 10.1016/j.micpath.2022.105809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/15/2022]
Abstract
Mastitis in dairy cows affects milk quality and thereby constrains the development of the dairy industry. A clear understanding of the pathogenesis of mastitis can help its treatment. Mastitis is caused by the invasion of pathogenic bacteria into the mammary gland through the mammary ducts. However, recent studies suggested that an endogenous entero-mammary pathway in dairy cattle might also be playing an important role in regulating mastitis. Also, probiotic intervention regulating host gut microbes has become an interesting tool to control mastitis. This review discusses the association of gastrointestinal microbes with mastitis and the mechanism of action of probiotics in dairy cows to provide new ideas for the management of mastitis in large-scale dairy farms.
Collapse
Affiliation(s)
- Shuangyan Luo
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Yuxia Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Xinyun Kang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Panpan Liu
- School of Agriculture, Ningxia University, 750021, Yinchuan, China
| | - Guiqin Wang
- School of Agriculture, Ningxia University, 750021, Yinchuan, China.
| |
Collapse
|
12
|
Zheng Y, Du Y, Qiu Z, Liu Z, Qiao J, Li Y, Caiyin Q. Nisin Variants Generated by Protein Engineering and Their Properties. Bioengineering (Basel) 2022; 9:bioengineering9060251. [PMID: 35735494 PMCID: PMC9219921 DOI: 10.3390/bioengineering9060251] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Nisin, a typical lantibiotic, has robust antimicrobial activity combined with limited cytotoxicity, and the development of resistance to it is slow. These properties make nisin a promising antimicrobial agent to control pathogenic microorganisms in dairy foods. However, its low solubility, poor stability and short half-life at neutral pH limit its application within the dairy industry. Protein engineering technology has revealed the potential of modifying nisin to improve its properties, and many valuable variants have emerged. This review summarizes progress in the generation of nisin variants for the dairy industry and for other purposes. These nisin variants with additional modification have improved properties and can even expand the inhibition spectrum range of nisin. Nisin, as the most thoroughly studied lantibiotic, and its variants can also guide the modification of other lantibiotics.
Collapse
Affiliation(s)
- Yue Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China;
| | - Zekai Qiu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Ziming Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (Y.Z.); (Z.Q.); (Z.L.); (J.Q.); (Y.L.)
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China
- Correspondence:
| |
Collapse
|
13
|
Bu Y, Liu Y, Liu Y, Wang S, Liu Q, Hao H, Yi H. Screening and Probiotic Potential Evaluation of Bacteriocin-Producing Lactiplantibacillus plantarum In Vitro. Foods 2022; 11:foods11111575. [PMID: 35681325 PMCID: PMC9180163 DOI: 10.3390/foods11111575] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Probiotics are gaining attention due to their functions of regulating the intestinal barrier and promoting human health. The production of bacteriocins is one of the important factors for probiotics to exert beneficial properties. This study aimed to screen bacteriocin-producing Lactiplantibacillus plantarum and evaluate the probiotic potential in vitro. It was found that L. plantarum Q7, L. plantarum F3-2 and L. plantarum YRL45 could produce bacteriocins and inhibit common intestinal pathogens. These three strains had probiotic potential with tolerance to the gastrointestinal environmental and colonization in the gut, and exhibited various degrees of anti-inflammatory activity and tight junction function in the intestinal barrier. Particularly, L. plantarum YRL45 could significantly (p < 0.05) reduce the increase in nitric oxide (NO), prostaglandin E2 (PGE2), necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) induced by lipopolysaccharide (LPS), thereby easing inflammatory response. L. plantarum F3-2 could remarkably (p < 0.05) up-regulate the expression levels of ZO-1, Occludin and Claudin-1 in intestinal epithelial injured cells, which was conducive to protecting the intestinal barrier. These findings provided fundamental information about the probiotic properties of bacteriocin-producing L. plantarum, which suggested that L. plantarum Q7, L. plantarum F3-2 and L. plantarum YRL45 had the potential to be used as novel probiotic strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huaxi Yi
- Correspondence: ; Tel.: +86-0532-13792497030
| |
Collapse
|