1
|
Magalhães J, Cappellozza BI, Dos Santos TC, Inoe F, Pessoa Araújo Júnior J, Kurissio JK, Queiroz O, Joergensen JN, Cooke RF, Vasconcelos CGC, Vasconcelos JLM. Effects of supplementing direct-fed microbials on health and growth of preweaning Gyr × Holstein dairy calves. J Dairy Sci 2024; 107:6117-6130. [PMID: 38608942 DOI: 10.3168/jds.2023-24434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024]
Abstract
This study aimed to evaluate the effects of direct-fed microbials (DFM) on health and growth responses of preweaning Bos indicus × Bos taurus (Gyr × Holstein) crossbred calves. Ninety newborn heifer calves (initial BW of 35 ± 4.0 kg) were used. At birth, calves were ranked by initial BW and parity of the dam and assigned to: (1) whole milk without DFM supplementation (CON; n = 30), (2) whole milk with the addition of 1.0 g/calf per day of a Bacillus-based DFM (BAC; n = 30), or (3) whole milk with the addition of 1.0 g/calf per day of BAC and 1.2 g/calf per day of Enterococcus faecium 669 (MIX; n = 30). Milk was fed individually during the study (77 d), and the BAC and MIX treatments were offered daily throughout the 77-d preweaning period. All calves were offered a starter supplement and corn silage starting on d 1 and 60 of age, respectively. Milk and starter supplement intake were evaluated daily, and BW was recorded on d 0 and at weaning (d 77). Diarrhea and pneumonia were assessed daily, and fecal samples were collected on d 0, 7, 14, 21, and at weaning (d 77) for assessment of the presence of bacterial and protozoal pathogens via qPCR. All data were analyzed using SAS (v. 9.4) with calf as the experimental unit and using single-df orthogonal contrasts (BAC + MIX vs. CON; BAC vs. MIX). Daily feeding of DFM, regardless of type, improved weaning BW. Odds ratio for occurrence of pneumonia was lower for DFM-supplemented calves, but its occurrence did not differ between BAC and MIX calves. No Salmonella spp. or Escherichia coli F41 were detected in any of the calves. The proportion of calves positive for E. coli F17 was greater for DFM calves on d 7 (92% and 96% vs. 81% for BAC, MIX, and CON, respectively), on d 21 (13% and 26% vs. 7% for BAC, MIX, and CON, respectively), and at weaning (48% and 35% vs. 22% for BAC, MIX, and CON, respectively). For Clostridium difficile, more DFM calves were positive on d 7 (65% and 30% vs. 35% for BAC, MIX, and CON, respectively) and 14 (20% and 28% vs. 7% for BAC, MIX, and CON, respectively), but proportion of positive calves was also greater for BAC versus MIX on d 7. More CON calves were positive for Clostridium perfringens on d 14 (14% vs. 3% and 8% for CON, BAC, and MIX, respectively) compared with DFM-fed calves. Incidence of calves positive for C. perfringens was greater in BAC than MIX on d 7 (50% vs. 18%), and greater for MIX than BAC at weaning (9% vs. 0%). For protozoa occurrence, a lower proportion of DFM calves were positive for Cryptosporidium spp. on d 7 (58% and 48% vs. 76% for BAC, MIX, and CON, respectively), but opposite results were observed on d 21 for Cryptosporidium spp. (3% and 11% vs. 0% for BAC, MIX, and CON, respectively) and Eimeria spp. on d 14 (7% and 8% vs. 0% for BAC, MIX, and CON, respectively) and 21 (50% and 59% vs. 38% for BAC, MIX, and CON, respectively). In summary, DFM feeding alleviated the occurrence of pneumonia and improved growth rates, while also modulating the prevalence of bacteria and protozoa in preweaning Gyr × Holstein calves.
Collapse
Affiliation(s)
- Julia Magalhães
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil
| | - Bruno I Cappellozza
- Commercial Development, Animal & Plant Health and Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Taynara C Dos Santos
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil
| | - Fernanda Inoe
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil
| | - João Pessoa Araújo Júnior
- Institute of Biotechnology (IBTEC), School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil
| | - Jacqueline K Kurissio
- Institute of Biotechnology (IBTEC), School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18607-440, Brazil
| | - Oscar Queiroz
- Commercial Development, Animal & Plant Health and Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Jens N Joergensen
- Commercial Development, Animal & Plant Health and Nutrition, Chr. Hansen A/S, Hørsholm 2970, Denmark
| | - Reinaldo F Cooke
- Department of Animal Science, Texas A&M University, College Station, TX 77843
| | | | - José Luiz M Vasconcelos
- School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, SP 18618-000, Brazil.
| |
Collapse
|
2
|
Cao L, Sun F, Ren Q, Jiang Z, Chen J, Li Y, Wang L. Effects of dietary supplementation of Enterococcus faecium postbiotics on growth performance and intestinal health of growing male mink. Front Vet Sci 2024; 11:1409127. [PMID: 39051012 PMCID: PMC11266192 DOI: 10.3389/fvets.2024.1409127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024] Open
Abstract
Recent studies have demonstrated that postbiotics possess bioactivities comparable to those of probiotics. Therefore, our experiment aimed to evaluate the effects of postbiotics derived from Enterococcus faecium on the growth performance and intestinal health of growing male minks. A total of 120 growing male minks were randomly assigned to 4 groups, each with 15 replicates of 2 minks. The minks in the 4 groups were fed a basal diet supplemented with 0 (control), 0.05, 0.1, and 0.15% postbiotics derived from E. faecium (PEF), respectively. Compared to the control, PEF improved feed/gain (F/G) during the first 4 weeks and the entire 8 weeks of the study (p < 0.05); in addition, 0.1% PEF improved average daily gain (ADG) during the first 4 weeks and the entire 8 weeks of the study (p < 0.05), while 0.15% PEF improved ADG during the first 4 weeks of the study (p < 0.05). Consequently, 0.1% PEF minks displayed greater body weight (BW) at weeks 4 and 8 (p < 0.05), and 0.15% PEF minks had greater BW at week 4 (p < 0.05) than minks in the control. Furthermore, compared to the control, both 0.05 and 0.1% PEF enhanced the apparent digestibility of crude protein (CP) and ether extract (EE) (p < 0.05) in the initial 4 weeks, while both 0.1 and 0.15% PEF enhanced the apparent digestibility of CP and DM in the final 4 weeks (p < 0.05). Additionally, trypsin activity was elevated in the 0.1 and 0.15% PEF groups compared to the control (p < 0.05). In terms of intestinal morphology, PEF increased the villus height and villus/crypt (V/C) in the jejunum (p < 0.05), and both 0.1 and 0.15% PEF decreased the crypt depth and increased the villus height and V/C in the duodenum (p < 0.05) compared to the control group. Supplementation with 0.1% PEF increased the SIgA levels but decreased the IL-2, IL-8, and TNF-α levels in the jejunum (p < 0.05). Compared to the control, E. faecium postbiotics decreased the relative abundances of Serratia and Fusobacterium (p < 0.05). In conclusion, the results indicate that the growth performance, digestibility, immunity, and intestine development of minks are considerably affected by E. faecium postbiotics. In particular, dietary supplementation with 0.1% E. faecium postbiotics provides greater benefits than supplementation with 0.05 and 0.15%.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lihua Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|