1
|
Microbiological and Metagenomic Characterization of a Retail Delicatessen Galotyri-Like Fresh Acid-Curd Cheese Product. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This study evaluated the microbial quality, safety, and ecology of a retail delicatessen Galotyri-like fresh acid-curd cheese traditionally produced by mixing fresh natural Greek yogurt with ‘Myzithrenio’, a naturally fermented and ripened whey cheese variety. Five retail cheese batches (mean pH 4.1) were analyzed for total and selective microbial counts, and 150 presumptive isolates of lactic acid bacteria (LAB) were characterized biochemically. Additionally, the most and the least diversified batches were subjected to a culture-independent 16S rRNA gene sequencing analysis. LAB prevailed in all cheeses followed by yeasts. Enterobacteria, pseudomonads, and staphylococci were present as <100 viable cells/g of cheese. The yogurt starters Streptococcus thermophilus and Lactobacillus delbrueckii were the most abundant LAB isolates, followed by nonstarter strains of Lactiplantibacillus, Lacticaseibacillus, Enterococcus faecium, E. faecalis, and Leuconostoc mesenteroides, whose isolation frequency was batch-dependent. Lactococcus lactis isolates were sporadic, except for one cheese batch. However, Lactococcus lactis, Enterobacteriaceae, Vibrionaceae, Salinivibrio, and Shewanellaceae were detected at fairly high relative abundances culture-independently, despite the fact that their viable counts in the cheeses were low or undetectable. Metagenomics confirmed the prevalence of S. thermophilus and Lb. delbrueckii. Overall, this delicatessen Galotyri-like cheese product was shown to be a rich pool of indigenous nonstarter LAB strains, which deserve further biotechnological investigation.
Collapse
|
2
|
Asimakoula S, Giaka K, Fanitsios C, Kakouri A, Vandera E, Samelis J, Koukkou AI. Monitoring Growth Compatibility and Bacteriocin Gene Transcription of Adjunct and Starter Lactic Acid Bacterial Strains in Milk. J Food Prot 2021; 84:509-520. [PMID: 33108438 DOI: 10.4315/jfp-20-317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 01/13/2023]
Abstract
ABSTRACT When developing protective starter cultures for application in cheese technologies, monitoring growth interactions between starter and adjunct lactic acid bacterial (LAB) species and in situ expression of bacteriocin genes in the mixtures is crucial. This study first aimed to monitor the growth of mixed LAB strain populations during milk model fermentations by microbial counts and real-time quantitative PCR. The primary starter strains, Streptococcus thermophilus ST1 and costarter Lactococcus lactis subsp. cremoris M78, served as the basic starter composite coinoculated in all milk treatments. Adjunct bacteriocinogenic Enterococcus faecium strains KE82 and GL31 and the ripening Lactiplantibacillus plantarum H25 strain were added separately to the starter composite, resulting in four LAB combination treatments. The second aim was to quantify gene transcripts of nisin and enterocins B and A synthesized by strains M78, KE82, and GL31, respectively, by reverse transcription-real-time quantitative PCR and to detect the in situ antilisterial effects of the cocultures. Adjunct LAB strains showed growth compatibility with the starter, since all of them exhibited 2- to 3-log-unit increases in their population levels compared to their initial inoculation levels, with ST1 prevailing in all treatments. KE82 grew more competitively than GL31, whereas cocultures with KE82 displayed the strongest in situ antilisterial activity. Nisin gene expression levels were higher at the exponential phase of microbial growth in all treatments. Finally, the expression levels of nisin and enterocin A and B genes were interrelated, indicating an antagonistic activity. HIGHLIGHTS
Collapse
Affiliation(s)
- Stamatia Asimakoula
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Katerina Giaka
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Christos Fanitsios
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Athanasia Kakouri
- Dairy Research Department, General Directorate of Agricultural Research, Hellenic Agricultural Organization DIMITRA, Katsikas, 45221 Ioannina, Greece
| | - Elpiniki Vandera
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| | - John Samelis
- Dairy Research Department, General Directorate of Agricultural Research, Hellenic Agricultural Organization DIMITRA, Katsikas, 45221 Ioannina, Greece
| | - Anna-Irini Koukkou
- Laboratory of Biochemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Wilkinson MG, LaPointe G. Invited review: Starter lactic acid bacteria survival in cheese: New perspectives on cheese microbiology. J Dairy Sci 2020; 103:10963-10985. [DOI: 10.3168/jds.2020-18960] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022]
|
4
|
Ellis JC, Ross RP, Hill C. Nisin Z and lacticin 3147 improve efficacy of antibiotics against clinically significant bacteria. Future Microbiol 2020; 14:1573-1587. [PMID: 32019322 DOI: 10.2217/fmb-2019-0153] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To determine if bacteriocins improve antibiotic efficacy. Materials & methods: Deferred antagonism assays identified bacteriocins with activity. Growth curves and time kill assays demonstrated bactericidal activity of antimicrobial combinations, and checkerboard assays confirmed synergy. Methicillin-resistant Staphylococcus aureus-infected porcine skin model determined ex vivo efficacy. Results: Subinhibitory concentrations of lacticin with penicillin or vancomycin resulted in complete growth inhibition of strains and the improved inhibitory effect was apparent after 1 h. Nisin with methicillin proved more effective against methicillin-resistant Staphylococcus aureus than either antimicrobial alone, revealing partial synergy and significantly reduced pathogen numbers on porcine skin after 3 h compared with minimal inhibition for either antimicrobial alone. Conclusion: Nisin Z and lacticin 3147 may support the use of certain antibiotics and revive ineffective antibiotics.
Collapse
Affiliation(s)
| | - Reynolds P Ross
- School of Microbiology, University College Cork, T12 K8AF, Ireland.,APC Microbiome Ireland, University College Cork, T12 YT20, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, T12 K8AF, Ireland.,APC Microbiome Ireland, University College Cork, T12 YT20, Ireland
| |
Collapse
|
5
|
Ribeiro SC, O'Connor PM, Ross RP, Stanton C, Silva CC. An anti-listerial Lactococcus lactis strain isolated from Azorean Pico cheese produces lacticin 481. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2016.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Pneumococcal 6-Phospho-β-Glucosidase (BglA3) Is Involved in Virulence and Nutrient Metabolism. Infect Immun 2015; 84:286-92. [PMID: 26527213 DOI: 10.1128/iai.01108-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/26/2015] [Indexed: 11/20/2022] Open
Abstract
For the generation of energy, the important human pathogen Streptococcus pneumoniae relies on host-derived sugars, including β-glucoside analogs. The catabolism of these nutrients involves the action of 6-phospho-β-glucosidase to convert them into usable monosaccharaides. In this study, we characterized a 6-phospho-β-glucosidase (BglA3) encoded by SPD_0247. We found that this enzyme has a cell membrane localization and is active only against a phosphorylated substrate. A mutated pneumococcal ΔSPD0247 strain had reduced 6-phospho-glucosidase activity and was attenuated in growth on cellobiose and hyaluronic acid compared to the growth of wild-type D39. ΔSPD0247-infected mice survived significantly longer than the wild-type-infected cohort, and the colony counts of the mutant were lower than those of the wild type in the lungs. The expression of SPD_0247 in S. pneumoniae harvested from infected tissues was significantly increased relative to its expression in vitro on glucose. Additionally, ΔSPD0247 is severely impaired in its attachment to an abiotic surface. These results indicate the importance of β-glucoside metabolism in pneumococcal survival and virulence.
Collapse
|
7
|
Beshkova D, Frengova G. Bacteriocins from lactic acid bacteria: Microorganisms of potential biotechnological importance for the dairy industry. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100127] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
8
|
Dal Bello B, Cocolin L, Zeppa G, Field D, Cotter PD, Hill C. Technological characterization of bacteriocin producing Lactococcus lactis strains employed to control Listeria monocytogenes in cottage cheese. Int J Food Microbiol 2011; 153:58-65. [PMID: 22104121 DOI: 10.1016/j.ijfoodmicro.2011.10.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 10/07/2011] [Accepted: 10/24/2011] [Indexed: 11/26/2022]
Abstract
In recent years, there has been a particular focus on the application of antimicrobial compounds produced by lactic acid bacteria (LAB) as natural preservatives to control the growth of spoilage and pathogenic bacteria in food. Bacteriocins are antimicrobial peptides which can be added to foods in concentrated forms as food preservatives, e.g. additives, or they can be produced in situ by starters or protective cultures. In this study, twenty Lactococcus lactis bacteriocin producers previously isolated from Italian fermented foods were subjected to a variety of physical and biochemical tests in order to identify those with the greatest potential as starter cultures in cheese production. Of these, four strains isolated from cheese (one nisin Z producer, one nisin A producer and two lacticin 481 producers) which fulfilled the desired technological criteria were assessed for their ability to control Listeria monocytogenes. The subsequent application of these bacteriocinogenic strains as starter cultures in Cottage cheese established that the nisin A producing Lact. lactis 40FEL3, and to a lesser extent the lacticin 481 producers 32FL1 and 32FL3, successfully controlled the growth of the pathogen. This is the first study to directly compare the ability of nisin A, nisin Z and lacticin 481 producing strains to control listerial growth during the manufacture and storage of Cottage cheese.
Collapse
Affiliation(s)
- Barbara Dal Bello
- Department of Agricultural Microbiology and Food Technology sector, DIVAPRA, University of Turin, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Mills S, Stanton C, Hill C, Ross R. New Developments and Applications of Bacteriocins and Peptides in Foods. Annu Rev Food Sci Technol 2011; 2:299-329. [DOI: 10.1146/annurev-food-022510-133721] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Mills
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
| | - C. Stanton
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Teagasc, Moorepark Food Research Center, Fermoy, County Cork, Ireland
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
| | - C. Hill
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
- Department of Microbiology, University College Cork, Cork, Ireland
| | - R.P. Ross
- Food for Health Ireland, Moorepark Food Research Center, Fermoy, County Cork, Ireland;
- Teagasc, Moorepark Food Research Center, Fermoy, County Cork, Ireland
- Alimentary Pharmabiotic Center, University College Cork, Cork, Ireland
| |
Collapse
|
10
|
MILLS SUSAN, O’SULLIVAN ORLA, HILL COLIN, FITZGERALD GERALD, ROSS RPAUL. The changing face of dairy starter culture research: From genomics to economics. INT J DAIRY TECHNOL 2010. [DOI: 10.1111/j.1471-0307.2010.00563.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Gálvez A, López RL, Abriouel H, Valdivia E, Omar NB. Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Crit Rev Biotechnol 2008; 28:125-52. [DOI: 10.1080/07388550802107202] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Sobrino-López A, Martín-Belloso O. Use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J 2008. [DOI: 10.1016/j.idairyj.2007.11.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Steen A, van Schalkwijk S, Buist G, Twigt M, Szeliga M, Meijer W, Kuipers OP, Kok J, Hugenholtz J. Lytr, a phage-derived amidase is most effective in induced lysis of Lactococcus lactis compared with other lactococcal amidases and glucosaminidases. Int Dairy J 2007. [DOI: 10.1016/j.idairyj.2006.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Dufour A, Hindré T, Haras D, Le Pennec JP. The biology of lantibiotics from the lacticin 481 group is coming of age. FEMS Microbiol Rev 2006; 31:134-67. [PMID: 17096664 DOI: 10.1111/j.1574-6976.2006.00045.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Lantibiotics are antimicrobial peptides from the bacteriocin family, secreted by Gram-positive bacteria. These peptides differ from other bacteriocins by the presence of (methyl)lanthionine residues, which result from enzymatic modification of precursor peptides encoded by structural genes. Several groups of lantibiotics have been distinguished, the largest of which is the lacticin 481 group. This group consists of at least 16 members, including lacticin 481, streptococcin A-FF22, mutacin II, nukacin ISK-1, and salivaricins. We present the first review devoted to this lantibiotic group, knowledge of which has increased significantly within the last few years. After updating the group composition and defining the common properties of these lantibiotics, we highlight the most recent developments. The latter concern: transcriptional regulation of the lantibiotic genes; understanding the biosynthetic machinery, in particular the ability to perform in vitro prepeptide maturation; characterization of a novel type of immunity protein; and broad application possibilities. This group differs in many aspects from the best known lantibiotic group (nisin group), but shares properties with less-studied groups such as the mersacidin, cytolysin and lactocin S groups.
Collapse
Affiliation(s)
- Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, EA3884, Université de Bretagne Sud, Lorient, France.
| | | | | | | |
Collapse
|
15
|
Tomé E, Teixeira P, Gibbs PA. Anti-listerial inhibitory lactic acid bacteria isolated from commercial cold smoked salmon. Food Microbiol 2006; 23:399-405. [PMID: 16943030 DOI: 10.1016/j.fm.2005.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
The natural microflora of cold-smoked fish at the end of shelf-life are lactic acid bacteria (LAB). Some of these display a capacity to inhibit spoilage as well as several strains of pathogenic micro-organisms, e.g. Listeria monocytogenes which is isolated frequently from cold-smoked salmon (CSS). Eight batches of sliced vacuum-packed CSS from Norway, Scotland and Spain were collected at retail. Packs were stored at 5 degrees C and examined for chemical and microbiological characteristics, at purchase date and at expiration date. pH, water activity and salt content were similar to available data on lightly preserved fish products. There was a consistent pattern in the development of the microflora on CSS; the initial level of LAB was low on freshly produced CSS (10(2) cfu g(-1)); however, storage in vacuum packaging at refrigeration temperature was elective for LAB. At the end of the stated shelf-life these micro-organisms, represented mainly by Lactobacillus spp., attained ca.10(7) cfu g(-1) while Enterobacteriaceae counts were consistently lower (10(5) cfu g(-1)), which indicates the ability of LAB to grow and compete with few carbohydrates available and in the presence of moderate salt concentrations. L. monocytogenes was not found in any sample. Forty-one percent of LAB strains isolated exhibited inhibitory capacity against Listeria innocua, in a plate assay. A majority of the inhibitory effects were non-bacteriocinogenic, but nevertheless were very competitive cultures which may provide an additional hurdle for improved preservation by natural means.
Collapse
Affiliation(s)
- Elisabetta Tomé
- Escola Superior de Biotecnologia, Universidade Católica Portuguesa, R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | | | | |
Collapse
|
16
|
Garde S, Avila M, Gaya P, Medina M, Nuñez M. Proteolysis of Hispánico Cheese Manufactured Using Lacticin 481-Producing Lactococcus lactis ssp. lactis INIA 639. J Dairy Sci 2006; 89:840-9. [PMID: 16507676 DOI: 10.3168/jds.s0022-0302(06)72147-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hispánico cheese was manufactured using lacticin 481-producing Lactococcus lactis ssp. lactis INIA 639, bacteriocin-nonproducing L. lactis ssp. lactis INIA 437, or a combination of both strains, as starter cultures. Lactobacillus helveticus LH 92, a culture of high amino-peptidase activity sensitive to lacticin 481, was added to all vats. Milk inoculation with the bacteriocin producer promoted early lysis of Lb. helveticus cells in cheese. Cell-free aminopeptidase activity in cheese made with the 3 lactic cultures was 1.8 times the level reached in cheese made only with L. lactis strain INIA 437 and Lb. helveticus, after 15 d of ripening. Proteolysis (as estimated by the o-phthaldialdehyde method) in cheese made with the 3 lactic cultures was twice as high, and the level of total free amino acids 2.4 times the level found in cheese made only with L. lactis strain INIA 437 and Lb. helveticus, after 25 d of ripening. Hydrophobic and hydrophilic peptides and their ratio were at the lowest levels in cheese made with the 3 lactic cultures, which received the lowest scores for bitterness and the highest scores for taste quality.
Collapse
Affiliation(s)
- S Garde
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, 28040, Spain
| | | | | | | | | |
Collapse
|
17
|
Mills S, McAuliffe OE, Coffey A, Fitzgerald GF, Ross RP. Plasmids of lactococci – genetic accessories or genetic necessities? FEMS Microbiol Rev 2006; 30:243-73. [PMID: 16472306 DOI: 10.1111/j.1574-6976.2005.00011.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Lactococci are one of the most exploited microorganisms used in the manufacture of food. These intensively used cultures are generally characterized by having a rich plasmid complement. It could be argued that it is the plasmid complement of commercially utilized cultures that gives them their technical superiority and individuality. Consequently, it is timely to reflect on the desirable characteristics encoded on lactococcal plasmids. It is argued that plasmids play a key role in the evolution of modern starter strains and are a lot more than just selfish replicosomes but more essential necessities of intensively used commercial starters. Moreover, the study of plasmid biology provides a genetic blueprint that has proved essential for the generation of molecular tools for the genetic improvement of Lactococcus lactis.
Collapse
Affiliation(s)
- Susan Mills
- Teagasc, Dairy Products Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | | | |
Collapse
|
18
|
Gilbreth SE, Somkuti GA. Thermophilin 110: a bacteriocin of Streptococcus thermophilus ST110. Curr Microbiol 2005; 51:175-82. [PMID: 16049660 DOI: 10.1007/s00284-005-4540-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
A screen of thermophilic lactic acid bacteria identified Streptococcus thermophilus strain ST110 as the putative producer of a bacteriocin with high level of activity against pediococci. Thermophilin 110 was isolated from culture supernatant after 16 h of growth and partially purified by a chloroform extraction procedure. The bacteriocin inhibited the growth of several lactic acid bacteria and in the case of Pediococcus acidilactici, it induced cell lysis with the concomitant release of OD260-absorbing material and intracellular enzymes. SDS-PAGE analysis revealed two components with estimated sizes between 4.0 kDa and 4.5 kDa, respectively, with possible involvement in bacteriocin activity as indicated by agar overlay assays with P. acidilactici as the target organism. Thermophilin 110 was inactivated by several proteolytic enzymes and also by alpha-amylase, which indicated the putative requirement of a glycosidic component for activity. The bacteriocin produced by S. thermophilus may be especially useful in the food processing industries to control spoilage caused by pediococci.
Collapse
Affiliation(s)
- Stefanie E Gilbreth
- Eastern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 600 East Mermaid Lane, Wyndmoor, Pennsylvania 19038, USA
| | | |
Collapse
|
19
|
|
20
|
Guinane CM, Cotter PD, Hill C, Ross RP. Microbial solutions to microbial problems; lactococcal bacteriocins for the control of undesirable biota in food. J Appl Microbiol 2005; 98:1316-25. [PMID: 15916645 DOI: 10.1111/j.1365-2672.2005.02552.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C M Guinane
- Department of Microbiology, University College Cork, Cork, Ireland
| | | | | | | |
Collapse
|
21
|
|
22
|
Avila M, Garde S, Medina M, Nuñez M. Effect of milk inoculation with bacteriocin-producing lactic acid bacteria on a Lactobacillus helveticus adjunct cheese culture. J Food Prot 2005; 68:1026-33. [PMID: 15895737 DOI: 10.4315/0362-028x-68.5.1026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of eight strains of lactic acid bacteria (two strains of Enterococcus, one strain of Lactobacillus, and five strains of Lactococcus, which produce enterocin AS-48, enterocin 607, nisin A, nisin Z, plantaricin 684, lacticin 481, or nisin Z plus lacticin 481) on acid production and proteolytic activity of Lactobacillus helveticus LH 92 (a highly peptidolytic strain used as an adjunct in cheese making) was evaluated in mixed cultures in milk. Acid production by mixed cultures depended on the sensitivity of L. helveticus LH 92 to the different bacteriocins and on the acidification rates of bacteriocin-producing strains. Proteolysis values of mixed cultures were, in all cases, lower than those of L. helveticus LH 92 single culture (control). Cell-free aminopeptidase activity values after 9 h of incubation did not increase in the presence of enterocin producers or the nisin A producer, whereas in the presence of the nisin Z producer, cell-free aminopeptidase activity was, at most, 3.7-fold greater than the control value. In mixed cultures with the plantaricin producer, a progressive lysis of L. helveticus LH 92 took place, with cell-free aminopeptidase activity values after 9 h being, at most, 10.5-fold greater than the control value. The highest cell-free aminopeptidase activity values after 9 h were recorded in the presence of lacticin 481 producers, with the values being, at most, 25.1-fold greater than the control value. L. helveticus LH 92 was extremely sensitive to small variations in the concentration of the inoculum of the nisin Z plus lacticin 481 producer, with there being a narrow optimum for the release of intracellular aminopeptidases. Plantaricin and lacticin 481 producers seemed the most promising strains to be combined with L. helveticus LH 92 as lactic cultures for cheese manufacture,because of the accelerated release of intracellular aminopeptidases.
Collapse
Affiliation(s)
- Marta Avila
- Departamento de Tecnología de Alimentos, INIA, Carretera de La Coruña Km 7, Madrid, 28040 Spain
| | | | | | | |
Collapse
|
23
|
O'Sullivan L, Ross RP, Hill C. A lacticin 481-producing adjunct culture increases starter lysis while inhibiting nonstarter lactic acid bacteria proliferation during Cheddar cheese ripening. J Appl Microbiol 2003; 95:1235-41. [PMID: 14632996 DOI: 10.1046/j.1365-2672.2003.02086.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The main aim of this study was to exploit a lacticin 481 producing strain, Lactococcus lactis CNRZ481, as an adjunct for Cheddar cheese manufacture, to increase starter cell lysis and control nonstarter lactic acid bacteria (NSLAB) proliferation in cheese. METHODS AND RESULTS Lactococcus lactis CNRZ481 was exploited as an adjunct to L. lactis HP for the manufacture of Cheddar cheese at pilot scale (450 l). In these trials, inclusion of the adjunct strain did not compromise acid production by L. lactis HP and cheese was successfully manufactured within 5 h. Experimental cheese exhibited levels of lactate dehydrogenase (LDH) up to five-fold higher than control cheese and a significant reduction in NSLAB growth was also observed throughout the ripening period. CONCLUSIONS The aims of the study were accomplished as (i) greater enzyme release was achieved through lacticin 481-induced lysis which was associated with an improved flavoured cheese as assessed by a commercial grader and (ii) NSLAB growth was controlled, thus reducing the risk of off-flavour development. SIGNIFICANCE AND IMPACT OF THE STUDY The use of lacticin 481-producing adjuncts for cheese manufacture may prove beneficial for manufacturers who aim to achieve faster ripening through premature and elevated intracellular enzyme release while minimizing inconsistencies in cheese quality because of NSLAB activity.
Collapse
Affiliation(s)
- L O'Sullivan
- Dairy Products Research Centre, Teagasc, Moorepark, Fermoy, County Cork, Ireland
| | | | | |
Collapse
|
24
|
O'Sullivan L, Ryan MP, Ross RP, Hill C. Generation of food-grade lactococcal starters which produce the lantibiotics lacticin 3147 and lacticin 481. Appl Environ Microbiol 2003; 69:3681-5. [PMID: 12788782 PMCID: PMC161475 DOI: 10.1128/aem.69.6.3681-3685.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2002] [Accepted: 02/25/2003] [Indexed: 11/20/2022] Open
Abstract
Transconjugant lactococcal starters which produce both lantibiotics lacticin 3147 and lacticin 481 were generated via conjugation of large bacteriocin-encoding plasmids. A representative of one of the resultant strains proved more effective at killing Lactobacillus fermentum and inhibiting the growth of Listeria monocytogenes LO28H than either of the single bacteriocin-producing parental strains, demonstrating the potential of these transconjugants as protection cultures for food safety applications.
Collapse
Affiliation(s)
- Lisa O'Sullivan
- Dairy Products Research Centre, Teagasc, Moorepark, Fermoy, County Cork, Republic of Ireland
| | | | | | | |
Collapse
|