1
|
Müller-Langhans K, Oberberger L, Zablotski Y, Engelmann S, Hoedemaker M, Kühn C, Schuberth HJ, Zerbe H, Petzl W, Meyerholz-Wohllebe MM. Cows with diverging haplotypes show differences in differential milk cell count, milk parameters and vaginal temperature after S. aureus challenge but not after E. coli challenge. BMC Vet Res 2024; 20:200. [PMID: 38745199 PMCID: PMC11094921 DOI: 10.1186/s12917-024-03996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND In dairy cattle, mastitis causes high financial losses and impairs animal well-being. Genetic selection is used to breed cows with reduced mastitis susceptibility. Techniques such as milk cell flow cytometry may improve early mastitis diagnosis. In a highly standardized in vivo infection model, 36 half-sib cows were selected for divergent paternal Bos taurus chromosome 18 haplotypes (Q vs. q) and challenged with Escherichia coli for 24 h or Staphylococcus aureus for 96 h, after which the samples were analyzed at 12 h intervals. Vaginal temperature (VT) was recorded every three minutes. The objective of this study was to compare the differential milk cell count (DMCC), milk parameters (fat %, protein %, lactose %, pH) and VT between favorable (Q) and unfavorable (q) haplotype cows using Bayesian models to evaluate their potential as improved early indicators of differential susceptibility to mastitis. RESULTS After S. aureus challenge, compared to the Q half-sibship cows, the milk of the q cows exhibited higher PMN levels according to the DMCC (24 h, p < 0.001), a higher SCC (24 h, p < 0.01 and 36 h, p < 0.05), large cells (24 h, p < 0.05) and more dead (36 h, p < 0.001) and live cells (24 h, p < 0.01). The protein % was greater in Q milk than in q milk at 0 h (p = 0.025). In the S. aureus group, Q cows had a greater protein % (60 h, p = 0.048) and fat % (84 h, p = 0.022) than q cows. Initially, the greater VT of S. aureus-challenged q cows (0 and 12-24 h, p < 0.05) reversed to a lower VT in q cows than in Q cows (48-60 h, p < 0.05). Additionally, the following findings emphasized the validity of the model: in the S. aureus group all DMCC subpopulations (24 h-96 h, p < 0.001) and in the E. coli group nearly all DMCC subpopulations (12 h-24 h, p < 0.001) were higher in challenged quarters than in unchallenged quarters. The lactose % was lower in the milk samples of E. coli-challenged quarters than in those of S. aureus-challenged quarters (24 h, p < 0.001). Between 12 and 18 h, the VT was greater in cows challenged with E. coli than in those challenged with S. aureus (3-h interval approach, p < 0.001). CONCLUSION This in vivo infection model confirmed specific differences between Q and q cows with respect to the DMCC, milk component analysis results and VT results after S. aureus inoculation but not after E. coli challenge. However, compared with conventional milk cell analysis monitoring, e.g., the global SCC, the DMCC analysis did not provide refined phenotyping of the pathogen response.
Collapse
Affiliation(s)
- Katharina Müller-Langhans
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany
| | - Lisa Oberberger
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University Munich, Sonnenstrasse 24, Oberschleissheim, 85764, Germany
| | - Yury Zablotski
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany
| | - Susanne Engelmann
- Technical University Braunschweig, Institute for Microbiology, Inhoffenstrasse 7, Brunswick, 38124, Germany
- Helmholtz Center for Infection Research, Microbial Proteomics, Inhoffenstrasse 7, Brunswick, 38124, Germany
| | - Martina Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine Hanover Foundation, Bischofsholer Damm 15, Hanover, 30173, Germany
| | - Christa Kühn
- Research Institute for Farm Animal Biology, Genome Biology, Wilhelm-Stahl-Allee 2, Dummerstorf, 18196, Germany
- Agricultural and Environmental Faculty, University Rostock, Justus-Von-Liebig-Weg 6, Rostock, 18059, Germany
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, Greifswald-Insel Riems, 17493, Germany
| | - Hans-Joachim Schuberth
- Institute for Immunology, University of Veterinary Medicine Hanover Foundation, Bünteweg 2, Hanover, 30559, Germany
| | - Holm Zerbe
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany
| | - Wolfram Petzl
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany
| | - Marie Margarete Meyerholz-Wohllebe
- Clinic for Ruminants With Ambulatory Clinic and Herd Health Services, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Sonnenstrasse 16, Oberschleissheim, 85764, Germany.
| |
Collapse
|
2
|
Dachs N, Upadhyay M, Hannemann E, Hauser A, Krebs S, Seichter D, Russ I, Gehrke LJ, Thaller G, Medugorac I. Quantitative trait locus for calving traits on Bos taurus autosome 18 in Holstein cattle is embedded in a complex genomic region. J Dairy Sci 2023; 106:1925-1941. [PMID: 36710189 DOI: 10.3168/jds.2021-21625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 10/10/2022] [Indexed: 01/31/2023]
Abstract
Although the quantitative trait locus (QTL) on chromosome 18 (BTA18) associated with paternal calving ease and stillbirth in Holstein Friesian cattle and its cross has been known for over 20 years, to our knowledge, the exact causal genetic sequence has yet escaped identification. The aim of this study was to re-examine the region of the published QTL on BTA18 and to investigate the possible reasons behind this elusiveness. For this purpose, we carried out a combined linkage disequilibrium and linkage analysis using genotyping data of 2,697 German Holstein Friesian (HF) animals and subsequent whole-genome sequencing (WGS) data analyses and genome assembly of HF samples. We confirmed the known QTL in the 95% confidence interval of 1.089 Mbp between 58.34 and 59.43 Mbp on BTA18. Additionally, these 4 SNPs in the near-perfect linkage disequilibrium with the QTL haplotype were identified: rs381577268 (on 57,816,137 bp, C/T), rs381878735 (on 59,574,329 bp, A/T), rs464221818 (on 59,329,176 bp, C/T), and rs472502785 (on 59,345,689 bp, T/C). Search for the causal mutation using short and long-read sequences, and methylation data of the BTA18 QTL region did not reveal any candidates though. The assembly showed problems in the region, as well as an abundance of segmental duplications within and around the region. Taking the QTL of BTA18 in Holstein cattle as an example, the data presented in this study comprehensively characterize the genomic features that could also be relevant for other such elusive QTL in various other cattle breeds and livestock species as well.
Collapse
Affiliation(s)
- Nina Dachs
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany; Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Elisabeth Hannemann
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany
| | - Andreas Hauser
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Doris Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str, 23, 85586 Poing, Germany
| | - Lilian Johanna Gehrke
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany; Vereinigte Informationssysteme Tierhaltung w.V. (vit) Verden, Heinrich-Schröder-Weg 1, 27283 Verden (Aller), Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152 Martinsried, Germany.
| |
Collapse
|
3
|
Badia-Bringué G, Canive M, Alonso-Hearn M. Control of Mycobacterium avium subsp. paratuberculosis load within infected bovine monocyte-derived macrophages is associated with host genetics. Front Immunol 2023; 14:1042638. [PMID: 36911672 PMCID: PMC9992791 DOI: 10.3389/fimmu.2023.1042638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
The genetic loci influencing individual resistance to Mycobacterium avium subsp. paratuberculosis (MAP) infection are still largely unknown. In the current study, we searched for genetic loci associated with resistance to MAP infection by evaluating the performance of monocyte-derived macrophages (MDMs) isolated from the peripheral blood of 75 healthy Holsteins cows and infected ex vivo with MAP. Bacterial load (log colony-forming units, log CFUs) within MDMs was quantified at 2 h and 7 days p. i. using a BACTEC MGIT 960 instrument. In addition, the expression levels of some genes with important roles in the innate immune response including epiregulin (EREG), complement component C3 (C3), galectin-9 (Gal9), and nitric oxide (NO-) were measured in the supernatant of the infected cells. DNA from peripheral blood samples of the animals included in the study was isolated and genotyped with the EuroG MD bead Chip (44,779 single nucleotide-polymorphisms, SNPs). Linear mixed models were used to calculate the heritability (h2 ) estimates for each indicator of MDM performance, MAP load within MDMs and EREG, C3, Gal9, and NO-expression. After performing a genome-wide association study, the only phenotypes that showed SNPs with a significant association were the bacterial load within MDMs at 2 h (h2 = 0. 87) and 7 days (h2 = 0.83) p.i. A total of 6 SNPs, 5 candidate genes, and one microRNA on the Bos taurus chromosomes BTA2, BTA17, BTA18, and BTA21 were associated with MAP load at 2 h p.i. Overlap was seen in two SNPs associated with the log CFUs at 2 h and 7 d p.i. The identified SNPs had negative regression coefficients, and were, therefore, associated with a low bacterial load within MDMs. Some of the identified SNPs were located within QTLs previously associated with longevity, reproductive, and udder health traits. Some of the identified candidate genes; Oxysterol Binding Protein Like 6, Cysteine and Serine Rich Nuclear Protein 3, and the Coiled-Coil Domain Containing 92 regulate cellular cholesterol trafficking and efflux, apoptosis, and interferon production, respectively. Taken together, our results define a heritable and distinct immunogenetic profile in MAP-infected macrophages designed to limit bacterial load early after infection.
Collapse
Affiliation(s)
- Gerard Badia-Bringué
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain.,Doctoral Program in Molecular Biology and Biomedicine, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), Leioa, Bizkaia, Spain
| | - María Canive
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Marta Alonso-Hearn
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| |
Collapse
|
4
|
Crum TE, Schnabel RD, Decker JE, Taylor JF. Taurine and Indicine Haplotype Representation in Advanced Generation Individuals From Three American Breeds. Front Genet 2021; 12:758394. [PMID: 34733318 PMCID: PMC8558500 DOI: 10.3389/fgene.2021.758394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 11/14/2022] Open
Abstract
Development of the American Breeds of beef cattle began in the 1920s as breeders and U. S. Experiment Station researchers began to create Bos taurus taurus × Bos taurus indicus hybrids using Brahman as the B. t. indicus source. By 1954, U.S. Breed Associations had been formed for Brangus (5/8 Angus × 3/8 Brahman), Beefmaster (½ Brahman × ¼ Shorthorn × ¼ Hereford), and Santa Gertrudis (5/8 Shorthorn × 3/8 Brahman). While these breeds were developed using mating designs expected to create base generation animals with the required genome contributions from progenitor breeds, each association has now registered advanced generation animals in which selection or drift may have caused the realized genome compositions to differ from initial expected proportions. The availability of high-density SNP genotypes for 9,161 Brangus, 3,762 Beefmaster, and 1,942 Santa Gertrudis animals allowed us to compare the realized genomic architectures of breed members to the base generation expectations. We used RFMix to estimate local ancestry and identify genomic regions in which the proportion of Brahman ancestry differed significantly from a priori expectations. For all three breeds, lower than expected levels of Brahman composition were found genome-wide, particularly in early-generation animals where we demonstrate that selection on beef production traits was likely responsible for the taurine enrichment. Using a proxy for generation number, we also contrasted the genomes of early- and advanced-generation animals and found that the indicine composition of the genome has increased with generation number likely due to selection on adaptive traits. Many of the most-highly differentiated genomic regions were breed specific, suggesting that differences in breeding objectives and selection intensities exist between the breeds. Global ancestry estimation is commonly performed in admixed animals to control for stratification in association studies. However, local ancestry estimation provides the opportunity to investigate the evolution of specific chromosomal segments and estimate haplotype effects on trait variation in admixed individuals. Investigating the genomic architecture of the American Breeds not only allows the estimation of indicine and taurine genome proportions genome-wide, but also the locations within the genome where either taurine or indicine alleles confer a selective advantage.
Collapse
Affiliation(s)
- Tamar E Crum
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States.,Informatics Institute, University of Missouri, Columbia, MO, United States
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Relationship between polymorphism within Peptidoglycan Recognition Protein 1 gene (PGLYRP1) and somatic cell counts in milk of Holstein cows. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Bovine peptidoglycan recognition protein 1 (PGLYRP1) is an important receptor that binds to murein peptidoglycans (PGN) of Gram-positive and Gram-negative bacteria and is, therefore, involved in innate immunity. The SNP T>C rs68268284 located in the 1st exon of the PGLYRP1 gene was identified by the PCR-RFLP method in a population of 319 Holstein cows. Somatic cell count (SCC) was measured 7–10 times in each of three completed lactations to investigate whether the PGLYRP1 polymorphism is associated with SCC. Using the GLM model, it was found that cows with the TT genotype showed significantly lower somatic cell counts than those with the CC genotype during the first lactation (P = 0.023). Moreover, during lactations 1–2 and 1–3, cows with the TT genotype reveal significantly lower SCC than CT heterozygotes, at P = 0.025 and P = 0.006, respectively. Computer-aided analysis showed that rs68268284 polymorphism could modify the PGLYRP1 functions because the mutated residue is located in a domain that is important for the binding of other molecules.
Collapse
|
6
|
Özbek M, Hitit M, Kaya A, Jousan FD, Memili E. Sperm Functional Genome Associated With Bull Fertility. Front Vet Sci 2021; 8:610888. [PMID: 34250055 PMCID: PMC8262648 DOI: 10.3389/fvets.2021.610888] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 05/05/2021] [Indexed: 01/08/2023] Open
Abstract
Bull fertility is an important economic trait in sustainable cattle production, as infertile or subfertile bulls give rise to large economic losses. Current methods to assess bull fertility are tedious and not totally accurate. The massive collection of functional data analyses, including genomics, proteomics, metabolomics, transcriptomics, and epigenomics, helps researchers generate extensive knowledge to better understand the unraveling physiological mechanisms underlying subpar male fertility. This review focuses on the sperm phenomes of the functional genome and epigenome that are associated with bull fertility. Findings from multiple sources were integrated to generate new knowledge that is transferable to applied andrology. Diverse methods encompassing analyses of molecular and cellular dynamics in the fertility-associated molecules and conventional sperm parameters can be considered an effective approach to determine bull fertility for efficient and sustainable cattle production. In addition to gene expression information, we also provide methodological information, which is important for the rigor and reliability of the studies. Fertility is a complex trait influenced by several factors and has low heritability, although heritability of scrotal circumference is high and that it is a known fertility maker. There is a need for new knowledge on the expression levels and functions of sperm RNA, proteins, and metabolites. The new knowledge can shed light on additional fertility markers that can be used in combination with scrotal circumference to predict the fertility of breeding bulls. This review provides a comprehensive review of sperm functional characteristics or phenotypes associated with bull fertility.
Collapse
Affiliation(s)
- Memmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Mustafa Hitit
- Department of Genetics, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Abdullah Kaya
- Department of Artificial Insemination and Reproduction, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | - Frank Dean Jousan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Erdogan Memili
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
7
|
Zhang H, Liu A, Wang Y, Luo H, Yan X, Guo X, Li X, Liu L, Su G. Genetic Parameters and Genome-Wide Association Studies of Eight Longevity Traits Representing Either Full or Partial Lifespan in Chinese Holsteins. Front Genet 2021; 12:634986. [PMID: 33719343 PMCID: PMC7947242 DOI: 10.3389/fgene.2021.634986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/05/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the complexity of longevity trait in dairy cattle, two groups of trait definitions are widely used to measure longevity, either covering the full lifespan or representing only a part of it to achieve an early selection. Usually, only one group of longevity definition is used in breeding program for one population, and genetic studies on the comparisons of two groups of trait definitions are scarce. Based on the data of eight traits well representing the both groups of trait definitions, the current study investigated genetic parameters and genetic architectures of longevity in Holsteins. Heritabilities and correlations of eight longevity traits were estimated using single-trait and multi-trait animal models, with the data from 103,479 cows. Among the cows with phenotypes, 2,630 cows were genotyped with the 150K-SNP panel. A single-trait fixed and random Circuitous Probability Unification model was performed to detect candidate genes for eight longevity traits. Generally, all eight longevity traits had low heritabilities, ranging from 0.038 for total productive life and herd life to 0.090 for days from the first calving to the end of first lactation or culling. High genetic correlations were observed among the traits within the same definition group: from 0.946 to 0.997 for three traits reflecting full lifespan and from 0.666 to 0.997 for five traits reflecting partial productive life. Genetic correlations between two groups of traits ranged from 0.648 to 0.963, and increased gradually with the extension of lactations number regarding the partial productive life traits. A total of 55 SNPs located on 25 chromosomes were found genome-wide significantly associated with longevity, in which 12 SNPs were associated with more than one trait, even across traits of different definition groups. This is the first study to investigate the genetic architecture of longevity representing both full and the partial lifespan simultaneously, which will assist the selection of an appropriate trait definition for genetic improvement of longevity. Because of high genetic correlations with the full lifespan traits and higher heritability, the partial productive life trait measured as the days from the first calving to the end of the third lactation or culling could be a good alternative for early selection on longevity. The candidate genes identified by this study, such as RPRM, GRIA3, GTF2H5, CA5A, CACNA2D1, FGF10, and DNAJA3, could be used to pinpoint causative mutations for longevity and further benefit the genomic improvement of longevity in dairy cattle.
Collapse
Affiliation(s)
- Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aoxing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hanpeng Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xinyi Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangyu Guo
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Xiang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lin Liu
- Beijing Dairy Cattle Center, Beijing, China
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| |
Collapse
|
8
|
Miles AM, Huson HJ. Time- and population-dependent genetic patterns underlie bovine milk somatic cell count. J Dairy Sci 2020; 103:8292-8304. [PMID: 32622601 DOI: 10.3168/jds.2020-18322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
The objective of this study was to determine whether genetic regulation of bovine milk somatic cell count (SCC) varied throughout the course of an individual lactation and to identify quantitative trait loci (QTL) that may differentiate populations of chronically mastitic and robustly healthy cows. Milk SCC has long been a proxy for clinical mastitis diagnosis in management and genetic improvement strategies to control the disease. Cows (n = 471) were genotyped on the Illumina BovineHD 777K BeadChip (Illumina Inc., San Diego, CA), and composite milk samples were collected for SCC at 0-1 d in milk (DIM), 3-5 DIM, 10-14 DIM, 90-110 DIM, and 210-230 DIM, with each time span representing key physiological transitions for the cow. Median lactation somatic cell score (SCS) and area under the SCS curve were calculated from farm test data. A total of 8 genome-wide associations were performed and 167 SNP spanning the genome were significantly associated (false discovery rate <0.05). Of these associated regions, 27 of 48 associated QTL were novel for clinical mastitis or SCC. The linkage disequilibrium block surrounding the associated QTL or a 1-Mb window in the absence of linkage disequilibrium was interrogated for candidate genes, and many of those identified were related to multiple arms of the immune system, including toll-like receptor signaling, macrophage activation, B-cell maturation, T-cell recruitment, and the complement pathway. These genes included EXOC4, BAMBI, ITSN2, IL34, FCN3, CD8A, and CD8B. In addition, we identified populations of robustly healthy (SCS ≤4 from 10-14 DIM until study end), chronically mastitic (SCS >4 from 10-14 DIM until study end), and average cows with fluctuating SCS, and calculated fixation indices to identify regions of the genome differentiating these 3 populations. A total of 12 SNP were identified that showed moderate allelic differentiation (Wright's F statistic, FST ≥ 0.4) between the "chronic," "healthy," and "average" populations of cows. Candidate genes in the region surrounding differentiated QTL were related to cell signaling and immune response, such as JAKMIP1 and MADCAM1. The wide range of significantly associated QTL spanning the genome and the diversity of gene functions reinforces that mastitis is a complex trait and suggests that selection based on lactation stage-specific SCS rather than a generalized score may lead to greater success in breeding mastitis-resistant cows.
Collapse
Affiliation(s)
- Asha M Miles
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Heather J Huson
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
9
|
Kirsanova E, Heringstad B, Lewandowska-Sabat A, Olsaker I. Identification of candidate genes affecting chronic subclinical mastitis in Norwegian Red cattle: combining genome-wide association study, topologically associated domains and pathway enrichment analysis. Anim Genet 2019; 51:22-31. [PMID: 31808564 DOI: 10.1111/age.12886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to identify genes associated with chronic subclinical mastitis (SCM) in Norwegian Red (NR) cattle. Twelve SCM traits defined based on fixed threshold for test-day somatic cell count (SCC) were, together with lactation-average somatic cell score (LSCS) used for association and pathway enrichment analyses. A GWAS was performed on 3795 genotyped NR bulls with 777K SNP data and phenotypic information from 7 300 847 test-day SCC observations from 3 543 764 cows. At 5% chromosome-wide significance level 36 unique SNP were detected to be associated with one or more of the traits. These SNPs were analysed for linked genes using genomic positions of topologically associated domains (TAD). For the SCM traits with SCC >50 000 and >100 000 cells/ml on two test-days in a row and LSCS, the same top significant genes were identified - checkpoint clamp loader component (RAD17) and cyclin B1 (CCNB1). The SCM traits with SCC >250 000, 300 000, 350 000 or 400 000 cells/ml on two test-days in a row and D400 (number of days before the first case with SCC >400 000 cells/ml) displayed similar top significant genes: acyl-CoA thioesterase 2 and 4 (ACOT2; ACOT4). For the traits SCM200_3 (SCC >200 000 cells/ml on three test-days in a row) and SCM150, SCM200 (SCC >150 000; 200 000 cells/ml on two test-days in a row) a group of chemokine (C-X-C motif) ligand genes and the Fos proto-oncogene, AP-1 transcription factor subunit (FOS) gene, were identified. Further functional studies of these identified candidate genes are necessary to clarify their actual role in development of chronic SCM in NR cattle.
Collapse
Affiliation(s)
- E Kirsanova
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - B Heringstad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oslo, Norway.,Geno Breeding and A.I. Association, Hamar, Norway
| | - A Lewandowska-Sabat
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - I Olsaker
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
10
|
|
11
|
Meyerholz MM, Rohmeier L, Eickhoff T, Hülsebusch A, Jander S, Linden M, Macias L, Koy M, Heimes A, Gorríz-Martín L, Segelke D, Engelmann S, Schmicke M, Hoedemaker M, Petzl W, Zerbe H, Schuberth HJ, Kühn C. Genetic selection for bovine chromosome 18 haplotypes associated with divergent somatic cell score affects postpartum reproductive and metabolic performance. J Dairy Sci 2019; 102:9983-9994. [PMID: 31521359 DOI: 10.3168/jds.2018-16171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 07/15/2019] [Indexed: 11/19/2022]
Abstract
The susceptibility of animals to periparturient diseases has a great effect on the economic efficiency of dairy industries, on the frequency of antibiotic treatment, and on animal welfare. The use of selection for breeding cows with reduced susceptibility to diseases offers a sustainable tool to improve dairy cattle farming. Several studies have focused on the association of distinct bovine chromosome 18 genotypes or haplotypes with performance traits. The aim of this study was to test whether selection of Holstein Friesian heifers via SNP genotyping for alternative paternal chromosome 18 haplotypes associated with favorable (Q) or unfavorable (q) somatic cell scores influences postpartum reproductive and metabolic diseases. Thirty-six heifers (18 Q and 18 q) were monitored from 3 wk before calving until necropsy on d 39 (± 4 d) after calving. Health status and rectal temperature were measured daily, and body condition score and body weight were assessed once per week. Blood samples were drawn twice weekly, and levels of insulin, nonesterified fatty acids, insulin-like growth factor-I, growth hormone, and β-hydroxybutyrate were measured. Comparisons between the groups were performed using Fisher's exact test, chi-squared test, and the GLIMMIX procedure in SAS. Results showed that Q-heifers had reduced incidence of metritis compared with q-heifers and were less likely to develop fever. Serum concentrations of β-hydroxybutyrate were lower and insulin-like growth factor-I plasma concentrations were higher in Q- compared with q-heifers. However, the body condition score and withers height were comparable between haplotypes, but weight loss tended to be lower in Q-heifers compared with q-heifers. No differences between the groups were detected concerning retained fetal membranes, uterine involution, or onset of cyclicity. In conclusion, selection of chromosome 18 haplotypes associated with a reduced somatic cell score resulted in a decreased incidence of postpartum reproductive and metabolic diseases in this study. The presented data add to the existing knowledge aimed at avoiding negative consequences of genetic selection strategies in dairy cattle farming. The underlying causal mechanisms modulated by haplotypes in the targeted genomic region and immune competence necessitate further investigation.
Collapse
Affiliation(s)
- M M Meyerholz
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany; Immunology Unit, University of Veterinary Medicine, 30559 Hannover, Germany.
| | - L Rohmeier
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany; Clinic for Swine, Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine, 30173 Hannover, Germany
| | - T Eickhoff
- Immunology Unit, University of Veterinary Medicine, 30559 Hannover, Germany
| | - A Hülsebusch
- Immunology Unit, University of Veterinary Medicine, 30559 Hannover, Germany
| | - S Jander
- Immunology Unit, University of Veterinary Medicine, 30559 Hannover, Germany
| | - M Linden
- Faculty of Mathematics and Physics, Leibniz University, 30167 Hannover, Germany
| | - L Macias
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - M Koy
- Immunology Unit, University of Veterinary Medicine, 30559 Hannover, Germany; Clinic for Poultry, University of Veterinary Medicine, 30559 Hannover, Germany
| | - A Heimes
- Leibniz Institute for Farm Animal Biology, Genome Biology, 18196 Dummerstorf, Germany
| | - L Gorríz-Martín
- Clinic for Cattle, University of Veterinary Medicine, 30173 Hannover, Germany
| | - D Segelke
- Vereinigte Informationssysteme Tierhaltung w.V. (VIT) Verden, 27283 Verden (Aller), Germany
| | - S Engelmann
- Institute for Microbiology, Technical University, 38106 Braunschweig, Germany; Microbial Proteomics, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - M Schmicke
- Clinic for Cattle, University of Veterinary Medicine, 30173 Hannover, Germany
| | - M Hoedemaker
- Clinic for Cattle, University of Veterinary Medicine, 30173 Hannover, Germany
| | - W Petzl
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - H Zerbe
- Clinic for Ruminants with Ambulatory and Herd Health Services, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleißheim, Germany
| | - H-J Schuberth
- Immunology Unit, University of Veterinary Medicine, 30559 Hannover, Germany
| | - Ch Kühn
- Leibniz Institute for Farm Animal Biology, Genome Biology, 18196 Dummerstorf, Germany; Agricultural and Environmental Faculty, University Rostock, 18059 Rostock, Germany
| |
Collapse
|
12
|
Nyman S, Duchemin S, de Koning D, Berglund B. Genome-wide association study of normal and atypical progesterone profiles in Holstein-Friesian dairy cows. J Dairy Sci 2019; 102:3204-3215. [DOI: 10.3168/jds.2018-15418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/18/2018] [Indexed: 11/19/2022]
|
13
|
Mokhber M, Moradi-Shahrbabak M, Sadeghi M, Moradi-Shahrbabak H, Stella A, Nicolzzi E, Rahmaninia J, Williams JL. A genome-wide scan for signatures of selection in Azeri and Khuzestani buffalo breeds. BMC Genomics 2018; 19:449. [PMID: 29890939 PMCID: PMC5996463 DOI: 10.1186/s12864-018-4759-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/04/2018] [Indexed: 01/25/2023] Open
Abstract
Background Identification of genomic regions that have been targets of selection may shed light on the genetic history of livestock populations and help to identify variation controlling commercially important phenotypes. The Azeri and Kuzestani buffalos are the most common indigenous Iranian breeds which have been subjected to divergent selection and are well adapted to completely different regions. Examining the genetic structure of these populations may identify genomic regions associated with adaptation to the different environments and production goals. Results A set of 385 water buffalo samples from Azeri (N = 262) and Khuzestani (N = 123) breeds were genotyped using the Axiom® Buffalo Genotyping 90 K Array. The unbiased fixation index method (FST) was used to detect signatures of selection. In total, 13 regions with outlier FST values (0.1%) were identified. Annotation of these regions using the UMD3.1 Bos taurus Genome Assembly was performed to find putative candidate genes and QTLs within the selected regions. Putative candidate genes identified include FBXO9, NDFIP1, ACTR3, ARHGAP26, SERPINF2, BOLA-DRB3, BOLA-DQB, CLN8, and MYOM2. Conclusions Candidate genes identified in regions potentially under selection were associated with physiological pathways including milk production, cytoskeleton organization, growth, metabolic function, apoptosis and domestication-related changes include immune and nervous system development. The QTL identified are involved in economically important traits in buffalo related to milk composition, udder structure, somatic cell count, meat quality, and carcass and body weight. Electronic supplementary material The online version of this article (10.1186/s12864-018-4759-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mahdi Mokhber
- Department of Animal Science, Faculty of Agriculture, Urmia University, 11Km Sero Road, P. O. Box: 165, Urmia, 5756151818, Iran.
| | - Mohammad Moradi-Shahrbabak
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University College of Agriculture and Natural Resources (UTCAN), University of Tehran, P. O. Box: 4111, Karaj, 1417614418, Iran
| | - Mostafa Sadeghi
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University College of Agriculture and Natural Resources (UTCAN), University of Tehran, P. O. Box: 4111, Karaj, 1417614418, Iran
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, Faculty of Agricultural Science and Engineering, University College of Agriculture and Natural Resources (UTCAN), University of Tehran, P. O. Box: 4111, Karaj, 1417614418, Iran
| | - Alessandra Stella
- Parco Tecnologico Padano (PTP), Via Einstein, Cascina Codazza, 26900, Lodi, Italy
| | - Ezequiel Nicolzzi
- Parco Tecnologico Padano (PTP), Via Einstein, Cascina Codazza, 26900, Lodi, Italy
| | - Javad Rahmaninia
- Department of Animal Breeding and Genetics, Animal Science Research Institute of Iran (ASRI), Karaj, 3146618361, Iran
| | - John L Williams
- Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| |
Collapse
|
14
|
Tiezzi F, Arceo ME, Cole JB, Maltecca C. Including gene networks to predict calving difficulty in Holstein, Brown Swiss and Jersey cattle. BMC Genet 2018; 19:20. [PMID: 29609562 PMCID: PMC5880070 DOI: 10.1186/s12863-018-0606-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 11/10/2022] Open
Abstract
Background Calving difficulty or dystocia has a great economic impact in the US dairy industry. Reported risk factors associated with calving difficulty are feto-pelvic disproportion, gestation length and conformation. Different dairy cattle breeds have different incidence of calving difficulty, with Holstein having the highest dystocia rates and Jersey the lowest. Genomic selection becomes important especially for complex traits with low heritability, where the accuracy of conventional selection is lower. However, for complex traits where a large number of genes influence the phenotype, genome-wide association studies showed limitations. Biological networks could overcome some of these limitations and better capture the genetic architecture of complex traits. In this paper, we characterize Holstein, Brown Swiss and Jersey breed-specific dystocia networks and employ them in genomic predictions. Results Marker association analysis identified single nucleotide polymorphisms explaining the largest average proportion of genetic variance on BTA18 in Holstein, BTA25 in Brown Swiss, and BTA15 in Jersey. Gene networks derived from the genome-wide association included 1272 genes in Holstein, 1454 genes in Brown Swiss, and 1455 genes in Jersey. Furthermore, 256 genes in Holstein network, 275 genes in the Brown Swiss network, and 253 genes in the Jersey network were within previously reported dystocia quantitative trait loci. The across-breed network included 80 genes, with 9 genes being within previously reported dystocia quantitative trait loci. The gene-gene interactions in this network differed in the different breeds. Gene ontology enrichment analysis of genes in the networks showed Regulation of ARF GTPase was very significant (FDR ≤ 0.0098) on Holstein. Neuron morphogenesis and differentiation was the term most enriched (FDR ≤ 0.0539) on the across-breed network. Genomic prediction models enriched with network-derived relationship matrices did not outperform regular GBLUP models. Conclusions Regions identified in the genome were in the proximity of previously described quantitative trait loci that would most likely affect calving difficulty by altering the feto-pelvic proportion. Inclusion of identified networks did not increase prediction accuracy. The approach used in this paper could be extended to any instance with asymmetric distribution of phenotypes, for example, resistance to disease data. Electronic supplementary material The online version of this article (10.1186/s12863-018-0606-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Maria E Arceo
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, ARS, USDA, Beltsville, MD, 27705, USA
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
15
|
Tolleson MW, Gill CA, Herring AD, Riggs PK, Sawyer JE, Sanders JO, Riley DG. Association of udder traits with single nucleotide polymorphisms in crossbred Bos indicus- Bos taurus cows. J Anim Sci 2018; 95:2399-2407. [PMID: 28727049 DOI: 10.2527/jas.2017.1475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The size, support, and health of udders limit the productive life of beef cows, especially those with background, because, in general, such cows have a reputation for problems with udders. Genomic association studies of bovine udder traits have been conducted in dairy cattle and recently in Continental European beef breeds but not in cows with background. The objective of this study was to determine associations of SNP and udder support scores, teat length, and teat diameter in half (Nellore), half (Angus) cows. Udders of cows ( = 295) born from 2003 to 2007 were evaluated for udder support and teat length and diameter ( = 1,746 records) from 2005 through 2014. These included a subjective score representing udder support (values of 1 indicated poorly supported, pendulous udders and values of 9 indicated very well-supported udders) and lengths and diameters of individual teats in the 4 udder quarters as well as the average. Cows were in full-sibling or half-sibling families. Residuals for each trait were produced from repeated records models with cow age category nested within birth year of cows. Those residuals were averaged to become the dependent variables for genomewide association analyses. Regression analyses of those dependent variables included genotypic values as explanatory variables for 34,980 SNP from a commercially available array and included the genomic relationship matrix. Fifteen SNP loci on BTA 5 were associated (false discovery rate controlled at 0.05) with udder support score. One of those was also detected as associated with average teat diameter. Three of those 15 SNP were located within genes, including one each in (), (), and (). These are notable for their functional role in some aspect of mammary gland formation or health. Other candidate genes for these traits in the vicinity of the SNP loci include () and (). Because these were detected in Nellore-Angus crossbred cows, which typically have very well-formed udders with excellent support across their productive lives, similar efforts in other breeds should be completed, because that may facilitate further refinement of genomic regions responsible for variation in udder traits important in multiple breeds.
Collapse
|
16
|
Signer-Hasler H, Burren A, Neuditschko M, Frischknecht M, Garrick D, Stricker C, Gredler B, Bapst B, Flury C. Population structure and genomic inbreeding in nine Swiss dairy cattle populations. Genet Sel Evol 2017; 49:83. [PMID: 29115934 PMCID: PMC5674839 DOI: 10.1186/s12711-017-0358-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 10/26/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Domestication, breed formation and intensive selection have resulted in divergent cattle breeds that likely exhibit their own genomic signatures. In this study, we used genotypes from 27,612 autosomal single nucleotide polymorphisms to characterize population structure based on 9214 sires representing nine Swiss dairy cattle populations: Brown Swiss (BS), Braunvieh (BV), Original Braunvieh (OB), Holstein (HO), Red Holstein (RH), Swiss Fleckvieh (SF), Simmental (SI), Eringer (ER) and Evolèner (EV). Genomic inbreeding (F ROH) and signatures of selection were determined by calculating runs of homozygosity (ROH). The results build the basis for a better understanding of the genetic development of Swiss dairy cattle populations and highlight differences between the original populations (i.e. OB, SI, ER and EV) and those that have become more popular in Switzerland as currently reflected by their larger populations (i.e. BS, BV, HO, RH and SF). RESULTS The levels of genetic diversity were highest and lowest in the SF and BS breeds, respectively. Based on F ST values, we conclude that, among all pairwise comparisons, BS and HO (0.156) differ more than the other pairs of populations. The original Swiss cattle populations OB, SI, ER, and EV are clearly genetically separated from the Swiss cattle populations that are now more common and represented by larger numbers of cows. Mean levels of F ROH ranged from 0.027 (ER) to 0.091 (BS). Three of the original Swiss cattle populations, ER (F ROH: 0.027), OB (F ROH: 0.029), and SI (F ROH: 0.039), showed low levels of genomic inbreeding, whereas it was much higher in EV (F ROH: 0.074). Private signatures of selection for the original Swiss cattle populations are reported for BTA4, 5, 11 and 26. CONCLUSIONS The low levels of genomic inbreeding observed in the original Swiss cattle populations ER, OB and SI compared to the other breeds are explained by a lesser use of artificial insemination and greater use of natural service. Natural service results in more sires having progeny at each generation and thus this breeding practice is likely the major reason for the remarkable levels of genetic diversity retained within these populations. The fact that the EV population is regionally restricted and its small census size of herd-book cows explain its high level of genomic inbreeding.
Collapse
Affiliation(s)
- Heidi Signer-Hasler
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| | - Alexander Burren
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| | | | - Mirjam Frischknecht
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
- Qualitas AG, Zug, Switzerland
| | | | | | | | | | - Christine Flury
- School of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Zollikofen, Switzerland
| |
Collapse
|
17
|
Nayeri S, Sargolzaei M, Abo-Ismail M, Miller S, Schenkel F, Moore S, Stothard P. Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. J Dairy Sci 2017; 100:1246-1258. [DOI: 10.3168/jds.2016-11770] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
|
18
|
Müller MP, Rothammer S, Seichter D, Russ I, Hinrichs D, Tetens J, Thaller G, Medugorac I. Genome-wide mapping of 10 calving and fertility traits in Holstein dairy cattle with special regard to chromosome 18. J Dairy Sci 2017; 100:1987-2006. [PMID: 28109604 DOI: 10.3168/jds.2016-11506] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/20/2016] [Indexed: 01/07/2023]
Abstract
Over the last decades, a dramatic decrease in reproductive performance has been observed in Holstein cattle and fertility problems have become the most common reason for a cow to leave the herd. The premature removal of animals with high breeding values results in both economic and breeding losses. For efficient future Holstein breeding, the identification of loci associated with low fertility is of major interest and thus constitutes the aim of this study. To reach this aim, a genome-wide combined linkage disequilibrium and linkage analysis (cLDLA) was conducted using data on the following 10 calving and fertility traits in the form of estimated breeding values: days from first service to conception of heifers and cows, nonreturn rate on d 56 of heifers and cows, days from calving to first insemination, days open, paternal and maternal calving ease, paternal and maternal stillbirth. The animal data set contained 2,527 daughter-proven Holstein bulls from Germany that were genotyped with Illumina's BovineSNP50 BeadChip (Illumina Inc., San Diego, CA). For the cLDLA, 41,635 sliding windows of 40 adjacent single nucleotide polymorphisms (SNP) were used. At each window midpoint, a variance component analysis was executed using ASReml. The underlying mixed linear model included random quantitative trait locus (QTL) and polygenic effects. We identified 50 genome-wide significant QTL. The most significant peak was detected for direct calving ease at 59,179,424 bp on chromosome 18 (BTA18). Next, a mixed-linear model association (MLMA) analysis was conducted. A comparison of the cLDLA and MLMA results with special regard to BTA18 showed that the genome-wide most significant SNP from the MLMA was associated with the same trait and located on the same chromosome at 57,589,121 bp (i.e., about 1.5 Mb apart from the cLDLA peak). The results of 5 different cLDLA and 2 MLMA models, which included the fixed effects of either SNP or haplotypes, suggested that the cLDLA method outperformed the MLMA in accuracy and precision. The haplotype-based cLDLA method allowed for a more precise mapping and the definition of ancestral and derived QTL alleles, both of which are essential for the detection of underlying quantitative trait nucleotides.
Collapse
Affiliation(s)
- M-P Müller
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany; Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - S Rothammer
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany
| | - D Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany
| | - I Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany
| | - D Hinrichs
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - J Tetens
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - G Thaller
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586 Poing, Germany; Institute of Animal Breeding and Husbandry, Christian-Albrechts-University, Olshausenstr. 40, 24098 Kiel, Germany
| | - I Medugorac
- Chair of Animal Genetics and Husbandry, Ludwig-Maximilians-Universität Munich, Veterinärstr. 13, 80539 Munich, Germany.
| |
Collapse
|
19
|
Nayeri S, Stothard P. Tissues, Metabolic Pathways and Genes of Key Importance in Lactating Dairy Cattle. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s40362-016-0040-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Jahuey-Martínez FJ, Parra-Bracamonte GM, Sifuentes-Rincón AM, Martínez-González JC, Gondro C, García-Pérez CA, López-Bustamante LA. Genomewide association analysis of growth traits in Charolais beef cattle1. J Anim Sci 2016; 94:4570-4582. [DOI: 10.2527/jas.2016-0359] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- F. J. Jahuey-Martínez
- Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Reynosa, Tamaulipas, México, 88710
| | - G. M. Parra-Bracamonte
- Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Reynosa, Tamaulipas, México, 88710
| | - A. M. Sifuentes-Rincón
- Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Reynosa, Tamaulipas, México, 88710
| | - J. C. Martínez-González
- Universidad Autónoma de Tamaulipas-Facultad de Ingeniería y Ciencias, Victoria, Tamaulipas, México, 87749
| | - C. Gondro
- The Centre for Genetic Analyses and Applications, University of New England, Armidale, NSW, Australia, 2351
| | - C. A. García-Pérez
- Centro de Biotecnología Genómica-Instituto Politécnico Nacional, Reynosa, Tamaulipas, México, 88710
| | | |
Collapse
|
21
|
Parker Gaddis KL, Null DJ, Cole JB. Explorations in genome-wide association studies and network analyses with dairy cattle fertility traits. J Dairy Sci 2016; 99:6420-6435. [PMID: 27209127 DOI: 10.3168/jds.2015-10444] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/15/2016] [Indexed: 01/03/2023]
Abstract
The objective of this study was to identify single nucleotide polymorphisms and gene networks associated with 3 fertility traits in dairy cattle-daughter pregnancy rate, heifer conception rate, and cow conception rate-using different approaches. Deregressed predicted transmitting abilities were available for approximately 24,000 Holstein bulls and 36,000 Holstein cows sampled from the National Dairy Database with high-density genotypes. Of those, 1,732 bulls and 375 cows had been genotyped with the Illumina BovineHD Genotyping BeadChip (Illumina Inc., San Diego, CA). The remaining animals were genotyped with various chips of lower density that were imputed to high density. Univariate and trivariate genome-wide association studies (GWAS) with both medium- (60,671 markers) and high-density (312,614 markers) panels were performed for daughter pregnancy rate, heifer conception rate, and cow conception rate using GEMMA (version 0.94; http://www.xzlab.org/software.html). Analyses were conducted using bulls only, cows only, and a sample of both bulls and cows. The partial correlation and information theory algorithm was used to develop gene interaction networks. The most significant markers were further investigated to identify putatively associated genes. Little overlap in associated genes could be found between GWAS using different reference populations of bulls only, cows only, and combined bulls and cows. The partial correlation and information theory algorithm was able to identify several genes that were not identified by ordinary GWAS. The results obtained herein will aid in further dissecting the complex biology underlying fertility traits in dairy cattle, while also providing insight into the nuances of GWAS.
Collapse
Affiliation(s)
- K L Parker Gaddis
- Department of Animal Sciences, University of Florida, Gainesville 32611.
| | - D J Null
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| | - J B Cole
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705-2350
| |
Collapse
|
22
|
Mao X, Kadri N, Thomasen J, De Koning D, Sahana G, Guldbrandtsen B. Fine mapping of a calving QTL on Bos taurus
autosome 18 in Holstein cattle. J Anim Breed Genet 2015; 133:207-18. [DOI: 10.1111/jbg.12187] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/01/2015] [Indexed: 02/02/2023]
Affiliation(s)
- X. Mao
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
- Department of Animal Breeding and Genetics; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - N.K. Kadri
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
| | - J.R. Thomasen
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
- VikingGenetics; Assentoft Denmark
| | - D.J. De Koning
- Department of Animal Breeding and Genetics; Swedish University of Agricultural Sciences; Uppsala Sweden
| | - G. Sahana
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
| | - B. Guldbrandtsen
- Department of Molecular Biology and Genetics; Center for Quantitative Genetics and Genomics; Aarhus University; Tjele Denmark
| |
Collapse
|
23
|
Wu X, Lund MS, Sahana G, Guldbrandtsen B, Sun D, Zhang Q, Su G. Association analysis for udder health based on SNP-panel and sequence data in Danish Holsteins. Genet Sel Evol 2015; 47:50. [PMID: 26087655 PMCID: PMC4472403 DOI: 10.1186/s12711-015-0129-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The sensitivity of genome-wide association studies for the detection of quantitative trait loci (QTL) depends on the density of markers examined and the statistical models used. This study compares the performance of three marker densities to refine six previously detected QTL regions for mastitis traits: 54 k markers of a medium-density SNP (single nucleotide polymorphism) chip (MD), imputed 777 k markers of a high-density SNP chip (HD), and imputed whole-genome sequencing data (SEQ). Each dataset contained data for 4496 Danish Holstein cattle. Comparisons were performed using a linear mixed model (LM) and a Bayesian variable selection model (BVS). RESULTS After quality control, 587, 7825, and 78 856 SNPs in the six targeted regions remained for MD, HD, and SEQ data, respectively. In general, the association patterns between SNPs and traits were similar for the three marker densities when tested using the same statistical model. With the LM model, 120 (MD), 967 (HD), and 7209 (SEQ) SNPs were significantly associated with mastitis, whereas with the BVS model, 43 (MD), 131 (HD), and 1052 (SEQ) significant SNPs (Bayes factor > 3.2) were observed. A total of 26 (MD), 75 (HD), and 465 (SEQ) significant SNPs were identified by both models. In addition, one, 16, and 33 QTL peaks for MD, HD, and SEQ data were detected according to the QTL intensity profile of SNP bins by post-analysis of the BVS model. CONCLUSIONS The power to detect significant associations increased with increasing marker density. The BVS model resulted in clearer boundaries between linked QTL than the LM model. Using SEQ data, the six targeted regions were refined to 33 candidate QTL regions for udder health. The comparison between these candidate QTL regions and known genes suggested that NPFFR2, SLC4A4, DCK, LIFR, and EDN3 may be considered as candidate genes for mastitis susceptibility.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark. .,Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Mogens S Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Qin Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| |
Collapse
|
24
|
Sahana G, Höglund JK, Guldbrandtsen B, Lund MS. Loci associated with adult stature also affect calf birth survival in cattle. BMC Genet 2015; 16:47. [PMID: 25935543 PMCID: PMC4426170 DOI: 10.1186/s12863-015-0202-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 04/15/2015] [Indexed: 01/03/2023] Open
Abstract
Background Understanding the underlying pleiotropic relationships among quantitative traits is necessary in order to predict correlated responses to artificial selection. The availability of large-scale next-generation sequence data in cattle has provided an opportunity to examine whether pleiotropy is responsible for overlapping QTL in multiple economic traits. In the present study, we examined QTL affecting cattle stillbirth, calf size, and adult stature located in the same genomic region. Results A genome scan using imputed whole genome sequence variants revealed one QTL with large effects on the service sire calving index (SCI), and body conformation index (BCI) at the same location (~39 Mb) on chromosome 6 in Nordic Red cattle. The targeted region was analyzed for SCI and BCI component traits. The QTL peak included LCORL and NCAPG genes, which had been reported to influence fetal growth and adult stature in several species. The QTL exhibited large effects on calf size and stature in Nordic Red cattle. Two deviant haplotypes (HAP1 and HAP2) were resolved which increased calf size at birth, and affected adult body conformation. However, the haplotypes also resulted in increased calving difficulties and calf mortality due to increased calf size at birth. Haplotype locations overlapped, however linkage disequilibrium (LD) between the sites was low, suggesting that two independent mutations were responsible for similar effects. The difference in prevalence between the two haplotypes in Nordic Red subpopulations suggested independent origins in different populations. Conclusions Results of our study identified QTL with large effects on body conformation and service sire calving traits on chromosome 6 in cattle. We present robust evidence that variation at the LCORL and NCAPG locus affects calf size at birth and adult stature. We suggest the two deviant haplotypes within the QTL were due to two independent mutations. Electronic supplementary material The online version of this article (doi:10.1186/s12863-015-0202-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Goutam Sahana
- Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark.
| | - Johanna K Höglund
- Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark. .,Present address: Department of Animal Science, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark.
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark.
| | - Mogens S Lund
- Center for Quantitative Genetics and Genomics, Aarhus University, P.O. Box 50, DK-8830, Tjele, Denmark.
| |
Collapse
|
25
|
Nani JP, Raschia MA, Poli MA, Calvinho LF, Amadio AF. Genome-wide association study for somatic cell score in Argentinean dairy cattle. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Esmailizadeh AK. Genome-scan analysis for genetic mapping of quantitative trait loci underlying birth weight and onset of puberty in doe kids (Capra hircus). Anim Genet 2014; 45:849-54. [PMID: 25199639 DOI: 10.1111/age.12216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
Abstract
The objective of this study was to locate quantitative trait loci (QTL) causing variation in birth weight and age of puberty of doe kids in a population of Rayini cashmere goats. Four hundred and thirty kids from five half-sib families were genotyped for 116 microsatellite markers located on the caprine autosomes. The traits recorded were birth weight of the male and female kids, body weight at puberty, average daily gain from birth to age of puberty and age at puberty of the doe kids. QTL analysis was conducted using the least squares interval mapping approach. Linkage analysis indicated significant QTL for birth weight on Capra hircus chromosomes (CHI) 4, 5, 6, 18 and 21. Five QTL located on CHI 5, 14 and 29 were associated with age at puberty. Across-family analysis revealed evidence for overlapping QTL affecting birth weight (78 cM), body weight at puberty (72 cM), average daily gain from birth to age of puberty (72 cM) and age at puberty (76 cM) on CHI 5 and overlapping QTL controlling body weight at puberty and age at puberty on CHI 14 at 18-19 cM. The proportion of the phenotypic variance explained by the detected QTL ranged between 7.9% and 14.4%. Confirming some of the previously reported results for birth weight and growth QTL in goats, this study identified more QTL for these traits and is the first report of QTL for onset of puberty in doe kids.
Collapse
Affiliation(s)
- A K Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, PB, 76169-133, Iran
| |
Collapse
|
27
|
Hyeong KE, Iqbal A, Kim JJ. A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (Bos taurus coreanae). ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1406-10. [PMID: 25178291 PMCID: PMC4150172 DOI: 10.5713/ajas.2014.14273] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/25/2014] [Accepted: 07/14/2014] [Indexed: 12/29/2022]
Abstract
Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL) for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea) and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP) chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA) 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.
Collapse
|
28
|
Segelke D, Reinhardt F, Liu Z, Thaller G. Prediction of expected genetic variation within groups of offspring for innovative mating schemes. Genet Sel Evol 2014; 46:42. [PMID: 24990472 PMCID: PMC4118311 DOI: 10.1186/1297-9686-46-42] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 06/24/2014] [Indexed: 12/17/2022] Open
Abstract
Background Experience from progeny-testing indicates that the mating of popular bull sires that have high estimated breeding values with excellent dams does not guarantee the production of offspring with superior breeding values. This is explained partly by differences in the standard deviation of gamete breeding values (SDGBV) between animals at the haplotype level. The SDGBV depends on the variance of the true effects of single nucleotide polymorphisms (SNPs) and the degree of heterozygosity. Haplotypes of 58 035 Holstein animals were used to predict and investigate expected SDGBV for fat yield, protein yield, somatic cell score and the direct genetic effect for stillbirth. Results Differences in SDGBV between animals were detected, which means that the groups of offspring of parents with low SDGBV will be more homogeneous than those of parents with high SDGBV, although the expected mean breeding values of the progeny will be the same. SDGBV was negatively correlated with genomic and pedigree inbreeding coefficients and a small loss of SDGBV over time was observed. Sires that had relatively low mean gamete breeding values but high SDGBV had a higher probability of producing extremely positive offspring than sires that had a high mean gamete breeding value and low SDGBV. Conclusions An animal’s SDGBV can be estimated based on genomic information and used to design specific genomic mating plans. Estimated SDGBV are an additional tool for mating programs, which allows breeders to identify and match mating partners using specific haplotype information.
Collapse
Affiliation(s)
- Dierck Segelke
- Vereinigte Informationssysteme Tierhaltung w,V, (vit), Heideweg 1, 27283 Verden, Germany.
| | | | | | | |
Collapse
|
29
|
Abdel-Shafy H, Bortfeldt RH, Tetens J, Brockmann GA. Single nucleotide polymorphism and haplotype effects associated with somatic cell score in German Holstein cattle. Genet Sel Evol 2014; 46:35. [PMID: 24898131 PMCID: PMC4078941 DOI: 10.1186/1297-9686-46-35] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 04/28/2014] [Indexed: 11/28/2022] Open
Abstract
Background To better understand the genetic determination of udder health, we performed a genome-wide association study (GWAS) on a population of 2354 German Holstein bulls for which daughter yield deviations (DYD) for somatic cell score (SCS) were available. For this study, we used genetic information of 44 576 informative single nucleotide polymorphisms (SNPs) and 11 725 inferred haplotype blocks. Results When accounting for the sub-structure of the analyzed population, 16 SNPs and 10 haplotypes in six genomic regions were significant at the Bonferroni threshold of P ≤ 1.14 × 10-6. The size of the identified regions ranged from 0.05 to 5.62 Mb. Genomic regions on chromosomes 5, 6, 18 and 19 coincided with known QTL affecting SCS, while additional genomic regions were found on chromosomes 13 and X. Of particular interest is the region on chromosome 6 between 85 and 88 Mb, where QTL for mastitis traits and significant SNPs for SCS in different Holstein populations coincide with our results. In all identified regions, except for the region on chromosome X, significant SNPs were present in significant haplotypes. The minor alleles of identified SNPs on chromosomes 18 and 19, and the major alleles of SNPs on chromosomes 6 and X were favorable for a lower SCS. Differences in somatic cell count (SCC) between alternative SNP alleles reached 14 000 cells/mL. Conclusions The results support the polygenic nature of the genetic determination of SCS, confirm the importance of previously reported QTL, and provide evidence for the segregation of additional QTL for SCS in Holstein cattle. The small size of the regions identified here will facilitate the search for causal genetic variations that affect gene functions.
Collapse
Affiliation(s)
| | | | | | - Gudrun A Brockmann
- Department for Crop and Animal Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
30
|
Cole J, Waurich B, Wensch-Dorendorf M, Bickhart D, Swalve H. A genome-wide association study of calf birth weight in Holstein cattle using single nucleotide polymorphisms and phenotypes predicted from auxiliary traits. J Dairy Sci 2014; 97:3156-72. [DOI: 10.3168/jds.2013-7409] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 01/28/2014] [Indexed: 02/04/2023]
|
31
|
Buzanskas ME, Grossi DA, Ventura RV, Schenkel FS, Sargolzaei M, Meirelles SLC, Mokry FB, Higa RH, Mudadu MA, da Silva MVGB, Niciura SCM, Júnior RAAT, Alencar MM, Regitano LCA, Munari DP. Genome-wide association for growth traits in Canchim beef cattle. PLoS One 2014; 9:e94802. [PMID: 24733441 PMCID: PMC3986245 DOI: 10.1371/journal.pone.0094802] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/20/2014] [Indexed: 12/01/2022] Open
Abstract
Studies are being conducted on the applicability of genomic data to improve the accuracy of the selection process in livestock, and genome-wide association studies (GWAS) provide valuable information to enhance the understanding on the genetics of complex traits. The aim of this study was to identify genomic regions and genes that play roles in birth weight (BW), weaning weight adjusted for 210 days of age (WW), and long-yearling weight adjusted for 420 days of age (LYW) in Canchim cattle. GWAS were performed by means of the Generalized Quasi-Likelihood Score (GQLS) method using genotypes from the BovineHD BeadChip and estimated breeding values for BW, WW, and LYW. Data consisted of 285 animals from the Canchim breed and 114 from the MA genetic group (derived from crossings between Charolais sires and ½ Canchim + ½ Zebu dams). After applying a false discovery rate correction at a 10% significance level, a total of 4, 12, and 10 SNPs were significantly associated with BW, WW, and LYW, respectively. These SNPs were surveyed to their corresponding genes or to surrounding genes within a distance of 250 kb. The genes DPP6 (dipeptidyl-peptidase 6) and CLEC3B (C-type lectin domain family 3 member B) were highlighted, considering its functions on the development of the brain and skeletal system, respectively. The GQLS method identified regions on chromosome associated with birth weight, weaning weight, and long-yearling weight in Canchim and MA animals. New candidate regions for body weight traits were detected and some of them have interesting biological functions, of which most have not been previously reported. The observation of QTL reports for body weight traits, covering areas surrounding the genes (SNPs) herein identified provides more evidence for these associations. Future studies targeting these areas could provide further knowledge to uncover the genetic architecture underlying growth traits in Canchim cattle.
Collapse
Affiliation(s)
- Marcos E. Buzanskas
- Departamento de Ciências Exatas, UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
| | - Daniela A. Grossi
- Department of Animal and Poultry Science, University of Guelph, Centre for Genetic Improvement of Livestock (CGIL), Guelph, Ontario, Canada
| | - Ricardo V. Ventura
- Department of Animal and Poultry Science, University of Guelph, Centre for Genetic Improvement of Livestock (CGIL), Guelph, Ontario, Canada
- Beef Improvement Opportunities (BIO), Guelph, Ontario, Canada
| | - Flávio S. Schenkel
- Department of Animal and Poultry Science, University of Guelph, Centre for Genetic Improvement of Livestock (CGIL), Guelph, Ontario, Canada
| | - Mehdi Sargolzaei
- Department of Animal and Poultry Science, University of Guelph, Centre for Genetic Improvement of Livestock (CGIL), Guelph, Ontario, Canada
- The Semex Alliance, Guelph, Ontario, Canada
| | - Sarah L. C. Meirelles
- Department of Animal Science, Federal University of Lavras (UFLA), Lavras, Minas Gerais, Brazil
| | - Fabiana B. Mokry
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos, São Paulo, Brazil
| | - Roberto H. Higa
- Embrapa Agricultural Informatics, Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | - Danísio P. Munari
- Departamento de Ciências Exatas, UNESP - Univ Estadual Paulista, Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
32
|
|
33
|
Lu D, Sargolzaei M, Li C, Abo-Ismail M, Vander Voort G, Wang Z, Plastow G, Moore S, Miller SP. Association analysis for feed efficiency traits in beef cattle using preserved haplotypes. Genome 2013; 56:586-91. [DOI: 10.1139/gen-2013-0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study reports a genome wide scan for chromosome regions and their haplotypes that significantly associated with average daily gain (ADG), dry matter intake (DMI), and residual feed intake (RFI) in beef cattle. The study used data from 597 Angus, 450 Charolais, and 616 crossbred beef cattle, and the Illumina Bovine SNP50 beadchip. Extended haplotype homozygosity was used to identify chromosome regions that had been recently selected for in the three groups of animals. Such regions in the crossbreds were tested for association with ADG, DMI, and RFI. At false discovery rates of 5% and 10%, there were six and eight chromosome regions showing significant associations with the traits, respectively. At nominal significance levels (at least P < 0.05), 23 regions with a total number of 31 haplotypes were found significantly associated with at least one of the three traits. The proportion of phenotypic variance explained by these 23 regions varied depending on the trait; the highest proportion for ADG, DMI, and RFI was 13.50%, 9.92%, and 2.64%, respectively. Most of the haplotypes affected single traits, except for GAA (BTA4), GCG (BTA7), and TAGT (BTA12) that affected multiple traits. Thirty-six quantitative trait loci for 16 production traits, from the current literature, covered fully or in part the 23 chromosome regions. The findings from this study might be an important contribution to the current knowledge of the beef cattle genome and to the effective identification of causative genes associated with important traits in cattle.
Collapse
Affiliation(s)
- Duc Lu
- Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mehdi Sargolzaei
- Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Changxi Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Lacombe Research Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB T4L 1W1, Canada
| | - Mohammed Abo-Ismail
- Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Department of Animal and Poultry Science, Damanhour University, Damanhour, Elbeheira, Egypt
| | - Gordon Vander Voort
- Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Zhiquan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Stephen Moore
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4072, Australia
| | - Stephen P. Miller
- Centre for Genetic Improvement of Livestock, Department of Animal and Poultry Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
34
|
Mulder HA, Crump RE, Calus MPL, Veerkamp RF. Unraveling the genetic architecture of environmental variance of somatic cell score using high-density single nucleotide polymorphism and cow data from experimental farms. J Dairy Sci 2013; 96:7306-7317. [PMID: 24035025 DOI: 10.3168/jds.2013-6818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022]
Abstract
In recent years, it has been shown that not only is the phenotype under genetic control, but also the environmental variance. Very little, however, is known about the genetic architecture of environmental variance. The main objective of this study was to unravel the genetic architecture of the mean and environmental variance of somatic cell score (SCS) by identifying genome-wide associations for mean and environmental variance of SCS in dairy cows and by quantifying the accuracy of genome-wide breeding values. Somatic cell score was used because previous research has shown that the environmental variance of SCS is partly under genetic control and reduction of the variance of SCS by selection is desirable. In this study, we used 37,590 single nucleotide polymorphism (SNP) genotypes and 46,353 test-day records of 1,642 cows at experimental research farms in 4 countries in Europe. We used a genomic relationship matrix in a double hierarchical generalized linear model to estimate genome-wide breeding values and genetic parameters. The estimated mean and environmental variance per cow was used in a Bayesian multi-locus model to identify SNP associated with either the mean or the environmental variance of SCS. Based on the obtained accuracy of genome-wide breeding values, 985 and 541 independent chromosome segments affecting the mean and environmental variance of SCS, respectively, were identified. Using a genomic relationship matrix increased the accuracy of breeding values relative to using a pedigree relationship matrix. In total, 43 SNP were significantly associated with either the mean (22) or the environmental variance of SCS (21). The SNP with the highest Bayes factor was on chromosome 9 (Hapmap31053-BTA-111664) explaining approximately 3% of the genetic variance of the environmental variance of SCS. Other significant SNP explained less than 1% of the genetic variance. It can be concluded that fewer genomic regions affect the environmental variance of SCS than the mean of SCS, but genes with large effects seem to be absent for both traits.
Collapse
Affiliation(s)
- H A Mulder
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 AH Wageningen, the Netherlands; Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 65, 8200 AB Lelystad, the Netherlands.
| | - R E Crump
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 65, 8200 AB Lelystad, the Netherlands
| | - M P L Calus
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 65, 8200 AB Lelystad, the Netherlands
| | - R F Veerkamp
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 65, 8200 AB Lelystad, the Netherlands
| |
Collapse
|
35
|
Fortes MR, DeAtley KL, Lehnert SA, Burns BM, Reverter A, Hawken RJ, Boe-Hansen G, Moore SS, Thomas MG. Genomic regions associated with fertility traits in male and female cattle: Advances from microsatellites to high-density chips and beyond. Anim Reprod Sci 2013; 141:1-19. [DOI: 10.1016/j.anireprosci.2013.07.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 01/08/2023]
|
36
|
Visser C, Van Marle-Köster E, Snyman M, Bovenhuis H, Crooijmans R. Quantitative trait loci associated with pre-weaning growth in South African Angora goats. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2012.11.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Bouyai D, Duangjinda M, Pattarajinda V, Katawatin S, Sanitchon J, Bulakul C, Boonkum W. Detection of quantitative trait loci for clinical mastitis in crossbred Holsteins in the tropics. Livest Sci 2012. [DOI: 10.1016/j.livsci.2012.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Peters SO, Kizilkaya K, Garrick DJ, Fernando RL, Reecy JM, Weaber RL, Silver GA, Thomas MG. Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in Brangus heifers1. J Anim Sci 2012. [DOI: 10.2527/jas.2011-4507] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- S. O. Peters
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces 88003
- Department of Animal Sciences, University of Missouri, Columbia 65211
| | - K. Kizilkaya
- Department of Animal Science, Iowa State University, Ames 50011
- Department of Animal Science, Adnan Menderes University, Aydin 09100, Turkey
| | - D. J. Garrick
- Department of Animal Science, Iowa State University, Ames 50011
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - R. L. Fernando
- Department of Animal Science, Iowa State University, Ames 50011
| | - J. M. Reecy
- Department of Animal Science, Iowa State University, Ames 50011
| | - R. L. Weaber
- Department of Animal Sciences, University of Missouri, Columbia 65211
| | - G. A. Silver
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces 88003
| | - M. G. Thomas
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces 88003
- Department of Animal Sciences, Colorado State University, Fort Collins 80523
| |
Collapse
|
39
|
Purfield DC, Berry DP, McParland S, Bradley DG. Runs of homozygosity and population history in cattle. BMC Genet 2012; 13:70. [PMID: 22888858 PMCID: PMC3502433 DOI: 10.1186/1471-2156-13-70] [Citation(s) in RCA: 360] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/03/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Runs of homozygosity (ROH) are contiguous lengths of homozygous genotypes that are present in an individual due to parents transmitting identical haplotypes to their offspring. The extent and frequency of ROHs may inform on the ancestry of an individual and its population. Here we use high density (n = 777,962) bi-allelic SNPs in a range of cattle breed samples to correlate ROH with the pedigree-based inbreeding coefficients and to validate subsequent analyses using 54,001 SNP genotypes. This study provides a first testing of the inference drawn from ROH through comparison with estimates of inbreeding from calculations based on the detailed pedigree data available for several breeds. RESULTS All animals genotyped on the HD panel displayed at least one ROH that was between 1-5 Mb in length with certain regions of the genome more likely to be involved in a ROH than others. Strong correlations (r = 0.75, p < 0.0001) existed between the pedigree-based inbreeding coefficient and a statistic based on sum of ROH of length > 0.5 KB and suggests that in the absence of an animal's pedigree data, the extent of a genome under ROH may be used to infer aspects of recent population history even from relatively few samples. CONCLUSIONS Our findings suggest that ROH are frequent across all breeds but differing patterns of ROH length and burden illustrate variations in breed origins and recent management.
Collapse
Affiliation(s)
- Deirdre C Purfield
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | | | |
Collapse
|
40
|
Wijga S, Bastiaansen JWM, Wall E, Strandberg E, de Haas Y, Giblin L, Bovenhuis H. Genomic associations with somatic cell score in first-lactation Holstein cows. J Dairy Sci 2012; 95:899-908. [PMID: 22281354 DOI: 10.3168/jds.2011-4717] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/13/2011] [Indexed: 12/12/2022]
Abstract
This genome-wide association study aimed to identify loci associated with lactation-average somatic cell score (LASCS) and the standard deviation of test-day somatic cell score (SCS-SD). It is one of the first studies to combine detailed phenotypic and genotypic cow data from research dairy herds located in different countries. The combined data set contained up to 52 individual test-days per lactation and thereby aimed to capture temporary increases in somatic cell score associated with infection. Phenotypic data for analysis consisted of 46,882 test-day records on 1,484 cows, and genotypic data consisted of 37,590 single nucleotide polymorphisms (SNP). Using an animal model, the associations between each individual SNP and the phenotypic data were estimated. To account for the risk of false positives, a false discovery rate threshold of 0.20 was set. The analyses showed that LASCS was significantly associated with a SNP on Bos taurus autosome (BTA) 4 and a SNP on BTA18. Likewise, SCS-SD was associated with this SNP on BTA18. In addition, SCS-SD significantly associated with a SNP on BTA6. Relatively few associations were found, suggesting that LASCS and SCS-SD are controlled by multiple loci distributed across the genome, each with a relatively small effect. Increased knowledge on genetic regulation of LASCS and SCS-SD may aid in identification of genes that play a role in mastitis resistance. Such knowledge helps us understand the genetic mechanisms leading to mastitis and in discovery of targets for mastitis therapeutics.
Collapse
Affiliation(s)
- S Wijga
- Animal Breeding and Genomics Centre, Wageningen University, PO Box 338, 6700 PG, Wageningen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
41
|
Pighetti GM, Elliott AA. Gene polymorphisms: the keys for marker assisted selection and unraveling core regulatory pathways for mastitis resistance. J Mammary Gland Biol Neoplasia 2011; 16:421-32. [PMID: 21997401 DOI: 10.1007/s10911-011-9238-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/23/2011] [Indexed: 12/11/2022] Open
Abstract
One of the most frequent mammary diseases impacting lactating animals is mastitis, an inflammation of the mammary gland most commonly caused by bacterial infection. The severity of mastitis is greatly influenced by the invading organism and the subsequent immune response which must recognize the foreign organism, recruit immune cells, eliminate the invading pathogen, and resolve the inflammatory response. The speed, strength, and duration of this response and subsequent disease susceptibility are critically tied to the genetic background of an animal. However, the genetic contribution has been difficult to identify due to the complex interactions that must occur for effective disease resistance. Recent studies have utilized polymorphisms to better define the genes and chromosomal regions that contribute to mastitis resistance. This review will examine these studies with primary emphasis in bovine systems, as the most work regarding mastitis has been conducted in this species.
Collapse
Affiliation(s)
- Gina M Pighetti
- Department of Animal Science, The University of Tennessee, Knoxville, TN 37996, USA.
| | | |
Collapse
|
42
|
Evolution of the bovine TLR gene family and member associations with Mycobacterium avium subspecies paratuberculosis infection. PLoS One 2011; 6:e27744. [PMID: 22164200 PMCID: PMC3227585 DOI: 10.1371/journal.pone.0027744] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/24/2011] [Indexed: 02/06/2023] Open
Abstract
Members of the Toll-like receptor (TLR) gene family occupy key roles in the mammalian innate immune system by functioning as sentries for the detection of invading pathogens, thereafter provoking host innate immune responses. We utilized a custom next-generation sequencing approach and allele-specific genotyping assays to detect and validate 280 biallelic variants across all 10 bovine TLR genes, including 71 nonsynonymous single nucleotide polymorphisms (SNPs) and one putative nonsense SNP. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and specialized beef and dairy breeds could not be differentiated despite an average polymorphism density of 1 marker/158 bp. Collectively, 160 tagSNPs and two tag insertion-deletion mutations (indels) were sufficient to predict 100% of the variation at 280 variable sites for both Bos subspecies and their hybrids, whereas 118 tagSNPs and 1 tagIndel predictively captured 100% of the variation at 235 variable sites for B. t. taurus. Polyphen and SIFT analyses of amino acid (AA) replacements encoded by bovine TLR SNPs indicated that up to 32% of the AA substitutions were expected to impact protein function. Classical and newly developed tests of diversity provide strong support for balancing selection operating on TLR3 and TLR8, and purifying selection acting on TLR10. An investigation of the persistence and continuity of linkage disequilibrium (r2≥0.50) between adjacent variable sites also supported the presence of selection acting on TLR3 and TLR8. A case-control study employing validated variants from bovine TLR genes recognizing bacterial ligands revealed six SNPs potentially eliciting small effects on susceptibility to Mycobacterium avium spp paratuberculosis infection in dairy cattle. The results of this study will broadly impact domestic cattle research by providing the necessary foundation to explore several avenues of bovine translational genomics, and the potential for marker-assisted vaccination.
Collapse
|
43
|
Hawken RJ, Zhang YD, Fortes MRS, Collis E, Barris WC, Corbet NJ, Williams PJ, Fordyce G, Holroyd RG, Walkley JRW, Barendse W, Johnston DJ, Prayaga KC, Tier B, Reverter A, Lehnert SA. Genome-wide association studies of female reproduction in tropically adapted beef cattle. J Anim Sci 2011; 90:1398-410. [PMID: 22100599 DOI: 10.2527/jas.2011-4410] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The genetics of reproduction is poorly understood because the heritabilities of traits currently recorded are low. To elucidate the genetics underlying reproduction in beef cattle, we performed a genome-wide association study using the bovine SNP50 chip in 2 tropically adapted beef cattle breeds, Brahman and Tropical Composite. Here we present the results for 3 female reproduction traits: 1) age at puberty, defined as age in days at first observed corpus luteum (CL) after frequent ovarian ultrasound scans (AGECL); 2) the postpartum anestrous interval, measured as the number of days from calving to first ovulation postpartum (first rebreeding interval, PPAI); and 3) the occurrence of the first postpartum ovulation before weaning in the first rebreeding period (PW), defined from PPAI. In addition, correlated traits such as BW, height, serum IGF1 concentration, condition score, and fatness were also examined. In the Brahman and Tropical Composite cattle, 169 [false positive rate (FPR) = 0.262] and 84 (FPR = 0.581) SNP, respectively, were significant (P < 0.001) for AGECL. In Brahman, 41% of these significant markers mapped to a single chromosomal region on BTA14. In Tropical Composites, 16% of these significant markers were located on BTA5. For PPAI, 66 (FPR = 0.67) and 113 (FPR = 0.432) SNP were significant (P < 0.001) in Brahman and Tropical Composite, respectively, whereas for PW, 68 (FPR = 0.64) and 113 (FPR = 0.432) SNP were significant (P < 0.01). In Tropical Composites, the largest concentration of PPAI markers were located on BTA5 [19% (PPAI) and 23% (PW)], and BTA16 [17% (PPAI) and 18% (PW)]. In Brahman cattle, the largest concentration of markers for postpartum anestrus was located on BTA3 (14% for PPAI and PW) and BTA14 (17% PPAI). Very few of the significant markers for female reproduction traits for the Brahman and Tropical Composite breeds were located in the same chromosomal regions. However, fatness and BW traits as well as serum IGF1 concentration were found to be associated with similar genome regions within and between breeds. Clusters of SNP associated with multiple traits were located on BTA14 in Brahman and BTA5 in Tropical Composites.
Collapse
Affiliation(s)
- R J Hawken
- Cooperative Research Centre for Beef Genetic Technologies, University of New England, Armidale, New South Wales 2351, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Holmberg M, Fikse W, Andersson-Eklund L, Artursson K, Lundén A. Genetic analyses of pathogen-specific mastitis. J Anim Breed Genet 2011; 129:129-37. [DOI: 10.1111/j.1439-0388.2011.00945.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Brand B, Hartmann A, Repsilber D, Griesbeck-Zilch B, Wellnitz O, Kühn C, Ponsuksili S, Meyer HHD, Schwerin M. Comparative expression profiling of E. coli and S. aureus inoculated primary mammary gland cells sampled from cows with different genetic predispositions for somatic cell score. Genet Sel Evol 2011; 43:24. [PMID: 21702919 PMCID: PMC3143085 DOI: 10.1186/1297-9686-43-24] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 06/24/2011] [Indexed: 01/08/2023] Open
Abstract
Background During the past ten years many quantitative trait loci (QTL) affecting mastitis incidence and mastitis related traits like somatic cell score (SCS) were identified in cattle. However, little is known about the molecular architecture of QTL affecting mastitis susceptibility and the underlying physiological mechanisms and genes causing mastitis susceptibility. Here, a genome-wide expression analysis was conducted to analyze molecular mechanisms of mastitis susceptibility that are affected by a specific QTL for SCS on Bos taurus autosome 18 (BTA18). Thereby, some first insights were sought into the genetically determined mechanisms of mammary gland epithelial cells influencing the course of infection. Methods Primary bovine mammary gland epithelial cells (pbMEC) were sampled from the udder parenchyma of cows selected for high and low mastitis susceptibility by applying a marker-assisted selection strategy considering QTL and molecular marker information of a confirmed QTL for SCS in the telomeric region of BTA18. The cells were cultured and subsequently inoculated with heat-inactivated mastitis pathogens Escherichia coli and Staphylococcus aureus, respectively. After 1, 6 and 24 h, the cells were harvested and analyzed using the microarray expression chip technology to identify differences in mRNA expression profiles attributed to genetic predisposition, inoculation and cell culture. Results Comparative analysis of co-expression profiles clearly showed a faster and stronger response after pathogen challenge in pbMEC from less susceptible animals that inherited the favorable QTL allele 'Q' than in pbMEC from more susceptible animals that inherited the unfavorable QTL allele 'q'. Furthermore, the results highlighted RELB as a functional and positional candidate gene and related non-canonical Nf-kappaB signaling as a functional mechanism affected by the QTL. However, in both groups, inoculation resulted in up-regulation of genes associated with the Ingenuity pathways 'dendritic cell maturation' and 'acute phase response signaling', whereas cell culture affected biological processes involved in 'cellular development'. Conclusions The results indicate that the complex expression profiling of pathogen challenged pbMEC sampled from cows inheriting alternative QTL alleles is suitable to study genetically determined molecular mechanisms of mastitis susceptibility in mammary epithelial cells in vitro and to highlight the most likely functional pathways and candidate genes underlying the QTL effect.
Collapse
Affiliation(s)
- Bodo Brand
- Research Group of Functional Genomics, Leibniz Institute of Farm Animal Biology, 18196 Dummerstorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang Q, Zhao H, Pan Y. SNPknow: a web server for functional annotation of cattle SNP markers. CANADIAN JOURNAL OF ANIMAL SCIENCE 2011. [DOI: 10.4141/cjas2010-032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Wang, Q., Zhao, H. and Pan, Y. 2011. SNPknow: a web server for functional annotation of cattle SNP markers. Can. J. Anim. Sci. 91: 247–253. Single nucleotide polymorphisms (SNP) microarray technology provides new insights to identify the genetic factors associated with the traits of interest. To meet the immediate need for a framework of genome-wide association study (GWAS), we have developed SNPknow, a suite of CGI-based tools that provide enrichment analysis and functional annotation for cattle SNP markers and allow the users to navigate and analysis large sets of high-dimensional data from the gene ontology (GO) annotation systems. SNPknow is the only web server currently providing functional annotations of cattle SNP markers in three commercial platforms and dbSNP database. The web server may be particularly beneficial for the analysis of combining SNP association analysis with the gene set enrichment analysis and is freely available at http://klab.sjtu.edu.cn/SNPknow .
Collapse
Affiliation(s)
- Qishan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Shanghai Key Lab of Animal Biotechnology, Shanghai, 200240, P. R. China
| | - Hongbo Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Yuchun Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
- Shanghai Key Lab of Animal Biotechnology, Shanghai, 200240, P. R. China
| |
Collapse
|
47
|
Wickramasinghe S, Rincon G, Medrano JF. Variants in the pregnancy-associated plasma protein-A2 gene on Bos taurus autosome 16 are associated with daughter calving ease and productive life in Holstein cattle. J Dairy Sci 2011; 94:1552-8. [PMID: 21338820 DOI: 10.3168/jds.2010-3237] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 11/15/2010] [Indexed: 01/29/2023]
Abstract
Reproductive disorders in dairy herds have a negative effect on farm profitability and sustainability of milk production. Given the substantial evidence of the role of the pregnancy-associated plasma protein (PAPP) gene family in the regulation of reproduction in humans and mice, its role in insulin-like growth factor metabolism, quantitative trait loci effects in the mouse, and location of a calving ease QTL on bovine chromosome 16, the PAPP-A2 gene was chosen as a candidate gene to perform an association study for reproductive health in cattle. Single nucleotide polymorphisms (SNP) were identified in coding and conserved noncoding regions of the PAPP-A2 gene in 3 dairy breeds. A total of 7 tag SNP were genotyped in 662 Holstein bulls (UCD-bulls) to perform marker trait association analysis. Three SNP (SNP 13, 15, and 16) were in strong linkage disequilibrium in Holsteins, showing significant positive associations with daughter calving ease, productive life, milk yield, and protein yield. These results were validated by genotyping SNP15 in a larger population of 992 bulls from the cooperative dairy DNA repository (CDDR-bulls). Our results demonstrate that the PAPP-A2 gene is associated with reproductive health in Holstein cattle and that the identified SNP can be used as genetic markers in dairy breeding due to their positive association with reproductive and productive traits. Functional studies need to be conducted to identify the mechanisms for the association of SNP with these traits.
Collapse
Affiliation(s)
- S Wickramasinghe
- Department of Animal Science, University of California, Davis, California 95616-8521, USA
| | | | | |
Collapse
|
48
|
Sodeland M, Kent MP, Olsen HG, Opsal MA, Svendsen M, Sehested E, Hayes BJ, Lien S. Quantitative trait loci for clinical mastitis on chromosomes 2, 6, 14 and 20 in Norwegian Red cattle. Anim Genet 2011; 42:457-65. [PMID: 21906097 DOI: 10.1111/j.1365-2052.2010.02165.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mastitis is the most frequent and costly disease in dairy production and solutions leading to a reduction in the incidence of mastitis are highly demanded. Here a genome-wide association study was performed to identify polymorphisms affecting susceptibility to mastitis. Genotypes for 17 349 SNPs distributed across the 29 bovine autosomal chromosomes from a total of 2589 sires with 1 389 776 daughters with records on clinical mastitis were included in the analysis. Records of occurrence of clinical mastitis were divided into seven time periods in the first three lactations in order to identify quantitative trait loci affecting mastitis susceptibility in particular phases of lactation. The most convincing results from the association mapping were followed up and validated by a combined linkage disequilibrium and linkage analysis. The study revealed quantitative trait loci affecting occurrence of clinical mastitis in the periparturient period on chromosomes 2, 6 and 20 and a quantitative trait locus affecting occurrence of clinical mastitis in late lactation on chromosome 14. None of the quantitative trait loci for clinical mastitis detected in the study seemed to affect lactation average of somatic cell score. The SNPs highly associated with clinical mastitis lie near both the gene encoding interleukin 8 on chromosome 6 and the genes encoding the two interleukin 8 receptors on chromosome 2.
Collapse
Affiliation(s)
- M Sodeland
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, N-1432 Aas, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Seidenspinner T, Tetens J, Habier D, Bennewitz J, Thaller G. The placental growth factor (PGF) - a positional and functional candidate gene influencing calving ease and stillbirth in German dairy cattle. Anim Genet 2011; 42:22-7. [DOI: 10.1111/j.1365-2052.2010.02073.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Sahana G, Guldbrandtsen B, Lund M. Genome-wide association study for calving traits in Danish and Swedish Holstein cattle. J Dairy Sci 2011; 94:479-486. [DOI: 10.3168/jds.2010-3381] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|