1
|
Westhoff TA, Chandler TL, Sipka AS, Overton TR, Ortega AF, Van Amburgh ME, Mann S. Metabolic and inflammatory response to an early lactation intravenous lipopolysaccharide challenge in Holstein cows fed differing levels of metabolizable protein during the transition period. J Dairy Sci 2025; 108:4263-4282. [PMID: 40251775 DOI: 10.3168/jds.2024-25675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/20/2024] [Indexed: 04/21/2025]
Abstract
The nadir in transition cow nutrient balance coincides with a period of heightened inflammation. Decreased circulating AA might contribute to an altered immune phenotype that favors a proinflammatory response. Objectives were to (1) investigate the effect of increasing MP supply in the prepartum, postpartum, or both diets on the response to an intravenous (IV) LPS challenge, (2) compare the response of IV LPS to fasted unstimulated control cows, and (3) determine the duration of the effect of IV LPS or fasting on milk production. Multiparous cows (n = 96) were assigned to 1 of 4 treatment groups at 28 d before expected calving following a randomized block design. Prepartum diets were formulated to contain either a control (85 g of MP/kg of DM) or high (113 g of MP/kg of DM) level of MP. Postpartum diets were formulated to contain either a control (104 g of MP/kg of DM) or high (131 g of MP/kg of DM) level of MP. To control the potential confounding effects of Met and Lys supply, diets were formulated to supply an equal amount at 1.24 and 3.84 g/Mcal of ME in both prepartum diets and 1.15 and 3.16 g/Mcal of ME in both postpartum diets, respectively. The combination of a pre- and postpartum diet resulted in 4 treatment groups: control-control, control-high, high-control, and high-high. Cows (n = 24; 23 ± 2 DIM) were selected to undergo an IV LPS challenge (0.0625 µg/kg of BW over 1 h; IVLPS) in 6 blocks. Each block included 1 cow from each treatment and 1 unchallenged control cow (n = 6; DIM = 22 ± 2; CON) alternating between treatments. All cows were allowed 1 h of ad libitum feed intake before IV LPS and fasted for 10 h following challenge. Separate repeated measure ANOVA models were used to compare the effects of dietary treatment and IV LPS. Dietary treatment did not affect the clinical, inflammatory, or hematologic response to IV LPS. Compared with baseline values, DMI and milk yield decreased on the day of challenge 14.0% and 17.7% in IVLPS and 13.8% and 4.0% in CON, respectively. Compared with CON, IVLPS decreased leukocyte counts at 1 and 4 h and increased tumor necrosis factor from 1 to 4 h, IL-10 from 1 to 6 h, and haptoglobin from 24 to 72 h. Intravenous LPS increased concentrations of glucose at 10 h and decreased those of BHB at 10 h, fatty acid at 6 and 10 h, and calcium from 3 to 10 h relative to challenge. Intravenous LPS decreased circulating EAA from 2 to 8 h and NEAA at 4 h relative to challenge. Fasting and IVLPS decreased milk yield on the day of challenge compared with cows from the source population but milk recovered by d 2 relative to challenge. In conclusion, MP supply did not modify the inflammatory response to IV LPS, but IV LPS altered the metabolic response compared with CON. Furthermore, fasted and IV LPS-challenged animals recovered milk production within 2 d postchallenge.
Collapse
Affiliation(s)
- Trent A Westhoff
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Tawny L Chandler
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Anja S Sipka
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - Thomas R Overton
- Department of Animal Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - Andres F Ortega
- Department of Animal Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - Mike E Van Amburgh
- Department of Animal Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853
| | - Sabine Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
2
|
Opgenorth J, Goetz BM, Rodriguez-Jimenez S, Freestone AD, Combs GJ, Flemming TA, McGill JL, Gorden PJ, Tikofsky L, Baumgard LH. Comparing oral versus intravenous calcium administration on alleviating markers of production, metabolism, and inflammation during an intravenous lipopolysaccharide challenge in mid-lactation dairy cows. J Dairy Sci 2025; 108:2883-2896. [PMID: 39603495 DOI: 10.3168/jds.2024-24831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Animals, including dairy cows, develop hypocalcemia during infection. Prior independent research suggests supplementing oral Ca, but not i.v. Ca, improves multiple health metrics after immune activation. Therefore, study objectives were to directly compare the effects of administering an oral Ca bolus versus i.v. Ca on mineral and energetic metabolism variables and inflammatory parameters following an i.v. LPS challenge. Mid-lactation cows (124 ± 43 DIM) were assigned to 1 of 4 treatments: (1) saline control (CON; 4 mL of saline; n = 4), (2) LPS control (CON-LPS; 0.375 µg/kg BW; n = 6), (3) LPS with oral Ca bolus (OCa-LPS; 0.375 µg/kg BW and a 192-g bolus of Bovikalc [Boehringer Ingelheim Animal Health USA Inc., Duluth, GA] containing 43 g of Ca [71% CaCl2 and 29% CaSO4] supplemented at -0.5 and 6 h relative to LPS administration; n = 8), and (4) LPS with i.v. Ca (IVCa-LPS; 0.375 µg/kg BW and 500 mL of Ca-gluconate, 23% [VetOne, Boise, ID]) supplemented at -0.5 and 6 h relative to LPS infusion; n = 8). During period (P) 1 (4 d), baseline data were obtained. At the initiation of P2 (5 d), LPS and Ca supplements were administered. As anticipated, CON-LPS became hypocalcemic, but OCa-LPS and IVCa-LPS had increased ionized Ca compared with CON-LPS cows (1.11 and 1.28 vs. 0.95 ± 0.02 mmol/L, respectively). Rectal temperature increased after LPS and was additionally elevated in IVCa-LPS from 3 to 4 h (38.9 and 39.8 ± 0.1°C in CON-LPS and IVCa-LPS, respectively). Administering LPS decreased DMI and milk yield relative to CON. Circulating glucose was decreased in OCa-LPS compared with CON-LPS and IVCa-LPS during the initial hyperglycemic phase at 1 h (75.1 vs. 94.9 and 95.7 ± 3.4 mg/dL, respectively, but all LPS infused cows regardless of treatment had similar glucose concentrations thereafter, which were decreased relative to baseline during the first 12 h. Blood urea nitrogen increased after LPS but this was attenuated in OCa-LPS compared with CON-LPS and IVCa-LPS cows (8.7 vs. 10.0 and 10.4 ± 0.3 mg/dL). Glucagon increased in OCa-LPS and IVCa-LPS compared with CON-LPS cows (459 and 472 vs. 335 ± 28 pg/mL, respectively), and insulin markedly increased over time regardless of LPS treatment. Lipopolysaccharide substantially increased serum amyloid A, LPS-binding protein (LBP), and haptoglobin in all treatments, but OCa-LPS tended to have increased LBP concentrations relative to IVCa-LPS (10.7 vs. 8.6 ± 0.7 µg/mL, respectively). Several cytokines increased after LPS administration, but most temporal cytokine profiles did not differ by treatment. In summary, LPS administration intensely activated the immune system and both Ca delivery routes successfully ameliorated the hypocalcemia. The i.v. and oral Ca treatments had differential effects on multiple metabolism variables and appeared to mildly influence production responses to LPS.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - G J Combs
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - T A Flemming
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - J L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011
| | - P J Gorden
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA 50011
| | - L Tikofsky
- Boehringer Ingelheim Animal Health USA Inc., Duluth, GA 30096
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
3
|
Opgenorth J, Mayorga EJ, Abeyta MA, Rodriguez-Jimenez S, Goetz BM, Freestone AD, Baumgard LH. Intravenous lipopolysaccharide challenge in early- versus mid-lactation dairy cattle. II: The production and metabolic responses. J Dairy Sci 2024; 107:6240-6251. [PMID: 38460878 DOI: 10.3168/jds.2023-24351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/11/2024]
Abstract
Most immunometabolic research uses mid-lactation (ML) cows. Cows in early lactation (EL) are in a presumed state of immune suppression/dysregulation and less is known about how they respond to a pathogen. Study objectives were to compare the production and metabolic responses to i.v. LPS and to differentiate between the direct effects of immune activation and the indirect effects of illness-induced hypophagia in EL and ML cows. Cows in EL (n = 11; 20 ± 2 DIM) and ML (n = 12; 131 ± 31 DIM) were enrolled in a 2 × 2 factorial design containing 2 experimental periods (P). During P1 (3 d), cows were fed ad libitum and baseline data were collected. At the initiation of P2 (3 d), cows were randomly assigned to 1 of 2 treatments by lactation stage (LS): (1) EL (EL-LPS; n = 6) or ML (ML-LPS; n = 6) cows administered i.v. a single bolus of 0.09 µg LPS/kg of BW; Escherichia coli O55:B5 or (2) pair-fed (PF) EL (EL-PF; n = 5) or ML (ML-PF; n = 6) cows administered i.v. saline. Administering LPS decreased DMI and this was more severe in EL-LPS than ML-LPS cows (34% and 11% relative to baseline, respectively). By design, P2 DMI patterns were similar in the PF groups compared with their LPS counterparts. Milk yield decreased following LPS (42% on d 1 relative to P1) and despite an exacerbated decrease in EL-LPS cows on d 1 (25% relative to ML-LPS), remained similar between LS from d 2 to 3. The EL-LPS cows had increased milk fat content, but no difference in protein and lactose percentages compared with ML-LPS cows. Further, cumulative ECM yield was increased (21%) in EL-LPS compared with ML-LPS cows. During P2, EL-LPS cows had a more intense increase in MUN and BUN than ML-LPS and EL-PF cows. Administering LPS did not cause hypoglycemia in either EL-LPS or ML-LPS cows, but glucose was increased (33%) in EL-LPS compared with EL-PF. Hyperinsulinemia occurred after LPS, and insulin was further increased in ML-LPS than EL-LPS cows (2.2-fold at 12 h peak). During P2, circulating glucagon increased only in EL-LPS cows (64% relative to all other groups). Both EL groups had increased NEFA at 3 and 6 h after LPS from baseline (56%), but NEFA in EL-LPS cows gradually returned to baseline thereafter and were reduced relative to EL-PF until 36 h (50% from 12 to 24 h). Alterations in BHB did not differ between ML groups, but EL-LPS had reduced BHB compared with EL-PF from 24 to 72 h (51%). Results indicate that there are distinct LS differences in the anorexic and metabolic responses to immune activation. Collectively, EL cows are more sensitive to the catabolic effects of LPS than ML cows, but these exacerbated metabolic responses appear coordinated to fuel an augmented immune system while simultaneously supporting milk synthesis.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
4
|
Opgenorth J, Abeyta MA, Goetz BM, Rodriguez-Jimenez S, Freestone AD, Rhoads RP, McMillan RP, McGill JL, Baumgard LH. Intramammary lipopolysaccharide challenge in early- versus mid-lactation dairy cattle: Immune, production, and metabolic responses. J Dairy Sci 2024; 107:6252-6267. [PMID: 38460880 DOI: 10.3168/jds.2023-24488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/06/2024] [Indexed: 03/11/2024]
Abstract
Study objectives were to compare the immune response, metabolism, and production following intramammary LPS (IMM LPS) administration in early and mid-lactation cows. Early (E-LPS; n = 11; 20 ± 4 DIM) and mid- (M-LPS; n = 10; 155 ± 40 DIM) lactation cows were enrolled in an experiment consisting of 2 periods (P). During P1 (5 d) cows were fed ad libitum and baseline data were collected, including liver and muscle biopsies. At the beginning of P2 (3 d) cows received 10 mL of sterile saline containing 10 µg of LPS from Escherichia coli O111:B4/mL into the left rear quarter of the mammary gland, and liver and muscle biopsies were collected at 12 h after LPS. Tissues were analyzed for metabolic flexibility, which measures substrate switching capacity from pyruvic acid to palmitic acid oxidation. Data were analyzed with the MIXED procedure in SAS 9.4. Rectal temperature was assessed hourly for the first 12 h after LPS and every 6 h thereafter for the remainder of P2. All cows developed a febrile response following LPS, but E-LPS had a more intense fever than M-LPS cows (0.7°C at 5 h after LPS). Blood samples were collected at 0, 3, 6, 9, 12, 24, 36, 48, and 72 h after LPS for analysis of systemic inflammation and metabolism parameters. Total serum Ca decreased after LPS (26% at 6 h nadir) but did not differ by lactation stage (LS). Circulating neutrophils decreased, then increased after LPS in both LS, but E-LPS had exaggerated neutrophilia (56% from 12 to 48 h) compared with M-LPS. Haptoglobin increased after LPS (15-fold) but did not differ by LS. Many circulating cytokines were increased after LPS, and IL-6, IL-10, TNF-α, MCP-1, and IP-10 were further augmented in E-LPS compared with M-LPS cows. Relative to P1, all cows had reduced milk yield (26%) and DMI (14%) on d 1 that did not differ by LS. Somatic cell score increased rapidly in response to LPS regardless of LS and gradually decreased from 18 h onwards. Milk component yields decreased after LPS. However, E-LPS had increased fat (11%) and tended to have increased lactose (8%) yield compared with M-LPS cows throughout P2. Circulating glucose was not affected by LPS. Nonesterified fatty acids (NEFA) decreased in E-LPS (29%) but not M-LPS cows. β-Hydroxybutyrate slightly increased (14%) over time after LPS regardless of LS. Insulin increased after LPS in all cows, but E-LPS had blunted hyperinsulinemia (52%) compared with M-LPS cows. Blood urea nitrogen increased after LPS, and the relative change in BUN was elevated in E-LPS cows compared with M-LPS cows (36% and 13%, respectively, from 9 to 24 h). During P1, metabolic flexibility was increased in liver and muscle in early lactating cows compared with mid-lactation cows, but 12 h after LPS, metabolic flexibility was reduced and did not differ by LS. In conclusion, IMM LPS caused severe immune activation, and E-LPS cows had a more intense inflammatory response compared with M-LPS cows, but the effects on milk synthesis was similar between LS. Some parameters of the E-LPS metabolic profile suggest continuation of metabolic adjustments associated with early lactation to support both a robust immune system and milk synthesis.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - B M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - A D Freestone
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - R P Rhoads
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - R P McMillan
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060
| | - J L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011.
| |
Collapse
|
5
|
Wang K, Ruiz-González A, Räisänen SE, Ouellet V, Boucher A, Rico DE, Niu M. Dietary supplementation of vitamin D 3 and calcium partially recover the compromised time budget and circadian rhythm of lying behavior in lactating cows under heat stress. J Dairy Sci 2024; 107:1707-1718. [PMID: 37863290 DOI: 10.3168/jds.2023-23589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023]
Abstract
Heat stress (HS) impedes cattle behavior and performance and is an animal comfort and welfare issue. The objective of this study was to characterize the time budget and circadian rhythm of lying behavior in dairy cows during HS and to assess the effect of dietary supplementation of vitamin D3 and Ca. Twelve multiparous Holstein cows (42.2 ± 5.6 kg milk/d; 83 ± 27 d in milk) housed in tiestalls were used in a split-plot design with the concentration of dietary vitamin E and Se as main plots (LESe: 11.1 IU/kg and 0.55 mg/kg, and HESe: 223 IU/kg and 1.8 mg/kg, respectively). Within each plot cows were randomly assigned to (1) HS with low concentrations of vitamin D3 and Ca (HS, 1,012 IU/kg and 0.73%, respectively), (2) HS with high concentrations of vitamin D3 and Ca (HS+D3/Ca; 3,764 IU/kg and 0.97%, respectively), or (3) thermoneutral pair-fed (TNPF) with low concentrations of vitamin D3 and Ca (1,012 IU/kg and 0.73%, respectively) in a Latin square design with 14-d periods and 7-d washouts. Lying behavior was measured with HOBO Loggers in 15-min intervals. Overall, cows in HS spent less time lying per day relative to TNPF from d 7 to 14. Daily lying time was positively correlated with milk yield, energy-corrected milk yield, and feed efficiency, and was negatively correlated with rectal temperature, respiratory rate, fecal calprotectin, tumor necrosis factor-α, and C-reactive protein. A treatment by time interaction was observed for lying behavior: the time spent lying was lesser for cows in HS than in TNPF in the early morning (0000-0600 h) and in the night (1800-2400 h). The circadian rhythm of lying behavior was characterized by fitting a cosine function of time into linear mixed model. Daily rhythmicity of lying was detected for cows in TNPF and HS+D3/Ca, whereas only a tendency in HS cows was observed. Cows in TNPF had the highest mesor (the average level of diurnal fluctuations; 34.2 min/h) and amplitude (the distance between the peak and mesor; 17.9 min/h). Both the mesor and amplitude were higher in HS+D3/Ca relative to HS (26.6 vs. 25.2 min/h and 3.91 min/h vs. 2.18 min/h, respectively). The acrophase (time of the peak) of lying time in TNPF, HS, and HS+D3/Ca were 0028, 0152, and 0054 h, respectively. Lastly, a continuous increase in daily lying time in TNPF was observed during the first 4 d of the experimental period in which DMI was gradually restricted, suggesting that intake restrictions may shift feeding behavior and introduce biases in the behavior of animals. In conclusion, lying behavior was compromised in dairy cows under HS, characterizing reduced daily lying time and disrupted circadian rhythms, and the compromised lying behavior can be partially restored by supplementation of vitamin D3 and Ca. Further research may be required for a more suitable model to study behavior of cows under HS.
Collapse
Affiliation(s)
- K Wang
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - A Ruiz-González
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, G0A 1S0, Canada; Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - S E Räisänen
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - V Ouellet
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - A Boucher
- Département des Sciences Animales, Université Laval, Québec, QC, G1V 0A6, Canada
| | - D E Rico
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, G0A 1S0, Canada.
| | - M Niu
- Department of Environmental Systems Science, Institute of Agricultural Sciences, ETH Zürich, Zürich 8092, Switzerland.
| |
Collapse
|
6
|
Mayorga EJ, Horst EA, Goetz BM, Rodriguez-Jimenez S, Abeyta MA, Al-Qaisi M, Rhoads RP, Selsby JT, Baumgard LH. Therapeutic effects of mitoquinol during an acute heat stress challenge in growing barrows. J Anim Sci 2024; 102:skae161. [PMID: 38860702 PMCID: PMC11208932 DOI: 10.1093/jas/skae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024] Open
Abstract
Study objectives were to determine the effects of mitoquinol (MitoQ, a mitochondrial-targeted antioxidant) on biomarkers of metabolism and inflammation during acute heat stress (HS). Crossbred barrows [n = 32; 59.0 ± 5.6 kg body weight (BW)] were blocked by BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and MitoQ (n = 8; TNMitoQ), 3) HS control (n = 8; HSCon), or 4) HS and MitoQ (n = 8; HSMitoQ). Pigs were acclimated for 6 d to individual pens before study initiation. The trial consisted of two experimental periods (P). During P1 (2 d), pigs were fed ad libitum and housed in TN conditions (20.6 ± 0.8 °C). During P2 (24 h), HSCon and HSMitoQ pigs were exposed to continuous HS (35.2 ± 0.2 °C), while TNCon and TNMitoQ remained in TN conditions. MitoQ (40 mg/d) was orally administered twice daily (0700 and 1800 hours) during P1 and P2. Pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate (+1.5 °C, +6.8 °C, and +101 breaths per minute, respectively; P < 0.01) compared to their TN counterparts. Acute HS markedly decreased feed intake (FI; 67%; P < 0.01); however, FI tended to be increased in HSMitoQ relative to HSCon pigs (1.5 kg vs. 0.9 kg, respectively; P = 0.08). Heat-stressed pigs lost BW compared to their TN counterparts (-4.7 kg vs. +1.6 kg, respectively; P < 0.01); however, the reduction in BW was attenuated in HSMitoQ compared to HSCon pigs (-3.9 kg vs. -5.5 kg, respectively; P < 0.01). Total gastrointestinal tract weight (empty tissue and luminal contents) was decreased in HS pigs relative to their TN counterparts (6.2 kg vs. 8.6 kg, respectively; P < 0.01). Blood glucose increased in HSMitoQ relative to HSCon pigs (15%; P = 0.04). Circulating non-esterified fatty acids (NEFA) increased in HS compared to TN pigs (P < 0.01), although this difference was disproportionately influenced by elevated NEFA in HSCon relative to HSMitoQ pigs (251 μEq/L vs. 142 μEq/L; P < 0.01). Heat-stressed pigs had decreased circulating insulin relative to their TN counterparts (47%; P = 0.04); however, the insulin:FI ratio tended to increase in HS relative to TN pigs (P = 0.09). Overall, circulating leukocytes were similar across treatments (P > 0.10). Plasma C-reactive protein remained similar among treatments; however, haptoglobin increased in HS relative to TN pigs (48%; P = 0.03). In conclusion, acute HS exposure negatively altered animal performance, inflammation, and metabolism, which were partially ameliorated by MitoQ.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Mohmmad Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
7
|
Song H, Lu Z, Zhan K, Datsomor O, Ma X, Yang T, Chen Y, Jiang M, Zhao G. Effects of Glucose Levels on Inflammation and Amino Acid Utilization in Lipopolysaccharide-Induced Bovine Mammary Epithelial Cells. Animals (Basel) 2023; 13:3494. [PMID: 38003112 PMCID: PMC10668840 DOI: 10.3390/ani13223494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Glucose and amino acids are important sources of nutrients in the synthetic milk of dairy cows, and understanding the fate of amino acids is essential to optimize the utilization of amino acids in milk protein synthesis, thereby reducing nutrient inefficiencies during lactation. The purpose of this study was to investigate the effects of LPS and different concentrations of glucose on (1) the expression of inflammatory factors and genes, (2) the glucose metabolism, and (3) amino acid utilization in BMECs. The results showed that there was an interaction (LPS × glucose, p < 0.05) between LPS and glucose content in the inflammatory cytokine genes (IL-6 and TNF-α) and the inflammatory regulatory genes (CXCL2, CXCL8, and CCL5). With the addition of LPS, the HG + LPS group caused downregulated (p < 0.05) expression of IL-6 and TNF-α, compared with the LG + LPS group. Interestingly, compared with the LG + LPS group, the HG + LPS group upregulated (p < 0.05) the expression of CXCL2, CXCL8, and CCL5. LPS supplementation increased (p = 0.056) the consumption of glucose and GLUT1 gene expression (p < 0.05) and tended to increase (p = 0.084) the LDHA gene expression of BMECs under conditions of different concentrations of glucose culture. High glucose content increased (p < 0.001) the consumption of glucose and enhanced (p < 0.05) the GLUT1, HK1, HK2, and LDHA gene expression of BMECs with or without LPS incubation, and there was an interaction (LPS × glucose, p < 0.05) between LPS and glucose concentrations in GLUT1 gene expression. In this study, LPS enhanced (p < 0.05) the consumption of amino acids such as tryptophan, leucine, isoleucine, methionine, valine, histidine, and glutamate, while high levels of glucose decreased (p < 0.01) consumption, except in the case of tyrosine. For histidine, leucine, isoleucine, and valine consumption, there was an interaction (LPS × glucose, p < 0.05) between LPS and glucose levels. Overall, these findings suggest that relatively high glucose concentrations may lessen the LPS-induced BMEC inflammatory response and reduce amino acid consumption, while low glucose concentrations may increase the demand for most amino acids through proinflammatory responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (H.S.); (Z.L.); (K.Z.); (O.D.); (X.M.); (T.Y.); (Y.C.); (M.J.)
| |
Collapse
|
8
|
Chen YC, Orellana Rivas RM, Marins TN, Melo VHLR, Wang Z, Garrick M, Gao J, Liu H, Bernard JK, Melendez P, Tao S. Effects of heat stress abatement on systemic and mammary inflammation in lactating dairy cows. J Dairy Sci 2023; 106:8017-8032. [PMID: 37641342 DOI: 10.3168/jds.2023-23390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/06/2023] [Indexed: 08/31/2023]
Abstract
To examine the effects of evaporative cooling on systemic and mammary inflammation of lactating dairy cows, 30 multiparous Holstein cows (parity = 2.4, 156 d in milk) were randomly assigned to 1 of 2 treatments: cooling (CL) with fans and misters or not (NC). The experiment was divided into a 10-d baseline when all cows were cooled, followed by a 36-d environmental challenge when cooling was terminated for NC cows. The onset of environmental challenge was considered as d 1. Temperature-humidity index averaged 78.4 during the environmental challenge. Milk yield and dry matter intake (DMI) were recorded daily. Blood and milk samples were collected from a subset of cows (n = 9/treatment) on d -3, 1, 3, 7, 14, and 28 of the experiment to measure cortisol, interleukin 10 (IL10), tumor necrosis factor-α (TNF-α), haptoglobin, and lipopolysaccharide binding protein (LBP). Mammary biopsies were collected from a second subset of cows (n = 6/treatment) on d -9, 2, 10, and 36 to analyze gene expression of cytokines and haptoglobin. A subset of cows (n = 7/treatment) who were not subjected to mammary biopsy collection received a bolus of lipopolysaccharides (LPS) in the left rear quarter on d 30 of the experiment. Blood was sampled from cows and milk samples from the LPS-infused quarter were collected at -4, 0, 3, 6, 12, 24, 48, and 96 h relative to infusion, for analyses of inflammatory products. Deprivation of cooling decreased milk yield and DMI. Compared with CL cows, plasma cortisol concentration of NC cows was higher on d 1 but lower on d 28 of the experiment (cooling × time). Deprivation of cooling did not affect circulating TNF-α, IL10, haptoglobin, or LBP. Compared with CL cows, NC cows tended to have higher milk IL10 concentrations but did not show effects in TNF-α, haptoglobin, or LBP. No differences were observed in mammary tissue gene expression of TNF-α, IL10, and haptoglobin. Milk yield declined after LPS infusion but was not affected by treatment. Compared with CL cows, NC cows had greater milk somatic cell count following intramammary LPS infusion. Non-cooled cows had lower circulating TNF-α and IL10 concentrations and tended to have lower circulating haptoglobin concentrations than CL cows. Milk IL10 and TNF-⍺ concentrations were higher 3 h after LPS infusion for NC cows compared with CL cows. Additionally, NC cows tended to have higher milk haptoglobin concentration after LPS infusion than CL cows. In conclusion, deprivation of evaporative cooling had minimal effects on lactating cows' basal inflammatory status, but upregulated mammary inflammatory responses after intramammary LPS infusion.
Collapse
Affiliation(s)
- Y-C Chen
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - R M Orellana Rivas
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - T N Marins
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Victor H L R Melo
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - Z Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - M Garrick
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - J Gao
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602
| | - H Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - J K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA 31973
| | - P Melendez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Tifton, GA 31793
| | - S Tao
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602.
| |
Collapse
|
9
|
Pegolo S, Giannuzzi D, Piccioli-Cappelli F, Cattaneo L, Gianesella M, Ruegg PL, Trevisi E, Cecchinato A. Blood biochemical changes upon subclinical intramammary infection and inflammation in Holstein cattle. J Dairy Sci 2023; 106:6539-6550. [PMID: 37479572 DOI: 10.3168/jds.2022-23155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/20/2023] [Indexed: 07/23/2023]
Abstract
The aim of this study was to investigate the associations between subclinical intramammary infection (IMI) from different pathogens combined with inflammation status and a set of blood biochemical traits including energy-related metabolites, indicators of liver function or hepatic damage, oxidative stress, inflammation, innate immunity, and mineral status in 349 lactating Holstein cows. Data were analyzed with a linear model including the following fixed class effects: days in milk, parity, herd, somatic cell count (SCC), bacteriological status (positive and negative), and the SCC × bacteriological status interaction. Several metabolites had significant associations with subclinical IMI or SCC. Increased SCC was associated with a linear decrease in cholesterol concentrations which ranged from -2% for the class ≥50,000 and <200,000 cells/mL to -11% for the SCC class ≥400,000 cells/mL compared with the SCC class <50,000 cells/mL. A positive bacteriological result was associated with an increase in bilirubin (+24%), paraoxonase (+11%), the ratio paraoxonase/cholesterol (+9%), and advanced oxidation protein product concentration (+23%). Increased SCC were associated with a linear decrease in ferric reducing antioxidant power concentrations ranging from -3% for the class ≥50,000 and <200,000 cells/mL to -9% for the SCC class ≥400,000 cells/mL (respect to the SCC class <50,000 cells/mL). A positive bacteriological result was associated with an increase in haptoglobin concentrations (+19%). Increased SCC were also associated with a linear increase in haptoglobin concentrations, which ranged from +24% for the class ≥50,000 and <200,000 cells/mL (0.31 g/L) to +82% for the SCC class ≥400,000 cells/mL (0.45 g/L), with respect to the SCC class <50,000 cells/mL (0.25 g/L). Increased SCC were associated with a linear increase in ceruloplasmin concentrations (+15% for SCC ≥50,000 cells/mL). The observed changes in blood biochemical markers, mainly acute phase proteins and oxidative stress markers, suggest that cows with subclinical IMI may experience a systemic involvement.
Collapse
Affiliation(s)
- S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| | - D Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy.
| | - F Piccioli-Cappelli
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - L Cattaneo
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - M Gianesella
- Department of Animal Medicine, Production and Health (MAPS), University of Padova, 35020 Legnaro, Padova, Italy
| | - P L Ruegg
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA) and the Romeo and Enrica Invernizzi Research Center for Sustainable Dairy Production (CREI), Faculty of Agricultural, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, 35020 Legnaro, Padova, Italy
| |
Collapse
|
10
|
Ruiz-González A, Suissi W, Baumgard LH, Martel-Kennes Y, Chouinard PY, Gervais R, Rico DE. Increased dietary vitamin D 3 and calcium partially alleviate heat stress symptoms and inflammation in lactating Holstein cows independent of dietary concentrations of vitamin E and selenium. J Dairy Sci 2023; 106:3984-4001. [PMID: 37164847 DOI: 10.3168/jds.2022-22345] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 01/19/2023] [Indexed: 05/12/2023]
Abstract
Twelve multiparous Holstein cows (42.2 ± 5.6 kg of milk/d; 83 ± 27 d in milk) were used in a split-plot design testing the effects of mineral and vitamin supplementation on the time course of animal performance, metabolism, and inflammation markers during heat stress. The main plot was the average concentrations of dietary vitamin E and Se (adequate: 11.1 IU/kg of vitamin E and 0.55 mg/kg of Se, and high: 223 IU/kg of vitamin E and 1.8 mg/kg of Se, respectively). Within each plot, cows were randomly assigned to (1) heat stress (HS) with adequate concentrations of vitamin D3 and Ca (1,012 IU/kg and 0.73%, respectively), (2) HS with high concentrations of vitamin D3 and Ca (HS+D3/Ca; 3,764 IU/kg and 0.97%, respectively), or (3) pair-feeding (PF) in thermoneutrality with adequate concentrations of vitamin D3 and Ca (1,012 IU/kg and 0.73% Ca) in a Latin square design with 14-d periods and 7-d washouts. The highest rectal temperature was recorded at 1700 h for HS (39.4°C; mean of d 1 to 14), being 1.2 and 0.8°C greater than for PF and HS+D3/Ca, respectively. Respiratory rate and water intake were higher in HS (73 breaths/min and 115 L/d, respectively) relative to PF (28 breaths/min and 76 L/d). Heat stress decreased dry matter intake progressively, reaching a nadir on d 5 to 7 (33% reduction) and was not different between treatments. Milk yield decreased progressively in all treatments, but remained greater in PF relative to HS from d 3 to 14 (10%), whereas HS and HS+D3/Ca were not different. Milk fat, protein, and lactose concentrations and yields were lower in HS relative to PF from d 3 to 14, but not different between HS and HS+D3/Ca. Relative to PF, preprandial insulin concentrations were increased in HS, whereas plasma nonesterified fatty acids were decreased on d 7 and 14. Plasma lipopolysaccharide-binding protein concentrations increased in HS cows on d 7 and 14, respectively, relative to PF, whereas they were reduced in HS + D3/Ca on d 14. Plasma C-reactive protein, tumor necrosis factor-α, and fecal calprotectin were increased in HS relative to both PF and HS+D3/Ca on d 7 and 14. Rectal temperature was positively associated with plasma lipopolysaccharide-binding protein (r = 0.72), tumor necrosis factor-α (r = 0.74), C-reactive protein (r = 0.87), and with milk somatic cells (r = 0.75). Plasma 8-hydroxy-2-deoxyguanosine concentrations presented a 3-way interaction, where 8-hydroxy-2-deoxyguanosine was lower in HS than in PF on d 7 and 14, and lower in HS+D3/Ca relative to HS on d 14 in the adequate vitamin E and Se treatment, but no effects were observed in the high vitamin E and Se group. Plasma superoxide dismutase concentrations increased over time, and were higher in HS relative to PF on d 14, whereas HS+D3/Ca was similar to HS. Heat stress markedly reduced milk production and milk components while increasing markers of leaky gut and inflammation. In contrast, vitamin D3 and Ca supplementation reduced hyperthermia (d 7-14), markers of leaky gut, and inflammation independent of dietary concentrations of vitamin E and Se.
Collapse
Affiliation(s)
- A Ruiz-González
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - W Suissi
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, Canada
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011
| | - Y Martel-Kennes
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, Canada
| | - P Y Chouinard
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - R Gervais
- Département des Sciences Animales, Université Laval, Québec, QC, Canada
| | - D E Rico
- Centre de Recherche en Sciences Animales de Deschambault (CRSAD), Deschambault, QC, Canada.
| |
Collapse
|
11
|
Wagner LA, Fritsche D, Gross JJ, Bruckmaier RM, Wellnitz O. Effects of different nutrient supply on metabolism and mammary immune response to an LPS challenge in early lactation of dairy cows. J Dairy Sci 2023; 106:2948-2962. [PMID: 36823009 DOI: 10.3168/jds.2022-22641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Energy and nutrient deficiency in dairy cows in early lactation is considered to contribute to their increased susceptibility to mastitis. We have tested the hypothesis that feeding diets with high contents of either nitrogenic, glucogenic, or lipogenic components in early lactation affects both the endocrine and metabolic status, as well as the mammary immune competence. After calving, cows were fed increasing amounts of concentrate up to 10 kg/d rich in crude protein (nitrogenic, n = 10), glucogenic precursors (glucogenic, n = 11), or lipids (lipogenic, n = 11). In wk 3, one udder quarter was challenged with lipopolysaccharide (LPS) from Escherichia coli. Blood and milk were sampled on the day before LPS challenge (d -1), and on d 0, 1, 2, 3, and 9 after LPS challenge. On the day of LPS challenge additional samples were taken hourly for quarter milk and every 3 h for blood. Urea concentrations were higher in plasma and milk of cows fed the nitrogenic diet. However, plasma concentrations of glucose, cholesterol, triglycerides, β-hydroxybutyrate, nonesterified fatty acids, as well as insulin, glucagon, and insulin-like growth factor-1 were not affected by the different diets. The mammary immune challenge induced a substantial increase of somatic cell count (SCC) in the treated quarter, and a transient decrease of total milk yield and white blood cells similar in all diet groups for one day. The absolute phagocytosis of blood leukocytes was decreased; however, the phagocytosis per cell was increased in glucogenic-fed cows at 6 h after LPS challenge. During mammary inflammation an insulin resistance, shown by increased plasma glucose, insulin, and glucagon, developed similarly in all diet groups. β-hydroxybutyrate and nonesterified fatty acids were decreased at 1 d after LPS challenge in glucogenic-fed cows only. Cholesterol did not change, and triglycerides only decreased significantly in lipogenic-fed cows 6 h after challenge. On d 9 after LPS challenge, SCC and milk yield and metabolic factors were recovered in all groups. In conclusion, the endocrine and metabolic situation, and the immune response to intramammary LPS of dairy cows during early lactation was not substantially influenced by the elevated supply of nitrogenic, glucogenic, or lipogenic components due to the provided feed in this study.
Collapse
Affiliation(s)
- Lea A Wagner
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Dominik Fritsche
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Josef J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Rupert M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | - Olga Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
12
|
Rico DE, Razzaghi A. Animal board invited review: The contribution of adipose stores to milk fat: implications on optimal nutritional strategies to increase milk fat synthesis in dairy cows. Animal 2023; 17:100735. [PMID: 36889250 DOI: 10.1016/j.animal.2023.100735] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
A wide range of nutritional and non-nutritional factors influence milk fat synthesis and explain the large variation observed in dairy herds. The capacity of the animal to synthesize milk fat will largely depend on the availability of substrates for lipid synthesis, some of which originate directly from the diet, ruminal fermentation or from adipose tissue stores. The mobilization of non-esterified fatty acids from adipose tissues is important to support the energy demands of milk synthesis and will therefore have an impact on the composition of milk lipids, especially during the early lactation period. Such mobilization is tightly controlled by insulin and catecholamines, and in turn, can be affected indirectly by factors that influence these signals, namely diet composition, lactation stage, genetics, endotoxemia, and inflammation. Environmental factors, such as heat stress, also impact adipose tissue mobilization and milk fat synthesis, mainly through endotoxemia and an immune response-related increase in concentrations of plasma insulin. Indeed, as proposed in the present review, the central role of insulin in the control of lipolysis is key to improving our understanding of how nutritional and non-nutritional factors impact milk fat synthesis. This is particularly the case during early lactation, as well as in situations where mammary lipid synthesis is more dependent on adipose-derived fatty acids.
Collapse
Affiliation(s)
| | - Ali Razzaghi
- Innovation Center, Ferdowsi University of Mashhad, PO Box 9177948974, Mashhad, Iran
| |
Collapse
|
13
|
Bortoluzzi EM, Goering MJ, Ochoa SJ, Holliday AJ, Mumm JM, Nelson CE, Wu H, Mote BE, Psota ET, Schmidt TB, Jaberi-Douraki M, Hulbert LE. Evaluation of Precision Livestock Technology and Human Scoring of Nursery Pigs in a Controlled Immune Challenge Experiment. Animals (Basel) 2023; 13:ani13020246. [PMID: 36670787 PMCID: PMC9854951 DOI: 10.3390/ani13020246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The objectives were to determine the sensitivity, specificity, and cutoff values of a visual-based precision livestock technology (NUtrack), and determine the sensitivity and specificity of sickness score data collected with the live observation by trained human observers. At weaning, pigs (n = 192; gilts and barrows) were randomly assigned to one of twelve pens (16/pen) and treatments were randomly assigned to pens. Sham-pen pigs all received subcutaneous saline (3 mL). For LPS-pen pigs, all pigs received subcutaneous lipopolysaccharide (LPS; 300 μg/kg BW; E. coli O111:B4; in 3 mL of saline). For the last treatment, eight pigs were randomly assigned to receive LPS, and the other eight were sham (same methods as above; half-and-half pens). Human data from the day of the challenge presented high true positive and low false positive rates (88.5% sensitivity; 85.4% specificity; 0.871 Area Under Curve, AUC), however, these values declined when half-and-half pigs were scored (75% sensitivity; 65.5% specificity; 0.703 AUC). Precision technology measures had excellent AUC, sensitivity, and specificity for the first 72 h after treatment and AUC values were >0.970, regardless of pen treatment. These results indicate that precision technology has a greater potential for identifying pigs during a natural infectious disease event than trained professionals using timepoint sampling.
Collapse
Affiliation(s)
- Eduarda M. Bortoluzzi
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Mikayla J. Goering
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Sara J. Ochoa
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Aaron J. Holliday
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Jared M. Mumm
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Catherine E. Nelson
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | - Hui Wu
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA
| | - Benny E. Mote
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Eric T. Psota
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Ty B. Schmidt
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE 68505, USA
| | - Majid Jaberi-Douraki
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA
- Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA
- 1-DATA, Kansas State University Olathe, Olathe, KS 66061, USA
| | - Lindsey E. Hulbert
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: ; Tel.: +1-785-477-2904
| |
Collapse
|
14
|
Mastitis: What It Is, Current Diagnostics, and the Potential of Metabolomics to Identify New Predictive Biomarkers. DAIRY 2022. [DOI: 10.3390/dairy3040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Periparturient diseases continue to be the greatest challenge to both farmers and dairy cows. They are associated with a decrease in productivity, lower profitability, and a negative impact on cows’ health as well as public health. This review article discusses the pathophysiology and diagnostic opportunities of mastitis, the most common disease of dairy cows. To better understand the disease, we dive deep into the causative agents, traditional paradigms, and the use of new technologies for diagnosis, treatment, and prevention of mastitis. This paper takes a systems biology approach by highlighting the relationship of mastitis with other diseases and introduces the use of omics sciences, specifically metabolomics and its analytical techniques. Concluding, this review is backed up by multiple studies that show how earlier identification of mastitis through predictive biomarkers can benefit the dairy industry and improve the overall animal health.
Collapse
|
15
|
Chandler T, Westhoff T, Overton T, Lock A, Van Amburgh M, Sipka A, Mann S. Lipopolysaccharide challenge following intravenous amino acid infusion in postpartum dairy cows: I. Production, metabolic, and hormonal responses. J Dairy Sci 2022; 105:4593-4610. [DOI: 10.3168/jds.2021-21226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/25/2022] [Indexed: 01/15/2023]
|
16
|
Shangraw EM, McFadden TB. Graduate Student Literature Review: Systemic mediators of inflammation during mastitis and the search for mechanisms underlying impaired lactation. J Dairy Sci 2021; 105:2718-2727. [PMID: 34955254 DOI: 10.3168/jds.2021-20776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/01/2021] [Indexed: 12/17/2022]
Abstract
The negative effect of mastitis on lactation is well established, yet the mechanisms causing reduced milk production in the afflicted dairy cow are not. As one of the major inflammatory diseases in the dairy industry, mastitis has rightly received considerable research interest for decades. However, the focus on distinct, pathologic effects in mastitic glands has largely overlooked systemic effects on noninflamed mammary glands. This is particularly evident in the severe, acute response to the potent inflammatory mediator, lipopolysaccharide (LPS). Whereas secretory cell death, impaired tight junctions, and migration of leukocytes are locally restricted to an inflamed, LPS-challenged gland, changes in milk yield and milk components may be detectable in all mammary glands. Further, these differences extend to the mammary transcriptome. Notably, few transcriptomic studies have been designed to test for effects of systemic mediators of inflammation on gene expression. Relevant changes in the noninflamed mammary gland, identified through biochemical analyses and transcriptional studies, warrant further research. Current evidence suggests proinflammatory cytokines play a role in regulating lactose synthesis, but additional candidates and mechanisms continue to be identified. Ultimately, understanding how systemic mediators of inflammation affect mammary function may lead to the development of interventions that enable more efficient milk production without sacrificing the benefits of inflammation.
Collapse
Affiliation(s)
- E M Shangraw
- Division of Animal Sciences, University of Missouri, Columbia 65211.
| | - T B McFadden
- Division of Animal Sciences, University of Missouri, Columbia 65211
| |
Collapse
|
17
|
Pate RT, Luchini D, Cant JP, Baumgard LH, Cardoso FC. Immune and metabolic effects of rumen-protected methionine during a heat stress challenge in lactating Holstein cows. J Anim Sci 2021; 99:skab323. [PMID: 34741611 PMCID: PMC8648293 DOI: 10.1093/jas/skab323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Multiparous, lactating Holstein cows (n = 32) were randomly assigned to one of two dietary treatments [TMR with rumen-protected Met (RPM) or TMR without RPM (CON)], and within each dietary treatment group cows were randomly assigned to one of two environmental treatment groups in a split-plot crossover design. In phase 1 (9 d), all cows were fed ad libitum and in thermoneutral conditions (TN). In phase 2 (9 d), group 1 (n = 16) was exposed to a heat stress (HS) challenge (HSC). Group 2 cows (n = 16) were pair-fed (PFTN) to HSC counterparts and remained in TN. After a 21-d washout period, the study was repeated (period 2) and the environmental treatments were inverted relative to treatments from phase 2 of period 1, while dietary treatments remained the same for each cow. During phase 1, cows in RPM had greater plasma Met concentration compared with cows in CON (59 and 30 µM, respectively; P < 0.001). Cows in PFTN had a greater decrease (P < 0.05) in plasma insulin than cows in HSC at 4 h (-2.7 µIU/mL vs. -0.7 µIU/mL) and 8 h (-7.7 µIU/mL vs. -0.4 µIU/mL) during phase 2. Compared with cows in PFTN, cows in HSC had an increase (P < 0.05) in plasma serum amyloid A (-59 µg/mL vs. +58 µg/mL), serum haptoglobin (-3 µg/mL vs. +33 µg/mL), plasma lipopolysaccharide binding protein (-0.27 and +0.11 µg/mL), and plasma interleukin-1β (-1.9 and +3.9 pg/mL) during phase 2. In conclusion, HSC elicited immunometabolic alterations; however, there were limited effects of RPM on cows in HSC.
Collapse
Affiliation(s)
- Russell T Pate
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | - John P Cant
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Felipe C Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Chen S, Yong Y, Ju X. Effect of heat stress on growth and production performance of livestock and poultry: Mechanism to prevention. J Therm Biol 2021; 99:103019. [PMID: 34420644 DOI: 10.1016/j.jtherbio.2021.103019] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/12/2021] [Accepted: 05/30/2021] [Indexed: 01/01/2023]
Abstract
Heat stress is a widespread phenomenon in domestic animal feeding in tropical and sub-tropical areas that are subjected to a growing negative effect in livestock and poultry due to global warming. It leads to reduced food intake, retarded growth, intestinal disequilibrium, lower reproductive performance, immunity and endocrine disorders in livestock and poultry. Many studies show that the pathogenesis of heat stress is mainly related to oxidative stress, hormone secretion disorder, cytokine imbalance, cell apoptosis, cell autophagy, and abnormal cell function. Its mechanism refers to activation of mitogen-activated protein kinase (MAPK) signaling pathway and nuclear factor kappa B (NF-κB) signaling pathway, the fluctuation of tight junction protein and heat shock protein expression, and protein epigenetic modification. This manuscript reviews the mechanism of heat stress through an insight into the digestive, reproductive, immune, and endocrine system. Lastly, the progress in prevention and control techniques of heat stress has been summarized.
Collapse
Affiliation(s)
- Shengwei Chen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yanhong Yong
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xianghong Ju
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518018, China; Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
19
|
Mayorga EJ, Horst EA, Goetz BM, Rodríguez-Jiménez S, Abeyta MA, Al-Qaisi M, Lei S, Rhoads RP, Selsby JT, Baumgard LH. Rapamycin administration during an acute heat stress challenge in growing pigs. J Anim Sci 2021; 99:6265784. [PMID: 33950189 DOI: 10.1093/jas/skab145] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Study objectives were to determine the effects of rapamycin (Rapa) on biomarkers of metabolism and inflammation during acute heat stress (HS) in growing pigs. Crossbred barrows (n = 32; 63.5 ± 7.2 kg body weight [BW]) were blocked by initial BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and Rapa (n = 8; TNRapa), 3) HS control (n = 8; HSCon), or 4) HS and Rapa (n = 8; HSRapa). Following 6 d of acclimation to individual pens, pigs were enrolled in two experimental periods (P). During P1 (10 d), pigs were fed ad libitum and housed in TN conditions (21.3 ± 0.2°C). During P2 (24 h), HSCon and HSRapa pigs were exposed to constant HS (35.5 ± 0.4°C), while TNCon and TNRapa pigs remained in TN conditions. Rapamycin (0.15 mg/kg BW) was orally administered twice daily (0700 and 1800 hours) during both P1 and P2. HS increased rectal temperature and respiration rate compared to TN treatments (1.3°C and 87 breaths/min, respectively; P < 0.01). Feed intake (FI) markedly decreased in HS relative to TN treatments (64%; P < 0.01). Additionally, pigs exposed to HS lost BW (4 kg; P < 0.01), while TN pigs gained BW (0.7 kg; P < 0.01). Despite marked changes in phenotypic parameters caused by HS, circulating glucose and blood urea nitrogen did not differ among treatments (P > 0.10). However, the insulin:FI increased in HS relative to TN treatments (P = 0.04). Plasma nonesterified fatty acids (NEFA) increased in HS relative to TN treatments; although this difference was driven by increased NEFA in HSCon compared to TN and HSRapa pigs (P < 0.01). Overall, circulating white blood cells, lymphocytes, and monocytes decreased in HS compared to TN pigs (19%, 23%, and 33%, respectively; P ≤ 0.05). However, circulating neutrophils were similar across treatments (P > 0.31). The neutrophil-to-lymphocyte ratio (NLR) was increased in HS relative to TN pigs (P = 0.02); however, a tendency for reduced NLR was observed in HSRapa compared to HSCon pigs (21%; P = 0.06). Plasma C-reactive protein tended to differ across treatments (P = 0.06) and was increased in HSRapa relative to HSCon pigs (46%; P = 0.03). Circulating haptoglobin was similar between groups. In summary, pigs exposed to HS had altered phenotypic, metabolic, and leukocyte responses; however, Rapa administration had limited impact on outcomes measured herein.
Collapse
Affiliation(s)
- Edith J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Erin A Horst
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Brady M Goetz
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | | | - Megan A Abeyta
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Mohmmad Al-Qaisi
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Samantha Lei
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Robert P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua T Selsby
- Department of Animal Science, Iowa State University, Ames, IA 50011
| | - Lance H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011
| |
Collapse
|
20
|
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104:8380-8410. [PMID: 34053763 DOI: 10.3168/jds.2021-20330] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
The progression from gestation into lactation represents the transition period, and it is accompanied by marked physiological, metabolic, and inflammatory adjustments. The entire lactation and a cow's opportunity to have an additional lactation are heavily dependent on how successfully she adapts during the periparturient period. Additionally, a disproportionate amount of health care and culling occurs early following parturition. Thus, lactation maladaptation has been a heavily researched area of dairy science for more than 50 yr. It was traditionally thought that excessive adipose tissue mobilization in large part dictated transition period success. Further, the magnitude of hypocalcemia has also been assumed to partly control whether a cow effectively navigates the first few months of lactation. The canon became that adipose tissue released nonesterified fatty acids (NEFA) and the resulting hepatic-derived ketones coupled with hypocalcemia lead to immune suppression, which is responsible for transition disorders (e.g., mastitis, metritis, retained placenta, poor fertility). In other words, the dogma evolved that these metabolites and hypocalcemia were causal to transition cow problems and that large efforts should be enlisted to prevent increased NEFA, hyperketonemia, and subclinical hypocalcemia. However, despite intensive academic and industry focus, the periparturient period remains a large hurdle to animal welfare, farm profitability, and dairy sustainability. Thus, it stands to reason that there are alternative explanations to periparturient failures. Recently, it has become firmly established that immune activation and the ipso facto inflammatory response are a normal component of transition cow biology. The origin of immune activation likely stems from the mammary gland, tissue trauma during parturition, and the gastrointestinal tract. If inflammation becomes pathological, it reduces feed intake and causes hypocalcemia. Our tenet is that immune system utilization of glucose and its induction of hypophagia are responsible for the extensive increase in NEFA and ketones, and this explains why they (and the severity of hypocalcemia) are correlated with poor health, production, and reproduction outcomes. In this review, we argue that changes in circulating NEFA, ketones, and calcium are simply reflective of either (1) normal homeorhetic adjustments that healthy, high-producing cows use to prioritize milk synthesis or (2) the consequence of immune activation and its sequelae.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
21
|
Yasoob TB, Yu D, Khalid AR, Zhang Z, Zhu X, Saad HM, Hang S. Oral administration of Moringa oleifera leaf powder relieves oxidative stress, modulates mucosal immune response and cecal microbiota after exposure to heat stress in New Zealand White rabbits. J Anim Sci Biotechnol 2021; 12:66. [PMID: 33975652 PMCID: PMC8114525 DOI: 10.1186/s40104-021-00586-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Background Heat stress (HS) disrupts the gut barrier allowing the uptake of lipopolysaccharide (LPS) and leads to an inflammatory response and changes in gut microbiota composition. Moringa oleifera leaf powder (MOLP) has been proposed to combat HS, yet its alleviate role is currently under investigation. The current study investigated the effects of chronic HS and MOLP supplementation on changes in redox status and immune response of cecal mucosa along with alteration in cecal microbiota. Methods A total of 21 young New Zealand White (NZW) rabbits (male) about 32 weeks old (mean body weight of 3318 ± 171 g) reared on a commercial pelleted diet were employed; divided into three groups (n = 7): control (CON, 25 °C), heat stress (HS, 35 °C for 7 h daily), and HS supplemented orally with MOLP (HSM, 35 °C) at 200 mg/kg body weight per day for 4 weeks. Results The results demonstrated that MOLP supplementation increased organ index of cecal tissue compared with the HS group (P > 0.05). Levels of malonaldehyde (MDA) and activity of superoxide dismutase (SOD) as well as lactate dehydrogenase (LDH) were reduced in the cecal mucosa of the HSM group compared with the HS group. MOLP downregulated the contents of cecal mucosa LPS, several inflammatory markers (TNF-α/IL-1α/IL-1β), and myeloperoxidase (MPO) in the HSM group (P < 0.05). Secretory immunoglobulin A (SIgA) was increased in the HSM group compared with the HS group (P < 0.05). The transcriptome of cecal mucosa showed that MOLP reduced gene expression relative to several immune factors, including IL-10, IFNG, and RLA, whereas both HS and MOLP increased the gene expression of fat digestion and absorption pathway, including APOA1, FABP1, FABP2, MTTP, and LOC100344166, compared to the CON group (P < 0.001). At the phylum level, the relative abundance of Proteobacteria was increased by HS, while Actinobacteria was significantly increased by HSM compared to other groups (P < 0.05). At genus level, Papillibacter was higher in abundance in HSM groups compared to CON and HS groups (P < 0.05). Higher butyrate concentrations were observed in the HSM group than HS and CON groups (P < 0.05). Conclusion In conclusion, HS in growing rabbits resulted in alteration of cecal microbiota at phyla level as well as increased oxidative stress and expression of mucosal inflammatory genes. Whereas, oral MOLP supplementation elevated the relative weight of cecum, affected their immunological and cecal micro-ecosystem function by improving antioxidant status and down-regulating mucosal tissue inflammatory response. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00586-y.
Collapse
Affiliation(s)
- Talat Bilal Yasoob
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Defu Yu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Abdur Rauf Khalid
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Livestock and Poultry Production, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Zhen Zhang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaofeng Zhu
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Heba M Saad
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China.,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suqin Hang
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, No.1 WeiGang, Xuanwu region, Nanjing, 210095, Jiangsu, China. .,Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
22
|
Marins TN, Monteiro APA, Weng X, Guo J, Orellana Rivas RM, Bernard JK, Tomlinson DJ, DeFrain JM, Tao S. Response of lactating dairy cows fed different supplemental zinc sources with and without evaporative cooling to intramammary lipopolysaccharide infusion: metabolite and mineral profiles in blood and milk. J Anim Sci 2021; 98:5917804. [PMID: 33011760 DOI: 10.1093/jas/skaa323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/29/2020] [Indexed: 11/15/2022] Open
Abstract
The objective of this study was to determine the effect of evaporative cooling and dietary supplemental Zn source on blood metabolites, insulin and mineral concentrations, and milk mineral concentrations following intramammary lipopolysaccharide (LPS) infusion. Seventy-two multiparous Holstein cows were assigned to one of four treatments with a 2 × 2 factorial arrangement. Treatments included two environments: with or without evaporative cooling using fans and misters over the freestall and feedbunk, and two dietary sources of supplemental Zn: 75 mg/kg of dry matter (DM) supplied by Zn hydroxychloride (inorganic Zn; IOZ) or Zn hydroxychloride (35 mg of Zn/kg of DM) + Zn-Met complex (ZMC; 40 mg of Zn/kg of DM). A subset of cows (n = 16; 263 ± 63 d in milk) was infused with 10 μg of LPS or a saline control in the left or right rear quarters on day 34 of the environmental treatment. Individual milk samples collected from LPS-infused quarters at -4, 0, 6, 12, 24, 48, 72, 96, and 144 h relative to infusion were analyzed for minerals. Blood samples were collected at the same time with an additional sample collected at 3 h post-infusion to analyze glucose, nonesterified fatty acids (NEFA), insulin, and minerals. Cooling by time interactions (P ≤ 0.07) were observed for plasma glucose, NEFA, and serum insulin. Compared with cooled cows, non-cooled cows had lower concentrations of plasma glucose except at 3 h following intramammary LPS infusion, greater serum insulin at 3 and 12 h, and lower plasma NEFA at 24 and 48 h after infusion. Relative to cooled cows, non-cooled cows tended (P = 0.07) to have lower serum K concentration and had lower (P < 0.01) serum Zn 6 h following infusion (cooling by time interaction: P < 0.01). Relative to ZMC cows, IOZ cows had greater (P ≤ 0.09) concentrations of plasma Se, skim milk Na and Se, and skim milk Na to K ratio. Regardless of treatment, intramammary LPS infusion reduced (P < 0.01) serum or plasma concentrations of Ca, Mg, Zn, Fe, and Se, but increased (P < 0.01) their concentration in skim milk. In conclusion, deprivation of cooling resulted in more rapid and prolonged insulin release and influenced the systemic and mammary mineral metabolism during mammary inflammation induced by LPS of lactating dairy cows. Dietary supplementation of Zn-Met complex reduced blood and milk Se concentrations compared with cows fed Zn from an inorganic source.
Collapse
Affiliation(s)
- Thiago N Marins
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| | - Ana P A Monteiro
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| | - Xisha Weng
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| | - Jinru Guo
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| | | | - John K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| | | | | | - Sha Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton, GA
| |
Collapse
|
23
|
Opgenorth J, Abuajamieh M, Horst EA, Kvidera SK, Johnson JS, Mayorga EJ, Sanz-Fernandez MV, Al-Qaisi MA, DeFrain JM, Kleinschmit DH, Gorden PJ, Baumgard LH. The effects of zinc amino acid complex on biomarkers of gut integrity, inflammation, and metabolism in heat-stressed ruminants. J Dairy Sci 2020; 104:2410-2421. [PMID: 33358164 DOI: 10.3168/jds.2020-18909] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022]
Abstract
Study objectives were to evaluate the effects of replacing 40 mg/kg of dietary Zn from Zn sulfate (ZS) with Zn amino acid complex (ZA; Zinpro Corporation, Eden Prairie, MN) on inflammation and intestinal integrity in heat-stressed and pair-fed (PF) ruminants. Forty Holstein steers (173.6 ± 4.9 kg) were randomly assigned to 1 of 5 dietary-environmental treatments: (1) thermoneutral (TN) ad libitum with 75 mg/kg of dry matter (DM) ZS (ZSCON); (2) TN pair-fed with 75 mg/kg DM ZS (ZSPF); (3) TN pair-fed with 40 mg/kg DM ZA and 35 mg/kg DM ZS (ZAPF); (4) heat stress (HS) ad libitum with 75 mg/kg DM ZS (ZSHS); and (5) HS ad libitum 40 mg/kg DM ZA and 35 mg/kg DM ZS (ZAHS). Before study initiation, calves were fed their respective diets for 21 d. Following the pre-feeding phase, steers were transferred into environmental chambers and were subjected to 2 successive experimental periods. During period 1 (5 d), all steers were fed their respective diets ad libitum and housed in TN conditions (20.2 ± 1.4°C, 30.4 ± 4.3% relative humidity). During period 2 (6 d), ZSHS and ZAHS steers were exposed to cyclical HS conditions (27.1 ± 1.5°C to 35.0 ± 2.9°C, 19.3 ± 3.5% relative humidity), whereas the ZSCON, ZSPF, and ZAPF steers remained in TN conditions and were fed ad libitum or pair-fed relative to their ZSHS and ZAHS counterparts. Overall, steers exposed to HS had markedly increased rectal temperature (0.83°C), respiration rate (26 breaths per min), and skin temperature (8.00°C) relative to TN treatments. Rectal temperature from ZAHS steers was decreased (0.24°C) on d 4 to 6 of HS relative to ZSHS steers. Regardless of diet, HS decreased DMI (18%) relative to ZSCON steers. Circulating glucose from HS and PF steers decreased (16%) relative to ZSCON steers. Heat stress and nutrient restriction increased circulating nonesterified fatty acids 2- and 3-fold, respectively, compared with ZSCON steers. Serum amyloid A increased ~2-fold in PF relative to ZSCON and HS steers. We detected no treatment effect on blood pH; however, ZAHS steers had increased HCO3 relative to ZSHS. Relative to ZSHS, ZAHS steers had increased jejunum villi height (25%), a tendency for increased ileum villi height (9%), and decreased duodenal villi width (16%). In summary, ZA supplementation has some beneficial effects on thermal indices, intestinal architecture characteristics, and biomarkers of leaky gut in heat-stressed steers, indicative of an ameliorated heat load, and thus may be a nutritional strategy to minimize negative consequences of HS.
Collapse
Affiliation(s)
- J Opgenorth
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Abuajamieh
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - J S Johnson
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - M A Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | | | | | - P J Gorden
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
24
|
Eslamizad M, Albrecht D, Kuhla B. The effect of chronic, mild heat stress on metabolic changes of nutrition and adaptations in rumen papillae of lactating dairy cows. J Dairy Sci 2020; 103:8601-8614. [PMID: 32600758 DOI: 10.3168/jds.2020-18417] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022]
Abstract
Global warming and accompanying high ambient temperatures reduce feed intake of dairy cows and shift the blood flow from the core of the body to the periphery. As a result, hypoxia may occur in the digestive tract accompanied by disruption of the intestinal barrier, local endotoxemia and inflammation, and altered nutrient absorption. However, whether the barrier of the rumen, like the intestine, is affected by ambient heat has not been studied so far. Lactating Holstein dairy cows were subjected to heat stress at 28°C (temperature-humidity index = 76; n = 5) with ad libitum feed intake or to thermoneutral conditions at 15°C (temperature-humidity index = 60; n = 5) and pair-feeding to heat-stressed animals for a total of 4 d. Gas exchange and feed intake behavior were measured in a respiration chamber, and rumen epithelia were taken after slaughter. Heat stress significantly reduced meal size and whole-body fat oxidation but increased meal frequency and carbohydrate oxidation. The mRNA expression of toll-like receptor 4 (TLR4) and tight junction proteins and the phosphorylation of TLR4 downstream targets (interleukin-1 receptor-associated kinase 4, stress-activated protein kinase, p38 mitogen-activated protein kinase, and nuclear factor k-B) in the rumen epithelium were not affected by heat. The proteomics approach revealed increased expression of rumen epithelium proteins involved in the AMP-activated protein kinase (AMPK) and insulin signaling pathways in heat-stressed cows. Also, proteins involved in chaperone-mediated folding of proteins were upregulated, whereas those involved in antioxidant defense system were downregulated. Further, we found evidence for increased carbohydrate phosphorylation accompanied with an increased flux of carbohydrates through the hexosamine biosynthetic pathway, providing substrates for protein glycosylation. In conclusion, the mild heat stress did not induce barrier dysfunction or inflammatory responses in the rumen epithelium of dairy cows, probably because of adaptations in feed intake behavior and defense mechanisms at the tissue level.
Collapse
Affiliation(s)
- Mehdi Eslamizad
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Straße 8, 17487 Greifswald, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology "Oskar Kellner," Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| |
Collapse
|
25
|
Mayorga EJ, Ross JW, Keating AF, Rhoads RP, Baumgard LH. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction. Theriogenology 2020; 154:73-83. [PMID: 32531658 DOI: 10.1016/j.theriogenology.2020.05.023] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Unfavorable weather conditions are one of the largest constraints to maximizing farm animal productivity. Heat stress (HS), in particular, compromises almost every metric of profitability and this is especially apparent in the grow-finish and reproductive aspects of the swine industry. Suboptimal production during HS was traditionally thought to result from hypophagia. However, independent of inadequate nutrient consumption, HS affects a plethora of endocrine, physiological, metabolic, circulatory, and immunological variables. Whether these changes are homeorhetic strategies to survive the heat load or are pathological remains unclear, nor is it understood if they temporally occur by coincidence or if they are chronologically causal. However, mounting evidence suggest that the origin of the aforementioned changes lie at the gastrointestinal tract. Heat stress compromises intestinal barrier integrity, and increased appearance of luminal contents in circulation causes local and systemic inflammatory responses. The resulting immune activation is seemingly the epicenter to many, if not most of the negative consequences HS has on reproduction, growth, and lactation. Interestingly, thermoregulatory and production responses to HS are only marginally related. In other words, increased body temperature indices poorly predict decreases in productivity. Further, HS induced malnutrition is also a surprisingly inaccurate predictor of productivity. Thus, selecting animals with a "heat tolerant" phenotype based solely or separately on thermoregulatory capacity or production may not ultimately increase resilience. Describing the physiology and mechanisms that underpin how HS jeopardizes animal performance is critical for developing approaches to ameliorate current production issues and requisite for generating future strategies (genetic, managerial, nutritional, and pharmaceutical) aimed at optimizing animal well-being, and improving the sustainable production of high-quality protein for human consumption.
Collapse
Affiliation(s)
- E J Mayorga
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - J W Ross
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
26
|
McCarthy CS, Dooley BC, Branstad EH, Kramer AJ, Horst EA, Mayorga EJ, Al-Qaisi M, Abeyta MA, Perez-Hernandez G, Goetz BM, Castillo AR, Knobbe MR, Macgregor CA, Russi JP, Appuhamy JADRN, Ramirez-Ramirez HA, Baumgard LH. Energetic metabolism, milk production, and inflammatory response of transition dairy cows fed rumen-protected glucose. J Dairy Sci 2020; 103:7451-7461. [PMID: 32448574 DOI: 10.3168/jds.2020-18151] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 11/19/2022]
Abstract
Objectives were to evaluate the effects of rumen-protected glucose (RPG) supplementation on milk production, post-absorptive metabolism, and inflammatory biomarkers in transition dairy cows. Fifty-two multiparous cows were blocked by previous 305-d mature-equivalent milk (305ME) yield and randomly assigned to 1 of 2 iso-energetic and iso-nitrogenous treatments: (1) control diet (CON; n = 26) or (2) a diet containing RPG (pre-fresh 5.3% of dry matter and 6.0% of dry matter postpartum; n = 26). Cows received their respective dietary treatments from d -21 to 28 relative to calving, and dry matter intake was calculated daily during the same period. Weekly body weight, milk composition, and fecal pH were recorded until 28 d in milk (DIM), and milk yield was recorded through 105 DIM. Blood samples were collected on d -7, 3, 7, 14, and 28 relative to calving. Data were analyzed using repeated measures in the MIXED procedure (SAS Institute Inc., Cary, NC) with previous 305ME as a covariate. Fecal pH was similar between treatments and decreased (0.6 units) postpartum. Dry matter intake pre- and postpartum were unaffected by treatment, as was milk yield during the first 28 or 105 DIM. Milk fat, protein, and lactose concentration were similar for both treatments. Blood urea nitrogen and plasma glucose concentrations were unaffected by treatment; however, results showed increased concentration of circulating insulin (27%), lower nonesterified fatty acids (28%), and lower postpartum β-hydroxybutyrate (24%) in RPG-fed cows. Overall, circulating lipopolysaccharide-binding protein and haptoglobin did not differ by treatment, but at 7 DIM, RPG-fed cows had decreased lipopolysaccharide-binding protein and haptoglobin concentrations (31 and 27%, respectively) compared with controls. Supplemental RPG improved some biomarkers of post-absorptive energetics and inflammation during the periparturient period, changes primarily characterized by increased insulin and decreased nonesterified fatty acids concentrations, with a concomitant reduction in acute phase proteins without changing milk production and composition.
Collapse
Affiliation(s)
- C S McCarthy
- Department of Animal Science, Iowa State University, Ames 50011
| | - B C Dooley
- Department of Animal Science, Iowa State University, Ames 50011
| | - E H Branstad
- Department of Animal Science, Iowa State University, Ames 50011
| | - A J Kramer
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - A R Castillo
- University of California, Cooperative Extension, Merced 95340
| | - M R Knobbe
- Grain States Soya Inc., West Point, NE 68788
| | | | - J P Russi
- Rusitec Argentina, General Villegas, Buenos Aires 6230, Argentina
| | | | | | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
27
|
Sammad A, Wang YJ, Umer S, Lirong H, Khan I, Khan A, Ahmad B, Wang Y. Nutritional Physiology and Biochemistry of Dairy Cattle under the Influence of Heat Stress: Consequences and Opportunities. Animals (Basel) 2020; 10:ani10050793. [PMID: 32375261 PMCID: PMC7278580 DOI: 10.3390/ani10050793] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Modern dairy cows have elevated internal heat loads caused by high milk production, and the effects of accumulating incremental heat are exacerbated when temperature and humidity increases in the surroundings. To shed this additional heat, cows initiate a variety of adaptive mechanisms including increased respiration rate, panting, sweating, reduced milk yield, vasodilatation, and decreased reproductive performance. Hormonal changes based on reciprocal alterations to the energetic metabolism are particularly accountable for reduced efficiency of the dairy production under the heat stress. As animals experience negative energy balance; glucose, which is also a precursor of milk lactose, becomes the preferential energy fuel. In the absence of proper mitigations, heat stress possesses potential risk of economic losses to dairy sector. Besides physical measures for the timely prediction of the actual heat stress coupled with its proper amelioration, nutritional mitigation strategies should target modulating energetic metabolism and rumen environment. Abstract Higher milk yield and prolificacy of the modern dairy cattle requires high metabolism activities to support them. It causes high heat production by the body, which coupled with increasing environmental temperatures results in heat stress (HS). Production, health, and welfare of modern cattle are severely jeopardized due to their low adaptability to hot conditions. Animal activates a variety of physiological, endocrine, and behavioral mechanisms to cope with HS. Traditionally, decreased feed intake is considered as the major factor towards negative energy balance (NEBAL) leading to a decline in milk production. However, reciprocal changes related to insulin; glucose metabolism; failure of adipose mobilization; and skeletal muscle metabolism have appeared to be the major culprits behind HS specific NEBAL. There exists high insulin activity and glucose become preferential energy fuel. Physiological biochemistry of the heat stressed cows is characterized by low-fat reserves derived NEFA (non-esterified fatty acids) response, despite high energy demands. Besides these, physiological and gut-associated changes and poor feeding practices can further compromise the welfare and production of the heat-stressed cows. Better understanding of HS specific nutritional physiology and metabolic biochemistry of the dairy cattle will primarily help to devise practical interventions in this context. Proper assessment of the HS in cattle and thereby applying relevant cooling measures at dairy seems to be the basic mitigation approach. Score of the nutritional strategies be applied in the eve of HS should target supporting physiological responses of abatement and fulfilling the deficiencies possessed, such as water and minerals. Second line of abatement constitutes proper feeding, which could augment metabolic activities and synergizes energy support. The third line of supplemental supports should be directed towards modulating the metabolic (propionates, thiazolidinediones, dietary buffers, probiotics, and fermentates) and antioxidant responses (vitamins). Comprehensive understanding of the energetic metabolism dynamics under the impact of incremental heat load and complete outlook of pros and cons of the dietary ameliorating substances together with the discovery of the newer relevant supplementations constitutes the future avenues in this context.
Collapse
Affiliation(s)
- Abdul Sammad
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Ya Jing Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Saqib Umer
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (I.K.)
| | - Hu Lirong
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Imran Khan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.U.); (I.K.)
| | - Adnan Khan
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Baseer Ahmad
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
| | - Yachun Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (A.S.); (Y.J.W.); (H.L.); (A.K.); (B.A.)
- Correspondence:
| |
Collapse
|
28
|
Gross JJ, Grossen-Rösti L, Wall SK, Wellnitz O, Bruckmaier RM. Metabolic status is associated with the recovery of milk somatic cell count and milk secretion after lipopolysaccharide-induced mastitis in dairy cows. J Dairy Sci 2020; 103:5604-5615. [PMID: 32253039 DOI: 10.3168/jds.2019-18032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/09/2020] [Indexed: 12/17/2022]
Abstract
Infections of the mammary gland in dairy cows are commonly accompanied by reduced milk production and feed intake and poor milk quality. The metabolic status of early-lactating cows is known to affect immune response to pathogens and imposed immune challenges. We investigated the extent to which metabolic status before an intramammary lipopolysaccharide (LPS) challenge (LPS-CH) is associated with immune response, milk production, and feed intake and the recovery thereof. In 15 Holstein cows, weekly blood sampling and daily recording of dry matter intake, milk yield, milk composition, and body weight (to calculate energy balance) was started immediately after parturition. In wk 4 after parturition, cows underwent an intramammary LPS-CH (50 μg of LPS into 1 quarter). Blood and milk samples were taken in parallel at 30- and 60-min intervals, respectively, until 10 h after the LPS application. Plasma concentrations of glucose, nonesterified fatty acids, β-hydroxybutyrate (BHB), cortisol, and insulin were analyzed. In milk, serum albumin, IgG concentration, somatic cell count (SCC), and lactate dehydrogenase (LDH) activity were determined. Dry matter intake and milk yield were recorded for an additional 6 d. Milk of the LPS-treated quarter was sampled at every milking for 8 d after the challenge. Based on plasma glucose concentrations in wk 1 to 4 after parturition before the LPS-CH, cows were retrospectively grouped into a high-glucose group (HG; 3.34-3.93 mmol/L, n = 7) and a low-glucose group (LG; 2.87-3.31 mmol/L, n = 8). Data were evaluated using mixed models with time, group, and time × group interaction as fixed effects and cow as repeated subject. Glucose was lower and BHB was higher in LG compared with HG before LPS-CH, whereas dry matter intake, energy balance, and SCC did not differ. During LPS-CH, SCC and LDH increased similarly in HG and LG, body temperature increased less in HG, and BHB and nonesterified fatty acids were higher in LG compared with HG. Dry matter intake declined in both groups during the day of the LPS-CH but recovered to prechallenge values faster in HG. Milk yield recovered within 2 d after the LPS-CH with no differences in morning milkings, whereas evening milk yield increased faster in HG. During 8 d after LPS-CH, SCC, LDH, IgG, and serum albumin in milk were lower in HG compared with LG. In conclusion, the level of circulating glucose and BHB concentrations in cows was associated with metabolic responses during an LPS-CH as well as the recovery of udder health and performance thereafter.
Collapse
Affiliation(s)
- J J Gross
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - L Grossen-Rösti
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - S K Wall
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - O Wellnitz
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - R M Bruckmaier
- Veterinary Physiology, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|
29
|
Bidne KL, Kvidera SS, Ross JW, Baumgard LH, Keating AF. Impact of repeated lipopolysaccharide administration on ovarian signaling during the follicular phase of the estrous cycle in post-pubertal pigs. J Anim Sci 2020; 96:3622-3634. [PMID: 29982469 DOI: 10.1093/jas/sky226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/26/2018] [Indexed: 12/18/2022] Open
Abstract
Increased circulating lipopolysaccharide (LPS) results from heat stress (HS) and bacterial infection, both of which are associated with reduced female fertility. Specific effects of low-level, repeated LPS exposure on the ovary are unclear, as many studies utilize a bolus model and/or high dosage paradigm. To better understand the effects of chronic LPS exposure on ovarian signaling and function, post-pubertal gilts (n = 20) were orally administered altrenogest for 14 d to synchronize the beginning of the follicular phase of the ovarian cycle. For 5 d after synchronization, gilts (163 ± 3 kg) received IV administration of LPS (0.1 µg/kg BW, n = 10) or saline (CT, n = 10) 4× daily. Blood samples were obtained on days 1, 3, and 5 of LPS treatment. Follicular fluid was aspirated from dominant follicles on day 5, and whole ovarian homogenate was used for transcript and protein abundance analysis via quantitative real-time PCR and western blotting, respectively. There were no treatment differences detected in rectal temperature on any day (P ≥ 0.5). Administering LPS increased plasma insulin (P < 0.01), LPS-binding protein (LBP; P < 0.01), and glucose (P = 0.08) on day 1, but no treatment differences thereafter were observed (P = 0.66). There were no treatment differences in follicular fluid concentration of LBP or 17β-estradiol (P = 0.42). Gilts treated with LPS had increased abundance of ovarian TLR4 protein (P = 0.01), but protein kinase B (AKT) and phosphorylated AKT (pAKT) were unchanged and no effect of LPS on components of the phosphatidylinositol 3 kinase (PI3K) pathway were observed. There was no impact of LPS on ovarian abundance of STAR or CYP19A1, nor ESR1, LDLR, CYP19A1, CYP17A1, or 3BHSD. In conclusion, repeated, low-level LPS administration alters inflammatory but not steroidogenic or PI3K signaling in follicular phase gilt ovaries.
Collapse
Affiliation(s)
- Katie L Bidne
- Department of Animal Science, Iowa State University, Ames, IA
| | - Sara S Kvidera
- Department of Animal Science, Iowa State University, Ames, IA
| | - Jason W Ross
- Department of Animal Science, Iowa State University, Ames, IA
| | | | | |
Collapse
|
30
|
Albornoz RI, Sordillo LM, Contreras GA, Nelli R, Mamedova LK, Bradford BJ, Allen MS. Diet starch concentration and starch fermentability affect markers of inflammatory response and oxidant status in dairy cows during the early postpartum period. J Dairy Sci 2020; 103:352-367. [PMID: 31733858 DOI: 10.3168/jds.2019-16398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/16/2019] [Indexed: 12/15/2022]
Abstract
Our objective was to evaluate the effects of diet starch concentration and starch fermentability on inflammatory response markers and oxidant status during the early postpartum (PP) period and its carryover effects. Fifty-two multiparous Holstein cows were used in a completely randomized block design experiment with a 2 × 2 factorial arrangement of treatments. Treatments were starch concentration and starch fermentability of diets; diets were formulated to 22% (low starch, LS) or 28% (high starch, HS) starch with dry-ground corn (DGC) or high-moisture corn (HMC) as the primary starch source. Treatments were fed from 1 to 23 d PP and then switched to a common diet until 72 d PP to measure carryover (CO) effects. Treatment period (TP) diets were formulated to 22% forage neutral detergent fiber and 17% crude protein. The diet for the CO period was formulated to 20% forage neutral detergent fiber, 17% crude protein, and 29% starch. Coccygeal blood was collected once a week during the TP and every second week during the CO period. Liver and adipose tissue biopsies were performed within 2 d PP and at 20 ± 3 d PP. Blood plasma was analyzed for concentrations of albumin, haptoglobin, reactive oxygen and nitrogen species (RONS), and antioxidant potential (AOP), with lipopolysaccharide-binding protein (LBP) and TNFα evaluated during the TP only. Oxidative stress index (OSi) was calculated as RONS/AOP. Abundance of mRNA from genes involved in inflammation and glucose metabolism in liver and genes involved in lipogenesis in adipose tissue were determined. Data were analyzed separately for the TP and CO periods. During the TP, treatments interacted to affect concentrations of TNFα, haptoglobin, and LBP, with HMC increasing their concentrations for HS (9.38 vs. 7.45 pg/mL, 0.45 vs. 0.37 mg/mL, and 5.94 vs. 4.48 μg/mL, respectively) and decreasing their concentrations for LS (4.76 vs. 12.9 pg/mL, 0.27 vs. 0.41 mg/mL, and 4.30 vs. 5.87 μg/mL, respectively) compared with DGC. Effects of treatments diminished over time for LBP and haptoglobin with no differences by the end of the TP and no main CO effects of treatment for haptoglobin. The opposite treatment interaction was observed for albumin, with HMC tending to decrease its concentration for HS (3.24 vs. 3.34 g/dL) and increase its concentration for LS (3.35 vs. 3.29 g/dL) compared with DGC, with no carryover effect. Feeding DGC increased the OSi during the first week of the TP compared with HMC, with this effect diminishing over time; during the CO period HMC increased OSi for HS and decreased it for LS compared with DGC, with this effect diminishing toward the end of CO. Feeding HMC increased the abundance of genes associated with inflammation and gluconeogenesis in liver for HS and decreased it for LS compared with DGC. Feeding HS increased the mRNA abundance of genes associated with adipose tissue lipogenesis compared with LS. Results during the TP suggest that feeding LS-DGC and HS-HMC elicited a more pronounced inflammatory response and induced an upregulation of genes associated with inflammation and gluconeogenesis in liver, without effects on OSi, but effects on plasma markers of inflammation diminished during the CO period.
Collapse
Affiliation(s)
- R I Albornoz
- Department of Animal Science, Michigan State University, East Lansing 48824
| | - L M Sordillo
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - G A Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - R Nelli
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| | - L K Mamedova
- Department of Animal Science and Industry, Kansas State University, Manhattan 66506
| | - B J Bradford
- Department of Animal Science and Industry, Kansas State University, Manhattan 66506
| | - M S Allen
- Department of Animal Science, Michigan State University, East Lansing 48824.
| |
Collapse
|
31
|
Marins TN, Monteiro APA, Weng X, Guo J, Orellana Rivas RM, Bernard JK, Tomlinson DJ, DeFrain JM, Tao S. Response of lactating dairy cows fed different supplemental zinc sources with and without evaporative cooling to intramammary lipopolysaccharide infusion: intake, milk yield and composition, and hematologic profile1. J Anim Sci 2019; 97:2053-2065. [PMID: 30844051 DOI: 10.1093/jas/skz082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/05/2019] [Indexed: 12/23/2022] Open
Abstract
The objective of this study was to determine the effect of dietary supplemental Zn source and evaporative cooling on intake, milk yield and composition, and the rate of leukocyte migration into the mammary gland following intramammary lipopolysaccharide (LPS) infusion. Multiparous Holstein cows (n = 72) were assigned to one of four treatments with a 2×2 factorial arrangement including two sources of supplemental Zn: 75 mg/kg Zn hydroxychloride or 35 mg/kg Zn hydroxychloride + 40 mg/kg Zn-Met complex (ZMC) each with or without evaporative cooling. The cooling system was implemented by the use of fans and misters over the freestall and feeding areas. On day 34 of the experiment, cows (n = 16; days in milk = 263 ± 63 d) received an infusion of 10 μg of LPS, or a saline control, in the left or right rear quarters. Individual milk samples from both quarters were collected at -12, -4, 0, 6, 12, 24, 48, 72, 96, 120, 144, and 168 h relative to infusion and analyzed for composition and bovine serum albumin. Rectal temperature and respiration rate were assessed and blood samples were collected at the same time points (with an additional sample at 3 h) for analyses of lactose and cortisol. Complete blood counts were performed on samples collected within the first 24 h post infusion. Intramammary LPS infusion reduced (P < 0.01) milk yield, DMI and feed efficiency regardless of dietary or cooling treatments. Non-cooled cows tended (P = 0.09) to have greater feed efficiency (=milk yield/DMI) at 1 d after infusion than those subjected to cooling. Intramammary LPS infusion dramatically increased (P < 0.01) milk somatic cell count (SCC) but treatments had no apparent impact on milk SCC. Compared with cooled cows, non-cooled cows had greater (P < 0.05) plasma lactose concentrations, but lower (P < 0.03) blood concentrations of neutrophils and lymphocytes at 3 h post infusion. This suggests a greater leukocyte migration into the mammary gland of heat-stressed cows. In conclusion, noncooled cows tended to maintain greater feed efficiency and appeared to have greater leukocyte migration into the mammary gland immediately after intramammary LPS infusion compared with cooled cows. Dietary supplemental Zn source had no impact on measures assessed after intramammary LPS infusion.
Collapse
Affiliation(s)
- Thiago N Marins
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | - Ana P A Monteiro
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | - Xisha Weng
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | - Jinru Guo
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | | | - John K Bernard
- Department of Animal and Dairy Science, University of Georgia, Tifton
| | | | | | - Sha Tao
- Department of Animal and Dairy Science, University of Georgia, Tifton
| |
Collapse
|
32
|
Horst E, Kvidera S, Dickson M, McCarthy C, Mayorga E, Al-Qaisi M, Ramirez H, Keating A, Baumgard L. Effects of continuous and increasing lipopolysaccharide infusion on basal and stimulated metabolism in lactating Holstein cows. J Dairy Sci 2019; 102:3584-3597. [DOI: 10.3168/jds.2018-15627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023]
|
33
|
Pawłowski K, Pires JAA, Faulconnier Y, Chambon C, Germon P, Boby C, Leroux C. Mammary Gland Transcriptome and Proteome Modifications by Nutrient Restriction in Early Lactation Holstein Cows Challenged with Intra-Mammary Lipopolysaccharide. Int J Mol Sci 2019; 20:E1156. [PMID: 30845783 PMCID: PMC6429198 DOI: 10.3390/ijms20051156] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 11/27/2022] Open
Abstract
: The objective is to study the effects of nutrient restrictions, which induce a metabolic imbalance on the inflammatory response of the mammary gland in early lactation cows. The aim is to decipher the molecular mechanisms involved, by comparing a control, with a restriction group, a transcriptome and proteome, after an intra-mammary lipopolysaccharide challenge. Multi-parous cows were either allowed ad libitum intake of a lactation diet (n = 8), or a ration containing low nutrient density (n = 8; 48% barley straw and dry matter basis) for four days starting at 24 ± 3 days in milk. Three days after the initiation of their treatments, one healthy rear mammary quarter of 12 lactating cows was challenged with 50 µg of lipopolysaccharide (LPS). Transcriptomic and proteomic analyses were performed on mammary biopsies obtained 24 h after the LPS challenge, using bovine 44K microarrays, and nano-LC-MS/MS, respectively. Restriction-induced deficits in energy, led to a marked negative energy balance (41 versus 97 ± 15% of Net Energy for Lactation (NEL) requirements) and metabolic imbalance. A microarray analyses identified 25 differentially expressed genes in response to restriction, suggesting that restriction had modified mammary metabolism, specifically β-oxidation process. Proteomic analyses identified 53 differentially expressed proteins, which suggests that the modification of protein synthesis from mRNA splicing to folding. Under-nutrition influenced mammary gland expression of the genes involved in metabolism, thereby increasing β-oxidation and altering protein synthesis, which may affect the response to inflammation.
Collapse
Affiliation(s)
- Karol Pawłowski
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences,02-776 Warsaw, Poland.
| | - José A A Pires
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Yannick Faulconnier
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Christophe Chambon
- INRA, INRA, Plateforme d'Exploration du Métabolisme, composante protéomique PFEMcp), F-63122 Saint-Genès Champanelle, France.
| | - Pierre Germon
- INRA Val de Loire, UMR ISP, F-37380 Nouzilly, France.
| | - Céline Boby
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
| | - Christine Leroux
- Université Clermont Auvergne,INRA, VetAgro Sup, UMR Herbivores, F-63122 Saint-Genès-Champanelle, France.
- Department of Food Science and Technology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
34
|
Dickson MJ, Kvidera SK, Horst EA, Wiley CE, Mayorga EJ, Ydstie J, Perry GA, Baumgard LH, Keating AF. Impacts of chronic and increasing lipopolysaccharide exposure on production and reproductive parameters in lactating Holstein dairy cows. J Dairy Sci 2019; 102:3569-3583. [PMID: 30738665 DOI: 10.3168/jds.2018-15631] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023]
Abstract
Lipopolysaccharide (LPS) administration causes immunoactivation, which negatively affects production and fertility, but experimental exposure via an acute bolus is unlikely to resemble natural infections. Thus, the objectives were to characterize effects of chronic endotoxemia on production parameters and follicular development in estrous-synchronized lactating cows. Eleven Holstein cows (169 ± 20 d in milk; 681 ± 16 kg of body weight) were acclimated to their environmental surroundings for 3 d and then enrolled in 2 experimental periods (P). During P1 (3 d) cows consumed feed ad libitum and baseline samples were obtained. During P2 (7 d), cows were assigned to continuous infusion of either (1) saline-infused and pair-fed (CON-PF; 40 mL/h of saline i.v.; n = 5) or (2) LPS infused and ad libitum fed (LPS-AL; Escherichia coli O55:B5; 0.017, 0.020, 0.026, 0.036, 0.055, 0.088, and 0.148 μg/kg of body weight/h i.v. on d 1 to 7, respectively; n = 6). Controls were pair-fed to the LPS-AL group to eliminate confounding effects of dissimilar nutrient intake. Infusing LPS temporally caused mild hyperthermia on d 1 to 3 (+0.49°C) relative to baseline. Dry matter intake of LPS-AL cows decreased (28%) on d 1 of P2, then progressively returned to baseline. Relative to baseline, milk yield from LPS-AL cows was decreased on d 1 of P2 (12%). No treatment differences were observed in milk yield during P2. Follicular growth, dominant follicle size, serum progesterone (P4), and follicular P4 and 17β-estradiol concentrations were similar between treatments. Serum 17β-estradiol tended to increase (115%) and serum amyloid A and LPS-binding protein were increased (118 and 40%, respectively) in LPS-AL relative to CON-PF cows. Compared with CON-PF, neutrophils in LPS-AL cows were initially increased (45%), then gradually decreased. In contrast, monocytes were initially decreased (40%) and progressively increased with time in the LPS-AL cows. Hepatic mRNA abundance of cytochrome P450 family 2 subfamily C (CYP2C) or CYP3A was not affected by LPS, nor was there a treatment effect on toll-like receptor 4 or LBP; however, acyloxyacyl hydrolase and RELA subunit of nuclear factor kappa B tended to be increased in LPS-AL cows. These data suggest lactating dairy cows become tolerant to chronic and exponentially increasing LPS infusion in terms of production and reproductive parameters.
Collapse
Affiliation(s)
- M J Dickson
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - C E Wiley
- Department of Animal Science, Iowa State University, Ames 50011
| | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - J Ydstie
- Department of Animal Science, Iowa State University, Ames 50011
| | - G A Perry
- Department of Animal Science, South Dakota State University, Brookings 57006
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011
| | - A F Keating
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
35
|
Montgomery S, Mamedova L, Zachut M, Kra G, Häussler S, Vaughn M, Gonzalez J, Bradford B. Effects of sodium salicylate on glucose kinetics and insulin signaling in postpartum dairy cows. J Dairy Sci 2019; 102:1617-1629. [DOI: 10.3168/jds.2018-15312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/05/2018] [Indexed: 12/19/2022]
|
36
|
Effects of trace mineral amount and source on aspects of oxidative metabolism and responses to intramammary lipopolysaccharide challenge in midlactation dairy cows. Animal 2018; 13:1000-1008. [PMID: 30322418 DOI: 10.1017/s1751731118002525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Trace minerals have important roles in immune function and oxidative metabolism; however, little is known about the relationships between supplementation level and source with outcomes in dairy cattle. Multiparous Holstein cows (n=48) beginning at 60 to 140 days in milk were utilized to determine the effects of trace mineral amount and source on aspects of oxidative metabolism and responses to intramammary lipopolysaccharide (LPS) challenge. Cows were fed a basal diet meeting National Research Council (NRC) requirements except for no added zinc (Zn), copper (Cu) or manganese (Mn). After a 4-week preliminary period, cows were assigned to one of four topdress treatments in a randomized complete block design with a 2×2 factorial arrangement of treatments: (1) NRC inorganic (NRC levels using inorganic (sulfate-based) trace mineral supplements only); (2) NRC organic (NRC levels using organic trace mineral supplements (metals chelated to 2-hydroxy-4-(methythio)-butanoic acid); (3) commercial inorganic (approximately 2×NRC levels using inorganic trace mineral supplements only; and (4) commercial organic (commercial levels using organic trace mineral supplements only). Cows were fed the respective mineral treatments for 6 weeks. Treatment effects were level, source and their interaction. Activities of super oxide dismutase and glutathione peroxidase in erythrocyte lysate and concentrations of thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) in plasma were measured as indices of oxidative metabolism. Effects of treatment on those indices were not significant when evaluated across the entire experimental period. Plasma immunoglobulin G level was higher in cows supplemented with organic trace minerals over the entire treatment period; responses assessed as differences of before and after Escherichia coli J5 bacterin vaccination at the end of week 2 of treatment period were not significant. Cows were administered an intramammary LPS challenge during week 5; during week 6 cows fed commercial levels of Zn, Cu and Mn tended to have higher plasma TAC and cows fed organic sources had decreased plasma TBARS. After the LPS challenge, the extent and pattern of response of plasma cortisol concentrations and clinical indices (rectal temperature and heart rate) were not affected by trace mineral level and source. Productive performance including dry matter intake and milk yield and composition were not affected by treatment. Overall, results suggest that the varying level and source of dietary trace minerals do not have significant short-term effects on oxidative metabolism indices and clinical responses to intramammary LPS challenge in midlactation cows.
Collapse
|
37
|
Johnzon CF, Dahlberg J, Gustafson AM, Waern I, Moazzami AA, Östensson K, Pejler G. The Effect of Lipopolysaccharide-Induced Experimental Bovine Mastitis on Clinical Parameters, Inflammatory Markers, and the Metabolome: A Kinetic Approach. Front Immunol 2018; 9:1487. [PMID: 29988549 PMCID: PMC6026673 DOI: 10.3389/fimmu.2018.01487] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 01/07/2023] Open
Abstract
Mastitis is an inflammatory condition of the mammary tissue and represents a major problem for the dairy industry worldwide. The present study was undertaken to study how experimentally induced acute bovine mastitis affects inflammatory parameters and changes in the metabolome. To this end, we induced experimental mastitis in nine cows by intramammary infusion of 100 µg purified Escherichia coli lipopolysaccharide (LPS) followed by kinetic assessments of cytokine responses (by enzyme-linked immunosorbent assay), changes in the metabolome (assessed by nuclear magnetic resonance), clinical parameters (heat, local pain perception, redness, swelling, rectal temperature, clot formation, and color changes in the milk), and milk somatic cell counts, at several time points post LPS infusion. Intramammary LPS infusion induced clinical signs of mastitis, which started from 2 h post infusion and had returned to normal levels within 24–72 h. Milk changes were seen with a delay compared with the clinical signs and persisted for a longer time. In parallel, induction of IL-6 and TNF-α were seen in milk, and there was also a transient elevation of plasma IL-6 whereas plasma TNF-α was not significantly elevated. In addition, a robust increase in CCL2 was seen in the milk of LPS-infused cows, whereas G-CSF, CXCL1, and histamine in milk were unaffected. By using a metabolomics approach, a transient increase of plasma lactose was seen in LPS-induced cows. In plasma, significant reductions in ketone bodies (3-hydroxybutyrate and acetoacetate) and decreased levels of short-chain fatty acids, known to be major products released from the gut microbiota, were observed after LPS infusion; a profound reduction of plasma citrate was also seen. Intramammary LPS infusion also caused major changes in the milk metabolome, although with a delay in comparison with plasma, including a reduction of lactose. We conclude that the LPS-induced acute mastitis rapidly affects the plasma metabolome and cytokine induction with similar kinetics as the development of the clinical signs, whereas the corresponding effects in milk occurred with a delay.
Collapse
Affiliation(s)
- Carl-Fredrik Johnzon
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Josef Dahlberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ann-Marie Gustafson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ali A Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Karin Östensson
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
38
|
Gross JJ, Grossen-Rösti L, Héritier R, Tröscher A, Bruckmaier RM. Inflammatory and metabolic responses to an intramammary lipopolysaccharide challenge in early lactating cows supplemented with conjugated linoleic acid. J Anim Physiol Anim Nutr (Berl) 2017; 102:e838-e848. [DOI: 10.1111/jpn.12843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/02/2017] [Indexed: 11/27/2022]
Affiliation(s)
- J. J. Gross
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - L. Grossen-Rösti
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | - R. Héritier
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| | | | - R. M. Bruckmaier
- Veterinary Physiology; Vetsuisse Faculty; University of Bern; Bern Switzerland
| |
Collapse
|
39
|
Bouvier-Muller J, Allain C, Tabouret G, Enjalbert F, Portes D, Noirot C, Rupp R, Foucras G. Whole blood transcriptome analysis reveals potential competition in metabolic pathways between negative energy balance and response to inflammatory challenge. Sci Rep 2017; 7:2379. [PMID: 28539586 PMCID: PMC5443788 DOI: 10.1038/s41598-017-02391-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/11/2017] [Indexed: 11/25/2022] Open
Abstract
Negative Energy Balance (NEB) is considered to increase susceptibility to mastitis. The objective of this study was to improve our understanding of the underlying mechanisms by comparing transcriptomic profiles following NEB and a concomitant mammary inflammation. Accordingly, we performed RNA-seq analysis of blood cells in energy-restricted ewes and control-diet ewes at four different time points before and after intra mammary challenge with phlogogenic ligands. Blood leucocytes responded to NEB by shutting down lipid-generating processes, including cholesterol and fatty acid synthesis, probably under transcriptional control of SREBF 1. Furthermore, fatty acid oxidation was activated and glucose oxidation and transport inhibited in response to energy restriction. Among the differentially expressed genes (DEGs) in response to energy restriction, 64 genes were also differential in response to the inflammatory challenge. Opposite response included the activation of cholesterol and fatty acid synthesis during the inflammatory challenge. Moreover, activation of glucose oxidation and transport coupled with the increase of plasma glucose concentration in response to the inflammatory stimuli suggested a preferential utilization of glucose as the energy source during this stress. Leucocyte metabolism therefore undergoes strong metabolic changes during an inflammatory challenge, which could be in competition with those induced by energy restriction.
Collapse
Affiliation(s)
- Juliette Bouvier-Muller
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326, Castanet-Tolosan, France.,Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRA, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076, Toulouse, France
| | - Charlotte Allain
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326, Castanet-Tolosan, France
| | - Guillaume Tabouret
- Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRA, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076, Toulouse, France
| | - Francis Enjalbert
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326, Castanet-Tolosan, France
| | - David Portes
- INRA, Unité expérimentale 0321 Domaine de La Fage, F-12250, Roquefort sur Soulzon, France
| | | | - Rachel Rupp
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, F-31326, Castanet-Tolosan, France
| | - Gilles Foucras
- Université de Toulouse, École Nationale Vétérinaire de Toulouse (ENVT), INRA, Interactions Hôtes - Agents Pathogènes (IHAP), F-31076, Toulouse, France.
| |
Collapse
|
40
|
Kvidera S, Dickson M, Abuajamieh M, Snider D, Fernandez MVS, Johnson J, Keating A, Gorden P, Green H, Schoenberg K, Baumgard L. Intentionally induced intestinal barrier dysfunction causes inflammation, affects metabolism, and reduces productivity in lactating Holstein cows. J Dairy Sci 2017; 100:4113-4127. [DOI: 10.3168/jds.2016-12349] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
|
41
|
Moyes KM, Sørensen P, Bionaz M. The Impact of Intramammary Escherichia coli Challenge on Liver and Mammary Transcriptome and Cross-Talk in Dairy Cows during Early Lactation Using RNAseq. PLoS One 2016; 11:e0157480. [PMID: 27336699 PMCID: PMC4919052 DOI: 10.1371/journal.pone.0157480] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/30/2016] [Indexed: 11/18/2022] Open
Abstract
Our objective was to identify the biological response and the cross-talk between liver and mammary tissue after intramammary infection (IMI) with Escherichia coli (E. coli) using RNAseq technology. Sixteen cows were inoculated with live E. coli into one mammary quarter at ~4–6 weeks in lactation. For all cows, biopsies were performed at -144, 12 and 24 h relative to IMI in liver and at 24 h post-IMI in infected and non-infected (control) mammary quarters. For a subset of cows (n = 6), RNA was extracted from both liver and mammary tissue and sequenced using a 100 bp paired-end approach. Ingenuity Pathway Analysis and the Dynamic Impact Approach analysis of differentially expressed genes (overall effect False Discovery Rate≤0.05) indicated that IMI induced an overall activation of inflammation at 12 h post-IMI and a strong inhibition of metabolism, especially related to lipid, glucose, and xenobiotics at 24 h post-IMI in liver. The data indicated in mammary tissue an overall induction of inflammatory response with little effect on metabolism at 24 h post-IMI. We identified a large number of up-stream regulators potentially involved in the response to IMI in both tissues but a relatively small core network of transcription factors controlling the response to IMI for liver whereas a large network in mammary tissue. Transcriptomic results in liver and mammary tissue were supported by changes in inflammatory and metabolic mediators in blood and milk. The analysis of potential cross-talk between the two tissues during IMI uncovered a large communication from the mammary tissue to the liver to coordinate the inflammatory response but a relatively small communication from the liver to the mammary tissue. Our results indicate a strong induction of the inflammatory response in mammary tissue and impairment of liver metabolism 24h post-IMI partly driven by the signaling from infected mammary tissue.
Collapse
Affiliation(s)
- K. M. Moyes
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (KMM); (MB)
| | - P. Sørensen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - M. Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail: (KMM); (MB)
| |
Collapse
|
42
|
Silanikove N, Shapiro F, Merin U, Lavon Y, Blum SE, Leitner G. Reduced use of glucose by normoxic cow's mammary gland under acute inflammation: an example of homeostatic aerobic glycolysis. RSC Adv 2016. [DOI: 10.1039/c6ra22934d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The concentration of glucose and glucose-derived carbons in milk reflect their concentrations in the mammary epithelial cell cytosol.
Collapse
Affiliation(s)
- Nissim Silanikove
- Department of Ruminant Science
- Animal Science
- The Volcani Center
- Bet Dagan 50250
- Israel
| | - Fira Shapiro
- Department of Ruminant Science
- Animal Science
- The Volcani Center
- Bet Dagan 50250
- Israel
| | - Uzi Merin
- Food Quality and Safety
- Postharvest and Food Sciences
- The Volcani Center
- Bet Dagan 50250
- Israel
| | - Yaniv Lavon
- Israel Cattle Breeders Association
- Caesarea
- Israel
| | - Shlomo E. Blum
- National Mastitis Reference Center
- Kimron Veterinary Institute
- Bet Dagan 50250
- Israel
| | - Gabriel Leitner
- National Mastitis Reference Center
- Kimron Veterinary Institute
- Bet Dagan 50250
- Israel
| |
Collapse
|
43
|
Impact of Saccharomyces cerevisiae fermentation product and subacute ruminal acidosis on production, inflammation, and fermentation in the rumen and hindgut of dairy cows. Anim Feed Sci Technol 2016. [DOI: 10.1016/j.anifeedsci.2015.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
44
|
Baumgard LH, Hausman GJ, Sanz Fernandez MV. Insulin: pancreatic secretion and adipocyte regulation. Domest Anim Endocrinol 2016; 54:76-84. [PMID: 26521203 DOI: 10.1016/j.domaniend.2015.07.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/29/2015] [Accepted: 07/07/2015] [Indexed: 12/19/2022]
Abstract
Insulin is the primary acute anabolic coordinator of nutrient partitioning. Hyperglycemia is the main stimulant of insulin secretion, but other nutrients such as specific amino acids, fatty acids, and ketoacids can potentiate pancreatic insulin release. Incretins are intestinal hormones with insulinotropic activity and are secreted in response to food ingestion, thus integrating diet chemical composition with the regulation of insulin release. In addition, prolactin is required for proper islet development, and it stimulates β-cell proliferation. Counterintuitively, bacterial components appear to signal insulin secretion. In vivo lipopolysaccharide infusion acutely increases circulating insulin, which is paradoxical as endotoxemia is a potent catabolic condition. Insulin is a potent anabolic orchestrator of nutrient partitioning, and this is particularly true in adipocytes. Insulin dictates lipid accretion in a dose-dependent manner during preadipocyte development in adipose tissue-derived stromal vascular cell culture. However, in vivo studies focused on insulin's role in regulating adipose tissue metabolism from growing, and market weight pigs are sometimes inconsistent, and this variability appears to be animal, age and depot dependent. Additionally, porcine adipose tissue synthesizes and secretes a number of adipokines (leptin, adiponectin, and so forth) that directly or indirectly influence insulin action. Therefore, because insulin has an enormous impact on agriculturally important phenotypes, it is critical to have a better understanding of how insulin homeostasis is governed.
Collapse
Affiliation(s)
- L H Baumgard
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - G J Hausman
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - M V Sanz Fernandez
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
45
|
Moyes KM. TRIENNIAL LACTATION SYMPOSIUM: Nutrient partitioning during intramammary inflammation: A key to severity of mastitis and risk of subsequent diseases?1. J Anim Sci 2015; 93:5586-93. [DOI: 10.2527/jas.2015-8945] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Garcia M, Bequette B, Moyes K. Hepatic metabolic response of Holstein cows in early and mid lactation is altered by nutrient supply and lipopolysaccharide in vitro. J Dairy Sci 2015; 98:7102-14. [DOI: 10.3168/jds.2014-9034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 05/10/2015] [Indexed: 02/02/2023]
|
47
|
Bradford BJ, Yuan K, Farney JK, Mamedova LK, Carpenter AJ. Invited review: Inflammation during the transition to lactation: New adventures with an old flame. J Dairy Sci 2015. [PMID: 26210279 DOI: 10.3168/jds.2015-9683] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
For dairy cattle, the first several weeks of lactation represent the highest-risk period in their lives after their own neonatal period. Although more than 50% of cows during this period are estimated to suffer from at least one subclinical disorder, the complicated admixture of normal adaptations to lactation, infectious challenges, and metabolic disorders has made it difficult to determine which physiological processes are adaptive and which are pathological during this time. Subacute inflammation, a condition that has been well documented in obesity, has been a subject of great interest among dairy cattle physiologists in the past decade. Many studies have now clearly shown that essentially all cows experience some degree of systemic inflammation in the several days after parturition. The magnitude and likely persistence of the inflammatory state varies widely among cows, and several studies have linked the degree of postpartum inflammation to increased disease risk and decreased whole-lactation milk production. In addition to these associations, enhancing postpartum inflammation with repeated subacute administration of cytokines has impaired productivity and markers of health, whereas targeted use of nonsteroidal anti-inflammatory drugs during this window of time has enhanced whole-lactation productivity in several studies. Despite these findings, many questions remain about postpartum inflammation, including which organs are key initiators of this state and what signaling molecules are responsible for systemic and tissue-specific inflammatory states. Continued in vivo work should help clarify the degree to which mild postpartum inflammation is adaptive and whether the targeted use of anti-inflammatory drugs or nutrients can improve the health and productivity of dairy cows.
Collapse
Affiliation(s)
- B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| | - K Yuan
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - J K Farney
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - A J Carpenter
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| |
Collapse
|
48
|
Ross JW, Hale BJ, Gabler NK, Rhoads RP, Keating AF, Baumgard LH. Physiological consequences of heat stress in pigs. ANIMAL PRODUCTION SCIENCE 2015. [DOI: 10.1071/an15267] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heat stress negatively influences the global pork industry and undermines genetic, nutritional, management and pharmaceutical advances in management, feed and reproductive efficiency. Specifically, heat stress-induced economic losses result from poor sow performance, reduced and inconsistent growth, decreased carcass quality, mortality, morbidity, and processing issues caused by less rigid adipose tissue (also known as flimsy fat). When environmental conditions exceed the pig’s thermal neutral zone, nutrients are diverted from product synthesis (meat, fetus, milk) to body temperature maintenance thereby compromising efficiency. Unfortunately, genetic selection for both increased litter size and leaner phenotypes decreases pigs’ tolerance to heat, as enhanced fetal development and protein accretion results in increased basal heat production. Additionally, research has demonstrated that in utero heat stress negatively and permanently alters post-natal body temperature and body composition and both variables represent an underappreciated consequence of heat stress. Advances in management (i.e. cooling systems) have partially alleviated the negative impacts of heat stress, but productivity continues to decline during the warm summer months. The detrimental effects of heat stress on animal welfare and production will likely become more of an issue in regions most affected by continued predictions for climate change, with some models forecasting extreme summer conditions in key animal-producing areas of the globe. Therefore, heat stress is likely one of the primary factors limiting profitable animal protein production and will certainly continue to compromise food security (especially in emerging countries) and regionalise pork production in developed countries. Thus, there is an urgent need to have a better understanding of how heat stress reduces animal productivity. Defining the biology of how heat stress jeopardises animal performance is critical in developing approaches (genetic, managerial, nutritional and pharmaceutical) to ameliorate current production issues and improve animal wellbeing and performance.
Collapse
|
49
|
Moyes KM, Larsen T, Sørensen P, Ingvartsen KL. Changes in various metabolic parameters in blood and milk during experimental Escherichia coli mastitis for primiparous Holstein dairy cows during early lactation. J Anim Sci Biotechnol 2014; 5:47. [PMID: 25368807 PMCID: PMC4216841 DOI: 10.1186/2049-1891-5-47] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/10/2014] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this study was to characterize the changes in various metabolic parameters in blood and milk during IMI challenge with Escherichia coli (E. coli) for dairy cows during early lactation. Thirty, healthy primiparous Holstein cows were infused (h = 0) with ~20-40 cfu of live E. coli into one front mammary quarter at ~4-6 wk in lactation. Daily feed intake and milk yield were recorded. At –12, 0, 3, 6, 12, 18, 24, 36, 48, 60, 72, 96, 108, 120, 132, 144, 156, 168, 180 and 192 h relative to challenge rectal temperatures were recorded and quarter foremilk was collected for analysis of shedding of E. coli. Composite milk samples were collected at -180, -132, -84, -36, -12, 12, 24, 36, 48, 60, 72, 84, 96, 132 and 180 h relative to challenge (h = 0) and analyzed for lactate dehydrogenase (LDH), somatic cell count, fat, protein, lactose, citrate, beta-hydroxybutyrate (BHBA), free glucose (fglu), and glucose-6-phosphate (G6P). Blood was collected at -12, 0, 3, 6, 12, 18, 24, 36, 60, 72, 84, 132 and 180 h relative to challenge and analyzed for plasma non-esterified fatty acids (NEFA), BHBA and glucose concentration. A generalized linear mixed model was used to determine the effect of IMI challenge on metabolic responses of cows during early lactation. Results By 12 h, E. coli was recovered from challenged quarters and shedding continued through 72 h. Rectal temperature peaked by 12 h post-challenge and returned to pre-challenge values by 36 h post-IMI challenge. Daily feed intake and milk yield decreased (P <0.05) by 1 and 2 d, respectively, after mastitis challenge. Plasma BHBA decreased (12 h; P <0.05) from 0.96 ± 1.1 at 0 h to 0.57 ± 0.64 mmol/L by 18 h whereas concentration of plasma NEFA (18 h) and glucose (24 h) were significantly greater, 11 and 27%, respectively, after challenge. In milk, fglu, lactose, citrate, fat and protein yield were lower whereas yield of BHBA and G6P were higher after challenge when compared to pre-challenge values. Conclusions Changes in metabolites in blood and milk were most likely associated with drops in feed intake and milk yield. However, the early rise in plasma NEFA may also signify enhanced adipose tissue lipolysis. Lower concentrations of plasma BHBA may be attributed to an increase transfer into milk after IMI. Decreases in both milk lactose yield and % after challenge may be partly attributed to reduced conversion of fglu to lactose. Rises in G6P yield and concentration in milk after challenge (24 h) may signify increased conversion of fglu to G6P. Results identify changes in various metabolic parameters in blood and milk after IMI challenge with E. coli in dairy cows that may partly explain the partitioning of nutrients and changes in milk components after IMI for cows during early lactation.
Collapse
Affiliation(s)
- Kasey M Moyes
- Department of Animal and Avian Sciences, University of Maryland, 142 Animal Sciences Building, MD 20742-2311, 20910 College Park, MD USA
| | - Torben Larsen
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, 8830 Denmark
| | - Peter Sørensen
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, 8830 Denmark
| | - Klaus L Ingvartsen
- Department of Animal Science, Faculty of Science and Technology, Aarhus University, Tjele, 8830 Denmark
| |
Collapse
|
50
|
Hashemzadeh-Cigari F, Khorvash M, Ghorbani GR, Kadivar M, Riasi A, Zebeli Q. Effects of supplementation with a phytobiotics-rich herbal mixture on performance, udder health, and metabolic status of Holstein cows with various levels of milk somatic cell counts. J Dairy Sci 2014; 97:7487-97. [PMID: 25306268 DOI: 10.3168/jds.2014-7989] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 06/23/2014] [Indexed: 12/30/2022]
Abstract
This study evaluated the effects of dietary supplementation of a novel phytobiotics-rich herbal mixture (PRHM) on feed intake, performance, udder health, ruminal fermentation, and plasma metabolites in cows with moderate or high somatic cell counts (SCC) in the milk. Twenty-four Holstein dairy cows (117 ± 26 d in milk and 46.3 ± 4.7 kg of milk/d at the start of the experiment) were blocked by parity and days in milk and split into 2 groups, based on SCC in the milk; 12 cows were with moderate SCC (260,000<SCC <500,000 cells/mL), whereas 12 other cows had high levels of SCC (>500,000 cells/mL) in the milk. Within each SCC group, cows were blocked by milk yield and parity, and were randomly assigned to 2 different feeding regimens. Half of the cows in each SCC group (n=6) were supplemented with PRHM (185 g/cow per day, providing 12.4 g of phenolic compounds per day), and the other half (n=6) were not supplemented in their diets. The experiment lasted 36 d, whereby the first 24 d were used for adaptation to the diets and the last 12 d for sampling. Data showed that supplementation of PRHM decreased somatic cell score in the milk, indicating improved udder health of cows with high initial SCC, but not in cows with moderate SCC. Also, cows supplemented with PRHM consumed more feed DM, produced greater amounts of milk, and showed an improvement of feed utilization efficiency. However, these cows also lost more back-fat thickness during the experiment. Supplementation of PRHM increased fat- and energy-corrected milk yields in cows with high initial SCC, but not in cows with moderate SCC. Supplementation of PRHM decreased milk fat content, whereas other milk components were not affected by PRHM feeding. The PRHM supplementation decreased the acetate-to-propionate ratio in the rumen fluid, but increased β-hydroxybutyrate and cholesterol concentration in the plasma, irrespective of the initial SCC level in the milk. Other plasma metabolites and liver enzymes were not affected by PRHM supplementation. Apparent nutrient digestibility did not differ among treatments. Overall, supplementation of PRHM seems to be an effective strategy to enhance performance and lower SCC, particularly in cows having high SCC levels in the milk. Further research is warranted to evaluate long-term effects of PRHM supplementation, especially with regard to metabolic health status and reproduction.
Collapse
Affiliation(s)
- F Hashemzadeh-Cigari
- Department of Animal Science, Isfahan University of Technology, Isfahan 84156, Iran.
| | - M Khorvash
- Department of Animal Science, Isfahan University of Technology, Isfahan 84156, Iran
| | - G R Ghorbani
- Department of Animal Science, Isfahan University of Technology, Isfahan 84156, Iran
| | - M Kadivar
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - A Riasi
- Department of Animal Science, Isfahan University of Technology, Isfahan 84156, Iran
| | - Q Zebeli
- Institute of Animal Nutrition and Functional Plant Compounds, Vetmeduni, 1210 Vienna, Austria
| |
Collapse
|