1
|
Lunsin R, Sokantat D, Silvestre T, Neto HRL, Koh TJ, Sun F, Yeanpet C, Pilajun R. Metabolic status, reproductive, and productive performances of transition dairy cows as affected by dietary rumen-protected choline supplementation. J Adv Vet Anim Res 2024; 11:754-761. [PMID: 39605753 PMCID: PMC11590597 DOI: 10.5455/javar.2024.k827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/25/2024] [Accepted: 07/26/2024] [Indexed: 11/29/2024] Open
Abstract
Research articles about the effects of rumen-protected choline (RPC) supplementation on metabolic response, and reproductive and productive performances in transitional dairy cows were reviewed and presented. Analysis was conducted on 32 research papers that were published. The papers examined treatments without RPC supplementation and RPC supplementation levels varying from 10 to 100 gm/day. The feeding duration of RPC started from 40 to 140 days prepartum and continued until 20 to 140 days postpartum in multiparous dairy cows. Studies indicated that adding herbal choline (Cho) to the diet of transition dairy cows resulted in increased milk production and improved milk quality, leading to enhanced energy balance and reduced oxidative stress. The concentration and yield of IgG in colostrum provide passive immunity to dairy newborns and can be enhanced by dietary Cho supplementation. The inconsistent effects of RPC supplementation on reproduction may be due to several factors such as heat stress, genetics, and management. RPC supplementation improved the transition dairy cows' milk yield and quality, but dosage response was not observed as in the prior publication. Remarkably, the length of RPC supplementation had a positive correlation with an increase in milk yield. Based on this review, 45-50 gm/day dietary RPC supplementation between 3 weeks pre-calving to 8 weeks post-calving is suggested to increase at least 10% milk yield in dairy cows.
Collapse
Affiliation(s)
- Ratchataporn Lunsin
- Program in Animal Science, Faculty of Agriculture, UbonRatchathaniRajabhat University, UbonRatchathani, Thailand
| | - Damrongchai Sokantat
- Program in Animal Science, Faculty of Agriculture, UbonRatchathaniRajabhat University, UbonRatchathani, Thailand
| | - Taina Silvestre
- Ruminant Technical Services, Animal Nutrition and Health, Asia Pacific, Kemin Industries, Inc., Des Moines, IA, USA
| | - Helio Rezende Lima Neto
- Ruminant Technical Services, Animal Nutrition and Health, Asia Pacific, Kemin Industries, Inc., Des Moines, IA, USA
| | - Thong Jin Koh
- Ruminant Technical Services, Animal Nutrition and Health, Asia Pacific, Kemin Industries, Inc., Des Moines, IA, USA
| | - Fei Sun
- Ruminant Technical Services, Animal Nutrition and Health, Asia Pacific, Kemin Industries, Inc., Des Moines, IA, USA
| | - Chittraporn Yeanpet
- Department of Animal Science, Faculty of Agriculture, UbonRatchathani University, UbonRatchathani, Thailand
| | - Ruangyote Pilajun
- Department of Animal Science, Faculty of Agriculture, UbonRatchathani University, UbonRatchathani, Thailand
| |
Collapse
|
2
|
Westhoff TA, Borchardt S, Mann S. Invited review: Nutritional and management factors that influence colostrum production and composition in dairy cows. J Dairy Sci 2024; 107:4109-4128. [PMID: 38246551 DOI: 10.3168/jds.2023-24349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024]
Abstract
Colostrum is a rich source of nutritional and non-nutritional components and is recognized as essential to transfer passive immunity to newborn calves. Because of the individual and seasonal variability in colostrum yield and composition, maintaining an adequate supply of high-quality colostrum year-round remains a challenge for commercial dairy producers. In this narrative review, we described the individual, seasonal, and herd-level variability of colostrum production and summarized the association between individual animal factors such as parity, sex of the calf, calf birth weight, as well as indicators of the cow's metabolic status and the yield and composition of colostrum. Further, we reviewed the current knowledge on the influence of prepartum nutrition and management strategies on colostrum production. Research on the metabolizable energy and protein supplied in the prepartum diet as well as on the inclusion and source of vitamins, minerals, and feed additives suggests prepartum nutrition influences the yield, quality, and composition of colostrum. Furthermore, the prepartum environment and dry period length remain influential factors in the production of colostrum. However, additional research is needed to understand the mechanisms by which prepartum nutrition and management affect colostrum production. Finally, time from calving to colostrum harvest and oxytocin administration as well as the current knowledge on the effect of heat treatment and colostrum storage strategies on colostral components were discussed. To conclude, we identify critical gaps in knowledge for future focus of investigation in colostrum research.
Collapse
Affiliation(s)
- T A Westhoff
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - S Borchardt
- Clinic for Animal Reproduction, Faculty of Veterinary Medicine, Freie Universitaet Berlin, 14163 Berlin, Germany
| | - S Mann
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
3
|
Çelik S, Muruz H. Growth Performance, Blood Metabolites, Carcass Characteristics and Meat Quality of Lambs Fed Diets Containing Different Energy Levels Supplemented with Rumen-Protected Choline. Animals (Basel) 2024; 14:1682. [PMID: 38891729 PMCID: PMC11171108 DOI: 10.3390/ani14111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
This study aimed to examine the effects of metabolizable energy (ME) level and rumen-protected choline (RPC) supplementation on the growth performance, carcass characteristics, meat quality, serum energy, lipid, and protein profiles of Karayaka lambs. Twenty-eight Karayaka lambs, with an initial body weight (BW) of 26.85 ± 0.26 kg, were randomly assigned (2 × 2 factorial design) to one of four dietary treatments with two levels of ME (optimum: 2750 or low: 2500 kcal ME/kg dry matter) and two levels of RPC (0 or 4 g/d/lamb). Lambs of each group were housed in individual pens. The experiment lasted 66 d, with the first 10 d consisting of acclimation and the next 56 d of the formal experimental period. The data on BW, dietary matter intake (DMI), and serum glucose concentrations confirm that our model successfully induced low energy using 250 kcal/kg less energy than the optimum level. RPC supplementation did not significantly affect average daily DMI, total average daily gain (ADG), or feed conversion ratio (FCR) at any energy level. Additionally, there was no substantial effect on carcass characteristics, meat quality, serum lipids, energy metabolism indicators, and liver function parameters. There was also no interaction effect of RPC × ME on the parameters tested. However, at 56 d into the experiment, the interaction effect of RPC × ME on serum urea-N was highly significant, and RPC supplementation led to lower serum urea-N levels (p = 0.001). These results suggest that while RPC supplementation did not enhance overall performance and carcass characteristics in Karayaka lambs, it may play a role in modulating nitrogen metabolism, as indicated by the significant reduction in serum urea-N levels.
Collapse
Affiliation(s)
- Salih Çelik
- The Ministry of Agriculture and Forestry of the Republic of Turkey, Tokat Provincial Office, İmamlık Street. No:68, Tokat 60200, Turkey;
| | - Habip Muruz
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Kurupelit Kampusu, Samsun 55100, Turkey
| |
Collapse
|
4
|
Swartz TH, Bradford BJ, Mamedova LK, Estes KA. Effects of dietary rumen-protected choline supplementation to periparturient dairy cattle on inflammation and metabolism in mammary and liver tissue during an intramammary lipopolysaccharide challenge. J Dairy Sci 2024; 107:1211-1227. [PMID: 37730173 DOI: 10.3168/jds.2023-23752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/31/2023] [Indexed: 09/22/2023]
Abstract
The objective of this experiment was to examine the effects of supplementation and dose of rumen-protected choline (RPC) on markers of inflammation and metabolism in liver and mammary tissue during an intramammary lipopolysaccharide (LPS) challenge. Parous Holstein cows were blocked by calving month and randomly assigned within block to receive 45 g/d of RPC (20.4 g/d of choline ions; CHOL45), 30 g/d of RPC (13.6 g/d of choline ions; CHOL30), or no RPC (CON) as a top-dress starting 24 d before expected calving until 21 d postpartum. Cows were alternately assigned within treatment group to either receive an intramammary LPS challenge (200 μg in each rear quarter; Escherichia coli O111:B4) or not at 17 DIM (CHOL45, n = 9; CHOL45-LPS, n = 9; CHOL30, n = 11; CHOL30-LPS, n = 10; CON, n = 10; CON-LPS, n = 9). Hepatic and mammary tissues were collected from all cows on d 17 postpartum. Hepatic and mammary tissues were collected at ∼7.5 and 8 h, respectively, after the LPS challenge. An additional mammary biopsy was conducted on LPS-challenged cows (CHOL45-LPS, CHOL30-LPS, and CON-LPS) at 48 h postchallenge. Hepatic and mammary RNA copy numbers were quantified for genes involved in apoptosis, methylation, inflammation, oxidative stress, and mitochondrial function using NanoString technology. Targeted metabolomics was conducted only on mammary tissue samples (both 8 and 48 h biopsies) to quantify 143 metabolites including choline metabolites, amino acids, biogenic amines and derivatives, organic acids, carnitines, and glucose. Hepatic IFNG was greater in CHOL45 as compared with CON in unchallenged cows, suggesting an improvement in type 1 immune responses. Hepatic CASP3 was greater in CHOL45-LPS as compared with CON-LPS, suggesting greater apoptosis. Mammary IL6 was reduced in CHOL30-LPS cows as compared with CHOL45-LPS and CON-LPS (8 and 48 h). Mammary GPX4 and COX5A were reduced in CHOL30-LPS as compared with CON-LPS (8 h), and SDHA was reduced in CHOL30-LPS as compared with CON-LPS (8 and 48 h). Both CHOL30-LPS and CHOL45-LPS cows had lesser mammary ATP5J than CON-LPS, suggesting that dietary RPC supplementation altered mitochondrial function following LPS challenge. Treatment did not affect mammary concentrations of any metabolite in unchallenged cows, and only 4 metabolites were affected by dietary RPC supplementation in LPS-challenged cows. Mammary concentrations of isobutyric acid and 2 acyl-carnitines (C4:1 and C10:2) were reduced in CHOL45-LPS as compared with CHOL30-LPS and CON-LPS. Taken together, reductions in medium- and short-chain carnitines along with an increase in long-chain carnitines in mammary tissue from CHOL45-LPS cows suggests less fatty acid entry into the β oxidation pathway. Although the intramammary LPS challenge profoundly affected markers for inflammation and metabolism in liver and mammary tissue, dietary RPC supplementation had minimal effects on inflammatory markers and the mammary metabolome.
Collapse
Affiliation(s)
- T H Swartz
- Department of Animal Science, Michigan State University, East Lansing, MI 48824; Department of Dairy and Food Science, South Dakota State University, Brookings, SD 57007.
| | - B J Bradford
- Department of Animal Science, Michigan State University, East Lansing, MI 48824.
| | - L K Mamedova
- Department of Animal Science, Michigan State University, East Lansing, MI 48824
| | - K A Estes
- Balchem Corporation, Montvale, NJ 07645
| |
Collapse
|
5
|
Huang B, Khan MZ, Kou X, Chen Y, Liang H, Ullah Q, Khan N, Khan A, Chai W, Wang C. Enhancing Metabolism and Milk Production Performance in Periparturient Dairy Cattle through Rumen-Protected Methionine and Choline Supplementation. Metabolites 2023; 13:1080. [PMID: 37887405 PMCID: PMC10608895 DOI: 10.3390/metabo13101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
For dairy cattle to perform well throughout and following lactations, precise dietary control during the periparturient phase is crucial. The primary issues experienced by periparturient dairy cows include issues like decreased dry matter intake (DMI), a negative energy balance, higher levels of non-esterified fatty acids (NEFA), and the ensuing inferior milk output. Dairy cattle have always been fed a diet high in crude protein (CP) to produce the most milk possible. Despite the vital function that dairy cows play in the conversion of dietary CP into milk, a sizeable percentage of nitrogen is inevitably expelled, which raises serious environmental concerns. To reduce nitrogen emissions and their production, lactating dairy cows must receive less CP supplementation. Supplementing dairy cattle with rumen-protected methionine (RPM) and choline (RPC) has proven to be a successful method for improving their ability to use nitrogen, regulate their metabolism, and produce milk. The detrimental effects of low dietary protein consumption on the milk yield, protein yield, and dry matter intake may be mitigated by these nutritional treatments. In metabolic activities like the synthesis of sulfur-containing amino acids and methylation reactions, RPM and RPC are crucial players. Methionine, a limiting amino acid, affects the production of milk protein and the success of lactation in general. According to the existing data in the literature, methionine supplementation has a favorable impact on the pathways that produce milk. Similarly, choline is essential for DNA methylation, cell membrane stability, and lipid metabolism. Furthermore, RPC supplementation during the transition phase improves dry matter intake, postpartum milk yield, and fat-corrected milk (FCM) production. This review provides comprehensive insights into the roles of RPM and RPC in optimizing nitrogen utilization, metabolism, and enhancing milk production performance in periparturient dairy cattle, offering valuable strategies for sustainable dairy farming practices.
Collapse
Affiliation(s)
- Bingjian Huang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
- College of Life Sciences, Liaocheng University, Liaocheng 252059, China
| | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Xiyan Kou
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Yinghui Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Huili Liang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Qudrat Ullah
- Faculty of Veterinary and Animal Sciences, University of Agriculture, Dera Ismail Khan 29220, Pakistan
| | - Nadar Khan
- Livestock and Dairy Development (Research) Department Khyber Pakhtunkhwa, Peshawar 25120, Pakistan
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
6
|
Holdorf HT, Kendall SJ, Ruh KE, Caputo MJ, Combs GJ, Henisz SJ, Brown WE, Bresolin T, Ferreira REP, Dorea JRR, White HM. Increasing the prepartum dose of rumen-protected choline: Effects on milk production and metabolism in high-producing Holstein dairy cows. J Dairy Sci 2023; 106:5988-6004. [PMID: 37225582 DOI: 10.3168/jds.2022-22905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/21/2023] [Indexed: 05/26/2023]
Abstract
Peripartum rumen-protected choline (RPC) supplementation is beneficial for cow health and production, yet the optimal dose is unknown. In vivo and in vitro supplementation of choline modulates hepatic lipid, glucose, and methyl donor metabolism. The objective of this experiment was to determine the effects of increasing the dose of prepartum RPC supplementation on milk production and blood biomarkers. Pregnant multiparous Holstein cows (n = 116) were randomly assigned to one of 4 prepartum choline treatments that were fed from -21 d relative to calving (DRTC) until calving. From calving until +21 DRTC, cows were fed diets targeting 0 g/d choline ion (control, CTL) or the recommended dose (15 g/d choline ion; RD) of the same RPC product that they were fed prepartum. The resulting treatments targeted: (1) 0 g/d pre- and postpartum [0.0 ± 0.000 choline ion, percent of dry matter (%DM); CTL]; (2) 15 g/d pre- and postpartum of choline ion from an established product (prepartum: 0.10 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.004 choline ion, %DM; ReaShure, Balchem Corp.; RPC1RD▸RD); (3) 15 g/d pre- and postpartum of choline ion from a concentrated RPC prototype (prepartum: 0.09 ± 0.004 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; RPC2, Balchem Corp.; RPC2RD▸RD); or (4) 22 g/d prepartum and 15 g/d postpartum from RPC2 [prepartum: 0.13 ± 0.005 choline ion, %DM; postpartum: 0.05 ± 0.003 choline ion, %DM; high prepartum dose (HD), RPC2HD▸RD]. Treatments were mixed into a total mixed ration, and cows had ad libitum access via a roughage intake control system (Hokofarm Group). From calving to +21 DRTC, all cows were fed a common base diet and treatments were mixed into the total mixed ration (supplementation period, SP). Thereafter, all cows were fed a common diet (0 g/d choline ion) until +100 DRTC (postsupplementation period, postSP). Milk yield was recorded daily and composition analyzed weekly. Blood samples were obtained via tail vessel upon enrollment, approximately every other day from -7 to +21 DRTC, and at +56 and +100 DRTC. Feeding any RPC treatment reduced prepartum dry matter intake compared with CTL. During the SP, no evidence for a treatment effect on energy-corrected milk (ECM) yield was found, but during the postSP, RPC1RD▸RD and RPC2RD▸RD treatments tended to increase ECM, protein, and fat yields. During the postSP, the RPC1RD▸RD and RPC2RD▸RD treatments tended to increase, and RPC2HD▸RD increased, the de novo proportion of total milk fatty acids. During the early lactation SP, RPC2HD▸RD tended to increase plasma fatty acids and β-hydroxybutyrate concentrations, and RPC1RD▸RD and RPC2RD▸RD reduced blood urea nitrogen concentrations compared with CTL. The RPC2HD▸RD treatment reduced early lactation serum lipopolysaccharide binding protein compared with CTL. Overall, peripartum RPC supplementation at the recommended dose tended to increase ECM yield postSP, but no evidence was seen of an additional benefit on milk production with an increased prepartum dose of choline ion. The effects of RPC on metabolic and inflammatory biomarkers support the potential for RPC supplementation to affect transition cow metabolism and health and may support the production gains observed.
Collapse
Affiliation(s)
- H T Holdorf
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - S J Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - K E Ruh
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - M J Caputo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - G J Combs
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - S J Henisz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - W E Brown
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - T Bresolin
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - R E P Ferreira
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - J R R Dorea
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| | - H M White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
7
|
Potts SB, Brady KM, Scholte CM, Moyes KM, Sunny NE, Erdman RA. Rumen-protected choline and methionine during the periparturient period affect choline metabolites, amino acids, and hepatic expression of genes associated with one-carbon and lipid metabolism. J Dairy Sci 2023:S0022-0302(23)00230-8. [PMID: 37173256 DOI: 10.3168/jds.2022-22334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/29/2022] [Indexed: 05/15/2023]
Abstract
Feeding supplemental choline and Met during the periparturient period can have positive effects on cow performance; however, the mechanisms by which these nutrients affect performance and metabolism are unclear. The objective of this experiment was to determine if providing rumen-protected choline, rumen-protected Met, or both during the periparturient period modifies the choline metabolitic profile of plasma and milk, plasma AA, and hepatic mRNA expression of genes associated with choline, Met, and lipid metabolism. Cows (25 primiparous, 29 multiparous) were blocked by expected calving date and parity and randomly assigned to 1 of 4 treatments: control (no rumen-protected choline or rumen-protected Met); CHO (13 g/d choline ion); MET (9 g/d DL-methionine prepartum; 13.5 g/d DL-methionine, postpartum); or CHO + MET. Treatments were applied daily as a top dress from ~21 d prepartum through 35 d in milk (DIM). On the day of treatment enrollment (d -19 ± 2 relative to calving), blood samples were collected for covariate measurements. At 7 and 14 DIM, samples of blood and milk were collected for analysis of choline metabolites, including 16 species of phosphatidylcholine (PC) and 4 species of lysophosphatidylcholine (LPC). Blood was also analyzed for AA concentrations. Liver samples collected from multiparous cows on the day of treatment enrollment and at 7 DIM were used for gene expression analysis. There was no consistent effect of CHO or MET on milk or plasma free choline, betaine, sphingomyelin, or glycerophosphocholine. However, CHO increased milk secretion of total LPC irrespective of MET for multiparous cows and in absence of MET for primiparous cows. Furthermore, CHO increased or tended to increase milk secretion of LPC 16:0, LPC 18:1, and LPC 18:0 for primi- and multiparous cows, although the response varied with MET supplementation. Feeding CHO also increased plasma concentrations of LPC 16:0 and LPC 18:1 in absence of MET for multiparous cows. Although milk secretion of total PC was unaffected, CHO and MET increased secretion of 6 and 5 individual PC species for multiparous cows, respectively. Plasma concentrations of total PC and individual PC species were unaffected by CHO or MET for multiparous cows, but MET reduced total PC and 11 PC species during wk 2 postpartum for primiparous cows. Feeding MET consistently increased plasma Met concentrations for both primi- and multiparous cows. Additionally, MET decreased plasma serine concentrations during wk 2 postpartum and increased plasma phenylalanine in absence of CHO for multiparous cows. In absence of MET, CHO tended to increase hepatic mRNA levels of betaine-homocysteine methyltransferase and phosphate cytidylyltransferase 1 choline, α, but tended to decrease expression of 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 and peroxisome proliferator activated receptor α irrespective of MET. Although shifts in the milk and plasma PC profile were subtle and inconsistent between primi- and multiparous cows, gene expression results suggest that supplemental choline plays a probable role in promoting the cytidine diphosphate-choline and betaine-homocysteine S-methyltransferase pathways. However, interactive effects suggest that this response depends on Met availability, which may explain the inconsistent results observed among studies when supplemental choline is fed.
Collapse
Affiliation(s)
- S B Potts
- Western Maryland Research and Education Center, University of Maryland Extension, Keedysville 21756.
| | - K M Brady
- Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - C M Scholte
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| | - K M Moyes
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| | - N E Sunny
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| | - R A Erdman
- Department of Animal and Avian Sciences, University of Maryland, College Park 20742
| |
Collapse
|
8
|
Du X, Cui Z, Zhang R, Zhao K, Wang L, Yao J, Liu S, Cai C, Cao Y. The Effects of Rumen-Protected Choline and Rumen-Protected Nicotinamide on Liver Transcriptomics in Periparturient Dairy Cows. Metabolites 2023; 13:metabo13050594. [PMID: 37233635 DOI: 10.3390/metabo13050594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
To investigate the effects of rumen-protected choline (RPC) and rumen-protected nicotinamide (RPM) on liver metabolic function based on transcriptome in periparturient dairy cows, 10 healthy Holstein dairy cows with similar parity were allocated to RPC and RPM groups (n = 5). The cows were fed experimental diets between 14 days before and 21 days after parturition. The RPC diet contained 60 g RPC per day, and the RPM diet contained 18.7 g RPM per day. Liver biopsies were taken 21 days after calving for the transcriptome analysis. A model of fat deposition hepatocytes was constructed using the LO2 cell line with the addition of NEFA (1.6 mmol/L), and the expression level of genes closely related to liver metabolism was validated and divided into a CHO group (75 μmol/L) and a NAM group (2 mmol/L). The results showed that the expression of a total of 11,023 genes was detected and clustered obviously between the RPC and RPM groups. These genes were assigned to 852 Gene Ontology terms, the majority of which were associated with biological process and molecular function. A total of 1123 differentially expressed genes (DEGs), 640 up-regulated and 483 down-regulated, were identified between the RPC and RPM groups. These DEGs were mainly correlated with fat metabolism, oxidative stress and some inflammatory pathways. In addition, compared with the NAM group, the gene expression level of FGF21, CYP26A1, SLC13A5, SLCO1B3, FBP2, MARS1 and CDH11 in the CHO group increased significantly (p < 0.05). We proposed that that RPC could play a prominent role in the liver metabolism of periparturient dairy cows by regulating metabolic processes such as fatty acid synthesis and metabolism and glucose metabolism; yet, RPM was more involved in biological processes such as the TCA cycle, ATP generation and inflammatory signaling.
Collapse
Affiliation(s)
- Xue'er Du
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Zhijie Cui
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Rui Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Keliang Zhao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Chuanjiang Cai
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
9
|
Effect of the Supplementation Using an Herbal Mixture as a Choline Source during Early Gestation in Rambouillet Ewes. Animals (Basel) 2023; 13:ani13040645. [PMID: 36830432 PMCID: PMC9951712 DOI: 10.3390/ani13040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
Previous research indicates that adequate choline nutrition during late gestation improves fetal development. However, there is a lack of studies describing choline's role during early gestation. Thus, the current study hypothesizes that an herbal mixture as a source of choline (Biocholine) positively affects offspring development from ewes supplemented during early gestation. Therefore, the objectives were to evaluate the impact of biocholine on the programming of the offspring early in life through the evaluation of dams and newborn performance. Twenty-eight four-year-old Rambouillet ewes were assigned randomly to two treatments: non-supplementation and 4 gd-1 of biocholine during the early gestation. Compared with the dams without supplementation, the ewes supplemented using biocholine showed no increase in parameters such as birth and weaning weight (p > 0.05). Additionally, the milk yield and quality of colostrum and milk did not present statistical differences (p > 0.05). However, the placental membrane development was reduced in the ewes that received supplementation with biocholine; interestingly, those dams increased the weight of the newborns during the lambing period (p < 0.05). Finally, the current study proposes necessary elucidation of how placental size is programmed and if less placental development has potential benefits in the fetus's development.
Collapse
|
10
|
Huo Q, Sun X, Wu T, Li Z, Jonker A, You P, Li R, Li J, Tian W, Li C, Wang C, He Y, Rugoho I, Cheng L, You M. Supplementation of graded levels of rumen-protected choline to a pelleted total mixed ration did not improve the growth and slaughter performance of fattening lambs. Front Vet Sci 2022; 9:1034895. [PMID: 36504853 PMCID: PMC9726755 DOI: 10.3389/fvets.2022.1034895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Choline is an essential nutrient in ruminant diets, which contributes to the fundamental biological functions of the animal. However, choline is easily degraded in the rumen before it can be absorbed. Rumen-protected choline (RPC) supplementation might support the fast growth of ruminants. This study aimed to investigate the effects of supplementing graded levels of RPC in a pelleted total mixed ration for fattening lambs. Sixty three-month-old male Small Tail Han and northeast fine wool sheep hybrid lambs with a liveweight of 15.3 ± 1.8 kg (mean ± SD) were fed designated diets and randomly assigned into five treatment groups (n = 12 per group). The five treatments were the rate of RPC supplementation at 0, 1.25, 2.50, 3.75, and 5.00 g (equivalent to 0, 0.31, 0.63, 0.94, and 1.25 g of choline chloride, respectively)/kg basal diet and the RPC-supplemented feed was offered for 112 days after 12 days of adaptation. Average daily gain, dry matter intake, and nutrient digestibility were similar across treatments. The rumen pH was quadratically significant among treatments, with the lowest and highest pH observed from the 2.5 and 5 g/kg RPC supplement groups, respectively (P = 0.02). After feeding, the ruminal ammonia concentrations among treatments were different (P < 0.05), with the highest value observed from the 5 g/kg RPC supplement group. Microbial crude protein level was different, with the highest value recorded from the 0 g/kg RPC supplement group (P = 0.028). A linear effect (P < 0.05) was observed from short-chain fatty acid values among treatments before and after feeding. Serum albumin (P = 0.003) and albumin/globulin ratio (P = 0.002) had a quadratic effect, with the highest value found in the 0 g/kg RPC supplement group. Abdominal fat was higher in RPC-supplemented groups (P < 0.05) compared to the control group. Drip loss was 65% higher in RPC-supplemented groups compared to the control group (P = 0.012). Overall, the study results showed an effect of RPC on ruminal parameters, but the supplementation of low-level RPC did not improve the growth and slaughter performance of fattening lambs.
Collapse
Affiliation(s)
- Qin Huo
- The Innovation Center of Ruminant Precision Nutrition and Smart Farming, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China,Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China
| | - Xuezhao Sun
- The Innovation Center of Ruminant Precision Nutrition and Smart Farming, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China,Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China,AgResearch Limited, Grasslands Research Center, Palmerston North, New Zealand,*Correspondence: Xuezhao Sun
| | - Tingting Wu
- The Innovation Center of Ruminant Precision Nutrition and Smart Farming, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Zelin Li
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VA, Australia
| | - Arjan Jonker
- AgResearch Limited, Grasslands Research Center, Palmerston North, New Zealand
| | - Peihua You
- Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China,Portal Agri-Industries Co., Ltd., Nanjing, Jiangsu, China
| | - Rongquan Li
- The Innovation Center of Ruminant Precision Nutrition and Smart Farming, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China,Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China
| | - Jianping Li
- The Innovation Center of Ruminant Precision Nutrition and Smart Farming, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China,Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China
| | - Wannian Tian
- The Innovation Center of Ruminant Precision Nutrition and Smart Farming, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China,Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China
| | - Changsheng Li
- The Innovation Center of Ruminant Precision Nutrition and Smart Farming, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China,Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China
| | - Chunqing Wang
- The Innovation Center of Ruminant Precision Nutrition and Smart Farming, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China,Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China
| | - Yuhua He
- The Innovation Center of Ruminant Precision Nutrition and Smart Farming, College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China,Jilin Inter-regional Cooperation Center for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China
| | | | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VA, Australia
| | - Meng You
- Portal Agri-Industries Co., Ltd., Nanjing, Jiangsu, China
| |
Collapse
|
11
|
Zenobi M, Bollatti J, Lopez A, Barton B, Hixson C, Maunsell F, Thatcher W, Miller-Cushon K, Santos J, Staples C, Nelson C. Effects of maternal choline supplementation on performance and immunity of progeny from birth to weaning. J Dairy Sci 2022; 105:9896-9916. [DOI: 10.3168/jds.2021-21689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 07/13/2022] [Indexed: 11/05/2022]
|