1
|
Zhang J, Li H, Xu Z, Lu J, Cao C, Shen H, Li X, You W, Chen G. Oestrogen ameliorates blood-brain barrier damage after experimental subarachnoid haemorrhage via the SHH pathway in male rats. Stroke Vasc Neurol 2023; 8:217-228. [PMID: 36526331 PMCID: PMC10359806 DOI: 10.1136/svn-2022-001907] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Sex differences affect the occurrence, progression and regression of subarachnoid haemorrhage (SAH). Oestrogen plays a protective role in alleviating the vasospasm and neuronal apoptosis induced by SAH. However, whether oestrogen affects blood‒brain barrier (BBB) integrity has not been fully studied. Oestrogen has been found to regulate the sonic hedgehog (SHH) signalling pathway through the oestrogen receptor in gastric cancer and adrenal glands, and the SHH signalling pathway has an important role in maintaining the BBB by upregulating the expression of tight junction proteins. In this study, we investigated the relationship between oestrogen and the SHH signalling pathway using clinical data and established an experimental SAH model to explore whether oestrogen could ameliorate BBB damage after SAH through the SHH pathway. METHODS Correlations between oestrogen and the SHH pathway were analysed by patients' cerebrospinal fluid (CSF) samples and the Genotype-Tissue Expression database (GTEx). Then, an experimental rat SAH model was established using the endovascular perforation method and treated with oestrogen, oestrogen inhibitors and SHH signalling pathway inhibitors. Then, the effects of oestrogen on BBB damage were analysed by western blot, immunofluorescence and neurobehavioural experiments. RESULTS ESLIA detection and correlation analysis showed that oestrogen levels in patients' CSF were positively correlated with the SHH pathway, which was further verified by GTEx gene-correlation analysis. SHH was found to be mainly expressed in neurons and astrocytes in rats under physiological conditions and was upregulated by oestrogen pretreatment. In the SAH model, oestrogen pretreatment was found to reverse SAH-induced decreases in the SHH pathway, which were counteracted by oestrogen receptor inhibitors. Furthermore, oestrogen pretreatment reduced SAH-induced BBB damage, brain oedema and neurological dysfunction, which were eliminated by SHH pathway inhibitors. CONCLUSION In conclusion, we demonstrate here that oestrogen pretreatment ameliorates brain injury after SAH, at least in part through SHH pathway-mediated BBB protection.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Zhongmou Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Tsai TH, Chang CH, Lin SH, Su YF, Tsai YC, Yang SF, Lin CL. Therapeutic effect of and mechanisms underlying the effect of miR-195-5p on subarachnoid hemorrhage-induced vasospasm and brain injury in rats. PeerJ 2021; 9:e11395. [PMID: 34221706 PMCID: PMC8231314 DOI: 10.7717/peerj.11395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives There is much evidence suggesting that inflammation contributes majorly to subarachnoid hemorrhage (SAH)-induced cerebral vasospasm and brain injury. miRNAs have been found to modulate inflammation in several neurological disorders. This study investigated the effect of miR-195-5p on SAH-induced vasospasm and early brain injury in experimental rats. Methods Ninety-six Sprague-Dawley male rats were randomly and evenly divided into a control group (no SAH, sham surgery), a SAH only group, a SAH + NC-mimic group, and a SAH + miR-195-5p group. SAH was induced using a single injection of blood into the cisterna magna. Suspensions containing NC-mimic and miR-195-5p were intravenously injected into rat tail 30 mins after SAH was induced. We determined degree of vasospasm by averaging areas of cross-sections the basilar artery 24h after SAH. We measured basilar artery endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κ B), phosphorylated NF-κ B (p-NF-κ B), inhibitor of NF-κ B (Iκ Bα) and phosphorylated-Iκ Bα (p-Iκ Bα). Cell death assay was used to quantify the DNA fragmentation, an indicator of apoptotic cell death, in the cortex, hippocampus, and dentate gyrus. Tumor necrosis factor alpha (TNF-α) levels were measured using sample protein obtained from the cerebral cortex, hippocampus and dentate gyrus. Results Prior to fixation by perfusion, there were no significant physiological differences among the control and treatment groups. SAH successfully induced vasospasm and early brain injury. MiR-195-5p attenuated vasospasam-induced changes in morphology, reversed SAH-induced elevation of iNOS, p-NF-κ B, NF-κ B, and p-Iκ Bα and reversed SAH-induced suppression of eNOS in the basilar artery. Cell death assay revealed that MiR-195-5p significantly decreased SAH-induced DNA fragmentation (apoptosis) and restored TNF-α level in the dentate gyrus. Conclusion In conclusion, MiRNA-195-5p attenuated SAH-induced vasospasm by up-regulating eNOS, down-regulating iNOS and inhibiting the NF-κ B signaling pathway. It also protected neurons by decreasing SAH-induced apoptosis-related cytokine TNF-α expression in the dentate gyrus. Further study is needed to elucidate the detail mechanism underlying miR-195-5p effect on SAH-induced vasospasm and cerebral injury. We believe that MiR-195-5p can potentially be used to manage SAH-induced cerebral vasospasm and brain injury.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Huai Lin
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Cheng Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
3
|
Wu CH, Tsai YC, Tsai TH, Kuo KL, Su YF, Chang CH, Lin CL. Valproic Acid Reduces Vasospasm through Modulation of Akt Phosphorylation and Attenuates Neuronal Apoptosis in Subarachnoid Hemorrhage Rats. Int J Mol Sci 2021; 22:ijms22115975. [PMID: 34205883 PMCID: PMC8198375 DOI: 10.3390/ijms22115975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a devastating emergent event associated with high mortality and morbidity. Survivors usually experience functional neurological sequelae caused by vasospasm-related delayed ischemia. In this study, male Sprague-Dawley rats were randomly assigned to five groups: sham (non-SAH) group, SAH group, and three groups with SAH treated with different doses of valproic acid (VPA) (10, 20, 40 mg/kg, once-daily, for 7 days). The severity of vasospasm was determined by the ratio of cross-sectional areas to intima-media thickness of the basilar arteries (BA) on the seventh day after SAH. The BA showed decreased expression of phospho-Akt proteins. The dentate gyrus showed increased expression of cleaved caspase-3 and Bax proteins and decreased expression of Bcl-2, phospho-ERK 1/2, phospho-Akt and acetyl-histone H3 proteins. The incidence of SAH-induced vasospasm was significantly lower in the SAH group treated with VPA 40 mg/kg (p < 0.001). Moreover, all groups treated with VPA showed reversal of the above-mentioned protein expression in BA and the dentate gyrus. Treatment with VPA upregulated histone H3 acetylation and conferred anti-vasospastic and neuro-protective effects by enhancing Akt and/or ERK phosphorylation. This study demonstrated that VPA could alleviate delayed cerebral vasospasm induced neuro-apoptosis after SAH.
Collapse
Affiliation(s)
- Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Keng-Liang Kuo
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (C.-H.W.); (T.-H.T.); (K.-L.K.); (Y.-F.S.); (C.-H.C.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan;
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
4
|
Concentrations of estradiol, progesterone and testosterone in sefrum and cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage correlate weakly with transcranial Doppler flow velocities. BMC Neurosci 2021; 22:29. [PMID: 33892632 PMCID: PMC8067654 DOI: 10.1186/s12868-021-00634-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 04/13/2021] [Indexed: 12/14/2022] Open
Abstract
Background The implication of the steroids estradiol, progesterone and testosterone in cerebral vasospasm after aneurysmal subarachnoid hemorrhage (aSAH) has not been comprehensively assessed. In rodents, studies suggested beneficial effects of steroids on cerebral vasospasm after experimental SAH. Studies in humans are warranted, however, a general dilemma of human studies on neuroactive substances is that the brain is not directly accessible and that concentrations in the periphery may not adequately parallel concentrations in the central compartments. In the present study, concentrations of estradiol, progesterone and testosterone in serum and cerebrospinal fluid (CSF) of patients with aSAH were determined. Blood flow velocities in cerebral arteries were measured by transcranial Doppler sonography (TCD). The aim of this study was to evaluate the correlations between the cerebral blood flow velocities and levels of estradiol, progesterone and testosterone in CSF and serum. Results Samples of serum and CSF of 42 patients with aSAH were collected concomitantly daily or every other day via the arterial line and the external ventricular drainage for two weeks after the hemorrhage. Blood flow velocities in the cerebral arteries were determined by TCD. Total estradiol, progesterone and testosterone concentrations were measured by electro-chemiluminescence immunoassay. The strength of correlation was assessed by Spearman’s rank correlation coefficient. The correlation analysis revealed very weak correlations between cerebral blood flow velocities and concentrations of estradiol, progesterone and testosterone levels in both compartments with correlation coefficients below 0.2. Conclusions In humans with aSAH, merely very weak correlations between flow velocities in cerebral arteries and concentrations of estradiol, progesterone and testosterone in serum and CSF were demonstrated. These results suggest a limited influence of the respective steroids on cerebral vascular tone although vasodilatory effects were described in rodent studies. Thus, the implication of steroids in processes of neurological deterioration warrants further clarification.
Collapse
|
5
|
Martin J, Plank E, Jungwirth B, Hapfelmeier A, Podtschaske A, Kagerbauer SM. Weak correlations between serum and cerebrospinal fluid levels of estradiol, progesterone and testosterone in males. BMC Neurosci 2019; 20:53. [PMID: 31619164 PMCID: PMC6794746 DOI: 10.1186/s12868-019-0535-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/05/2019] [Indexed: 01/16/2023] Open
Abstract
Background Neuroactive steroids seem to be implicated in a variety of neurophysiological and behavioral processes, such as sleep, learning, memory, stress, feeding and aging. Numerous studies have also addressed this implication in various cerebral disorders and diseases. Yet, the correlation and association between steroids in the periphery, e.g. blood, and the central compartments, e.g. cerebrospinal fluid (CSF), have not yet been comprehensively assessed. As the brain is not directly accessible, and the collection of human CSF usually requires invasive procedures, easier accessible compartments, such as blood, have always attracted attention. However, studies in humans are scarce. In the present study we determined estradiol, progesterone and testosterone levels in CSF and serum of 22 males without cerebral disorders or diseases. Results Samples were taken under conditions corresponding closest to basal conditions with patients expecting only spinal anesthesia and minor surgery. All samples per patient were collected concomitantly. Total estradiol, progesterone and testosterone concentrations were measured by electro-chemiluminescence immunoassay. The strength of correlation was assessed by Spearman’s rank correlation coefficient. Correlation analysis revealed merely weak to very weak correlations for estradiol, progesterone and testosterone respectively between the CSF and serum compartments. Conclusions Total steroid levels of estradiol, progesterone and testosterone in CSF and serum of males without neurological disorders were determined. Weak to very weak correlations between CSF and serum were found thus suggesting that concentrations in the periphery do not parallel concentrations in the central compartments. Further research is needed to clarify to what extent and under which conditions serum levels of estradiol, progesterone and testosterone may possibly serve as a biomarker reflecting the respective concentrations in the CSF or in the brain.
Collapse
Affiliation(s)
- Jan Martin
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675, Munich, Germany.
| | - Eva Plank
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Bettina Jungwirth
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Alexander Hapfelmeier
- Institute of Medical Informatics, Statistics und Epidemiology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Ismaninger Str. 22, 81675, Munich, Germany
| | - Armin Podtschaske
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675, Munich, Germany
| | - Simone M Kagerbauer
- Department of Anesthesiology and Intensive Care Medicine, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Ismaninger Strasse 22, 81675, Munich, Germany
| |
Collapse
|
6
|
Crago EA, Sherwood PR, Bender C, Balzer J, Ren D, Poloyac SM. Plasma Estrogen Levels Are Associated With Severity of Injury and Outcomes After Aneurysmal Subarachnoid Hemorrhage. Biol Res Nurs 2014; 17:558-66. [PMID: 25548393 DOI: 10.1177/1099800414561632] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Biochemical mediators alter cerebral perfusion and have been implicated in delayed cerebral ischemia (DCI) and poor outcomes after aneurysmal subarachnoid hemorrhage (aSAH). Estrogens (estrone [E1] and estradiol [E2]) are mediators with neuroprotective properties that could play a role in DCI. This study explored associations between plasma estrogen levels and outcomes following aSAH. METHODS Plasma samples from 1-4, 4-6, and 7-10 days after hemorrhage from 99 adult aSAH patients were analyzed for estrogen levels using liquid chromatography tandem mass spectrometry. DCI was operationalized as radiographic/ultrasonic evidence of impaired cerebral blood flow accompanied by neurological deterioration. Outcomes were assessed using the Modified Rankin Scale at 3 and 12 months after hemorrhage. Statistical analysis included correlation, regression, and group-based trajectory. RESULTS Higher E1 and E2 levels were associated with higher Hunt and Hess grade (E1, p = .01; E2, p = .03), the presence of DCI (E1, p = .02; E2, p = .02), and poor 3-month outcomes (E1, p = .002; E2, p = .002). Trajectory analysis identified distinct populations over time for E1 (61% E1 high) and E2 (68% E2 high). Patients in higher trajectory groups had higher Fisher grades (E1, p = .008; E2, p = .01), more frequent DCI (E1, p = .04; E2, p = .08), and worse 3-month outcomes (E1, p = .01; E2, p = .004) than low groups. CONCLUSIONS These results provide the first clinical evidence that plasma E1 and E2 concentrations are associated with severity of injury and outcomes after aSAH.
Collapse
Affiliation(s)
| | - Paula R Sherwood
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Bender
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey Balzer
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dianxu Ren
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Samuel M Poloyac
- School of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Alteration of basilar artery rho-kinase and soluble guanylyl cyclase protein expression in a rat model of cerebral vasospasm following subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:531508. [PMID: 24982890 PMCID: PMC4058103 DOI: 10.1155/2014/531508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/07/2014] [Accepted: 04/07/2014] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE The vasoconstrictor endothelin-1 (ET-1) has been implicated in the pathogenesis of cerebral vasospasm following subarachnoid hemorrhage (SAH). Previous results showed that CGS 26303, an endothelin converting enzyme (ECE) inhibitor, effectively prevented and reversed arterial narrowing in animal models of SAH. In the present study, we assessed the effect of CGS 26303 on neurological deficits in SAH rats. The involvement of vasoactive pathways downstream of ET-1 signaling in SAH was also investigated. METHODS Sprague-Dawley rats were divided into five groups (n = 6/group): (1) normal control, (2) SAH, (3) SAH+vehicle, (4) SAH+CGS 26303 (prevention), and (5) SAH+CGS 26303 (reversal). SAH was induced by injecting autologous blood into cisterna magna. CGS 26303 (10 mg/kg) was injected intravenously at 1 and 24 hr after the initiation of SAH in the prevention and reversal protocols, respectively. Behavioral changes were assessed at 48 hr after SAH. Protein expression was analyzed by Western blots. RESULTS Deficits in motor function were obvious in the SAH rats, and CGS 26303 significantly improved the rate of paraplegia. Expressions of rho-kinase-II and membrane-bound protein kinase C- δ and rhoA were significantly increased, while those of soluble guanylyl cyclase α 1 and β 1 as well as protein kinase G were significantly decreased in the basilar artery of SAH rats. Treatment with CGS 26303 nearly normalized these effects. CONCLUSIONS These results demonstrate that the rhoA/rho-kinase and sGC/cGMP/PKG pathways play pivotal roles in cerebral vasospasm after SAH. It also shows that ECE inhibition is an effective strategy for the treatment of this disease.
Collapse
|
8
|
Kao CH, Chang CZ, Su YF, Tsai YJ, Chang KP, Lin TK, Hwang SL, Lin CL. 17β-Estradiol attenuates secondary injury through activation of Akt signaling via estrogen receptor alpha in rat brain following subarachnoid hemorrhage. J Surg Res 2013; 183:e23-30. [PMID: 23465388 DOI: 10.1016/j.jss.2013.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 01/12/2013] [Accepted: 01/17/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND Apoptosis is implicated in vasospasm and the long-term sequelae of subarachnoid hemorrhage (SAH). This study tested the hypothesis that attenuation of SAH-induced apoptosis after 17β-estradiol (E2) treatment is associated with an increase in phosphorylation of Akt via estrogen receptor-α (ER-α) in rats. MATERIALS AND METHODS We examined the expression of phospho-Akt, ERα and ERβ, and apoptosis in cerebral cortex, hippocampus, and dentate gyrus in a two-hemorrhage SAH model in rats. We subcutaneously implanted other rats with a silicone rubber tube containing E2; they received daily injections of nonselective estrogen receptor antagonist (ICI 182,780), selective ERα-selective antagonist (methyl-piperidino-pyrazole), or ERβ-selective antagonist (R,R-tetrahydrochrysene) after the first hemorrhage. RESULTS At 7 d after the first SAH, protein levels of phospho-Akt and ERα were significantly decreased and caspase-3 was significantly increased in the dentate gyrus. The cell death assay revealed that DNA fragmentation was significantly increased in the dentate gyrus. Those actions were reversed by E2 and blocked by ICI 182,780 and methyl-piperidino-pyrazole, but not R,R-tetrahydrochrysene. However, there were no significant changes in the expression of the protein levels of phospho-Akt, ERα, ERβ, and caspase-3, and DNA fragmentation after SAH. CONCLUSIONS The present study shows that a beneficial effect of E2 in attenuating SAH-induced apoptosis is associated with activation of the expression of phospho-Akt and ERα, and alteration in caspase-3 protein expression via an ERα-dependent mechanism in the dentate gyrus. These data support further the investigation of E2 in the treatment of SAH in humans.
Collapse
Affiliation(s)
- Cheng-Hsing Kao
- Center for General Education, Southern Taiwan University of Technology, Tainan, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Taylor LC, Puranam K, Gilmore W, Ting JPY, Matsushima G. 17beta-estradiol protects male mice from cuprizone-induced demyelination and oligodendrocyte loss. Neurobiol Dis 2010; 39:127-37. [PMID: 20347981 PMCID: PMC2891426 DOI: 10.1016/j.nbd.2010.03.016] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 02/25/2010] [Accepted: 03/19/2010] [Indexed: 12/15/2022] Open
Abstract
In addition to regulating reproductive functions in the brain and periphery, estrogen has tropic and neuroprotective functions in the central nervous system (CNS). Estrogen administration has been demonstrated to provide protection in several animal models of CNS disorders, including stroke, brain injury, epilepsy, Parkinson's disease, Alzheimer's disease, age-related cognitive decline and multiple sclerosis. Here, we use a model of toxin-induced oligodendrocyte death which results in demyelination, reactive gliosis, recruitment of oligodendrocyte precursor cells and subsequent remyelination to study the potential benefit of 17beta-estradiol (E2) administration in male mice. The results indicate that E2 partially ameliorates loss of oligodendrocytes and demyelination in the corpus callosum. This protection is accompanied by a delay in microglia accumulation as well as reduced mRNA expression of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFalpha), and insulin-like growth factor-1 (IGF-1). E2 did not significantly alter the accumulation of astrocytes or oligodendrocyte precursor cells, or remyelination. These data obtained from a toxin-induced, T cell-independent model using male mice provide an expanded view of the beneficial effects of estrogen on oligodendrocyte and myelin preservation.
Collapse
Affiliation(s)
- Lorelei C Taylor
- Curriculum in Neurobiology, University of North Carolina-CH, Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC 27599
| | - Kasturi Puranam
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC 27599
| | - Wendy Gilmore
- Department of Neurology, University of Southern California, Los Angeles, CA 90033
| | - Jenny P-Y. Ting
- Curriculum in Neurobiology, University of North Carolina-CH, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina-CH, Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC 27599
| | - G.K. Matsushima
- Curriculum in Neurobiology, University of North Carolina-CH, Chapel Hill, NC 27599
- Department of Microbiology and Immunology, University of North Carolina-CH, Chapel Hill, NC 27599
- UNC Neuroscience Center, University of North Carolina-CH, Chapel Hill, NC 27599
- Program for Molecular Biology and Biotechnology, University of North Carolina-CH, Chapel Hill, NC 27599
| |
Collapse
|