1
|
El Beltagy MA, Elbaroody M. The Value of Intraoperative Ultrasound in Brain Surgery. Adv Tech Stand Neurosurg 2024; 50:185-199. [PMID: 38592531 DOI: 10.1007/978-3-031-53578-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Favorable clinical outcomes in adult and pediatric neurosurgical oncology generally depend on the extent of tumor resection (EOR). Maximum safe resection remains the main aim of surgery in most intracranial tumors. Despite the accuracy of intraoperative magnetic resonance imaging (iMRI) in the detection of residual intraoperatively, it is not widely implemented worldwide owing to enormous cost and technical difficulties. Over the past years, intraoperative ultrasound (IOUS) has imposed itself as a valuable and reliable intraoperative tool guiding neurosurgeons to achieve gross total resection (GTR) of intracranial tumors.Being less expensive, feasible, doesn't need a high level of training, doesn't need a special workspace, and being real time with outstanding temporal and spatial resolution; all the aforementioned advantages give a superiority for IOUS in comparison to iMRI during resection of brain tumors.In this chapter, we spot the light on the technical nuances, advanced techniques, outcomes of resection, pearls, and pitfalls of the use of IOUS during the resection of brain tumors.
Collapse
Affiliation(s)
- Mohamed A El Beltagy
- Neurosurgery Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
- Neurosurgery Department, Children's Cancer Hospital Egypt (CCHE, 57357), Cairo, Egypt
| | - Mohammad Elbaroody
- Neurosurgery Department, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Yang Z, Zhao C, Zong S, Piao J, Zhao Y, Chen X. A review on surgical treatment options in gliomas. Front Oncol 2023; 13:1088484. [PMID: 37007123 PMCID: PMC10061125 DOI: 10.3389/fonc.2023.1088484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Gliomas are one of the most common primary central nervous system tumors, and surgical treatment remains the principal role in the management of any grade of gliomas. In this study, based on the introduction of gliomas, we review the novel surgical techniques and technologies in support of the extent of resection to achieve long-term disease control and summarize the findings on how to keep the balance between cytoreduction and neurological morbidity from a list of literature searched. With modern neurosurgical techniques, gliomas resection can be safely performed with low morbidity and extraordinary long-term functional outcomes.
Collapse
Affiliation(s)
- Zhongxi Yang
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Chen Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Shan Zong
- Department of Gynecology Oncology, The First Hospital of Jilin University, Jilin, China
| | - Jianmin Piao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- *Correspondence: Xuan Chen,
| |
Collapse
|
3
|
Quigley DG. Complication Avoidance in Neurosurgery with Use of Intraoperative Ultrasonography. ACTA NEUROCHIRURGICA. SUPPLEMENT 2023; 130:135-140. [PMID: 37548733 DOI: 10.1007/978-3-030-12887-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Intraoperative ultrasonography is an extremely valuable tool for avoidance of complications during neurosurgical procedures, including resection of intracranial and spinal cord tumors, removal of spontaneous intracerebral hemorrhages and arteriovenous malformations, and ventricular access for shunt placements. Nevertheless, application of this highly useful technique may be accompanied by some challenges and difficulties, as well as human errors; thus, it requires specific knowledge and continuous training.
Collapse
|
4
|
Van Hese L, De Vleeschouwer S, Theys T, Rex S, Heeren RMA, Cuypers E. The diagnostic accuracy of intraoperative differentiation and delineation techniques in brain tumours. Discov Oncol 2022; 13:123. [PMID: 36355227 PMCID: PMC9649524 DOI: 10.1007/s12672-022-00585-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022] Open
Abstract
Brain tumour identification and delineation in a timeframe of seconds would significantly guide and support surgical decisions. Here, treatment is often complicated by the infiltration of gliomas in the surrounding brain parenchyma. Accurate delineation of the invasive margins is essential to increase the extent of resection and to avoid postoperative neurological deficits. Currently, histopathological annotation of brain biopsies and genetic phenotyping still define the first line treatment, where results become only available after surgery. Furthermore, adjuvant techniques to improve intraoperative visualisation of the tumour tissue have been developed and validated. In this review, we focused on the sensitivity and specificity of conventional techniques to characterise the tumour type and margin, specifically fluorescent-guided surgery, neuronavigation and intraoperative imaging as well as on more experimental techniques such as mass spectrometry-based diagnostics, Raman spectrometry and hyperspectral imaging. Based on our findings, all investigated methods had their advantages and limitations, guiding researchers towards the combined use of intraoperative imaging techniques. This can lead to an improved outcome in terms of extent of tumour resection and progression free survival while preserving neurological outcome of the patients.
Collapse
Affiliation(s)
- Laura Van Hese
- Division of Mass Spectrometry Imaging, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Department of Anaesthesiology, University Hospitals Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Steven De Vleeschouwer
- Neurosurgery Department, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory for Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute (LBI), 3000, Leuven, Belgium
| | - Tom Theys
- Neurosurgery Department, University Hospitals Leuven, 3000, Leuven, Belgium
- Laboratory for Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, Leuven Brain Institute (LBI), 3000, Leuven, Belgium
| | - Steffen Rex
- Department of Anaesthesiology, University Hospitals Leuven, 3000, Leuven, Belgium
- Department of Cardiovascular Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Ron M A Heeren
- Division of Mass Spectrometry Imaging, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Eva Cuypers
- Division of Mass Spectrometry Imaging, Maastricht MultiModal Molecular Imaging (M4I) Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Hou Y, Li Y, Li Q, Yu Y, Tang J. Full-course resection control strategy in glioma surgery using both intraoperative ultrasound and intraoperative MRI. Front Oncol 2022; 12:955807. [PMID: 36091111 PMCID: PMC9453394 DOI: 10.3389/fonc.2022.955807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIntraoperative ultrasound(iUS) and intraoperative MRI (iMRI) are effective ways to perform resection control during glioma surgery. However, most published studies employed only one modality. Few studies have used both during surgery. How to combine these two techniques reasonably, and what advantages they could have for glioma surgery are still open questions.MethodsWe retrospectively reviewed a series of consecutive patients who underwent initial surgical treatment of supratentorial gliomas in our center. We utilized a full-course resection control strategy to combine iUS and iMRI: IUS for pre-resection assessment and intermediate resection control; iMRI for final resection control. The basic patient characteristics, surgical results, iMRI/iUS findings, and their impacts on surgical procedures were evaluated and reported.ResultsA total of 40 patients were included. The extent of resection was 95.43 ± 10.37%, and the gross total resection rate was 72.5%. The median residual tumor size was 6.39 cm3 (range 1.06–16.23 cm3). 5% (2/40) of patients had permanent neurological deficits after surgery. 17.5% (7/40) of patients received further resection after the first iMRI scan, resulting in four (10%) more patients achieving gross total resection. The number of iMRI scans per patient was 1.18 ± 0.38. The surgical time was 4.5 ± 3.6 hours. The pre-resection iUS scan revealed that an average of 3.8 borders of the tumor were beside sulci in 75% (30/40) patients. Intermediate resection control was utilized in 67.5% (27/40) of patients. In 37.5% (15/40) of patients, the surgical procedures were changed intraoperatively based on the iUS findings. Compared with iMRI, the sensitivity and specificity of iUS for residual tumors were 46% and 96%, respectively.ConclusionThe full-course resection control strategy by combining iUS and iMRI could be successfully implemented with good surgical results in initial glioma surgeries. This strategy might stabilize resection control quality and provide the surgeon with more intraoperative information to tailor the surgical strategy. Compared with iMRI-assisted glioma surgery, this strategy might improve efficiency by reducing the number of iMRI scans and shortening surgery time.
Collapse
Affiliation(s)
- Yuanzheng Hou
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ye Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qiongge Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yang Yu
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Tang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- *Correspondence: Jie Tang,
| |
Collapse
|
6
|
Bernstock JD, Gary SE, Klinger N, Valdes PA, Ibn Essayed W, Olsen HE, Chagoya G, Elsayed G, Yamashita D, Schuss P, Gessler FA, Peruzzi PP, Bag A, Friedman GK. Standard clinical approaches and emerging modalities for glioblastoma imaging. Neurooncol Adv 2022; 4:vdac080. [PMID: 35821676 PMCID: PMC9268747 DOI: 10.1093/noajnl/vdac080] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary adult intracranial malignancy and carries a dismal prognosis despite an aggressive multimodal treatment regimen that consists of surgical resection, radiation, and adjuvant chemotherapy. Radiographic evaluation, largely informed by magnetic resonance imaging (MRI), is a critical component of initial diagnosis, surgical planning, and post-treatment monitoring. However, conventional MRI does not provide information regarding tumor microvasculature, necrosis, or neoangiogenesis. In addition, traditional MRI imaging can be further confounded by treatment-related effects such as pseudoprogression, radiation necrosis, and/or pseudoresponse(s) that preclude clinicians from making fully informed decisions when structuring a therapeutic approach. A myriad of novel imaging modalities have been developed to address these deficits. Herein, we provide a clinically oriented review of standard techniques for imaging GBM and highlight emerging technologies utilized in disease characterization and therapeutic development.
Collapse
Affiliation(s)
- Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Sam E Gary
- Medical Scientist Training Program, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Neil Klinger
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Pablo A Valdes
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Hannah E Olsen
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Daisuke Yamashita
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
| | - Patrick Schuss
- Department of Neurosurgery, Unfallkrankenhaus Berlin , Berlin, Germany
| | | | - Pier Paolo Peruzzi
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School , Boston, Massachusetts, USA
| | - Asim Bag
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital , Memphis, TN USA
| | - Gregory K Friedman
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham , AL, USA
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham , Birmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham , AL, USA
| |
Collapse
|
7
|
Giammalva GR, Musso S, Salvaggio G, Pino MA, Gerardi RM, Umana GE, Midiri M, Iacopino DG, Maugeri R. Coplanar Indirect-Navigated Intraoperative Ultrasound: Matching Un-navigated Probes With Neuronavigation During Neurosurgical Procedures. How We Do It. Oper Neurosurg (Hagerstown) 2021; 21:485-490. [PMID: 34498674 DOI: 10.1093/ons/opab316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/08/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Intraoperative ultrasound (IOUS) is becoming more and more adopted in neurosurgery, since it has been associated to greater extent of resection (EOR) and to gross total resection (GTR) during brain tumor surgery. IOUS main limitations are spatial resolution, width and orientation of the field of view and scan quality, which are operator-dependent. Furthermore, most neurosurgeons are not confident with this technique, which needs a long learning curve in order to identify and interpret anatomic structures. OBJECTIVE To describe an effective procedure to take advantages of both IOUS and neuronavigation in case of lack of a navigated ultrasound system. METHODS We propose a reliable "indirect-navigated" technique which is based on the optical tracking of un-navigated IOUS probe by the use of a multipurpose passive tracker and a proper configuration of common neuronavigation system. RESULTS Navigated IOUS is not available in all neurosurgical operating rooms but ultrasound systems are common tools in many hospital facilities and neuronavigation systems are common in almost all the neurosurgical operating rooms. The proposed indirect-navigated technique shows some paramount advantages: since almost all the neurosurgical operating rooms are provided with a neuronavigation system, the only tool needed is the ultrasonography. Therefore, this procedure is largely accessible and costless, reliable, and may improve the neurosurgeon's ability in ultrasonographic anatomy. CONCLUSION This technique is based on the coplanar and coupled use of both un-navigated IOUS probe and standard optical neuronavigation, in order to allow the intraoperative navigation of IOUS images when a navigated ultrasound system is not available.
Collapse
Affiliation(s)
- Giuseppe Roberto Giammalva
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Sofia Musso
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Salvaggio
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Maria Angela Pino
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosa Maria Gerardi
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Giuseppe Emmanuele Umana
- Department of Neurosurgery, Cannizzaro Hospital, Trauma Center, Gamma Knife Center, Catania, Italy
| | - Massimo Midiri
- Section of Radiology, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Domenico Gerardo Iacopino
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| | - Rosario Maugeri
- Unit of Neurosurgery, Department of Biomedicine Neurosciences and Advanced Diagnostics, School of Medicine, University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Gosal JS, Tiwari S, Sharma T, Agrawal M, Garg M, Mahal S, Bhaskar S, Sharma RK, Janu V, Jha DK. Simulation of surgery for supratentorial gliomas in virtual reality using a 3D volume rendering technique: a poor man's neuronavigation. Neurosurg Focus 2021; 51:E23. [PMID: 34333461 DOI: 10.3171/2021.5.focus21236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Different techniques of performing image-guided neurosurgery exist, namely, neuronavigation systems, intraoperative ultrasound, and intraoperative MRI, each with its limitations. Except for ultrasound, other methods are expensive. Three-dimensional virtual reconstruction and surgical simulation using 3D volume rendering (VR) is an economical and excellent technique for preoperative surgical planning and image-guided neurosurgery. In this article, the authors discuss several nuances of the 3D VR technique that have not yet been described. METHODS The authors included 6 patients with supratentorial gliomas who underwent surgery between January 2019 and March 2021. Preoperative clinical data, including patient demographics, preoperative planning details (done using the VR technique), and intraoperative details, including relevant photos and videos, were collected. RadiAnt software was used for generating virtual 3D images using the VR technique on a computer running Microsoft Windows. RESULTS The 3D VR technique assists in glioma surgery with a preoperative simulation of the skin incision and craniotomy, virtual cortical surface marking and navigation for deep-seated gliomas, preoperative visualization of morbid cortical surface and venous anatomy in surfacing gliomas, identifying the intervenous surgical corridor in both surfacing and deep-seated gliomas, and pre- and postoperative virtual 3D images highlighting the exact spatial geometric residual tumor location and extent of resection for low-grade gliomas (LGGs). CONCLUSIONS Image-guided neurosurgery with the 3D VR technique using RadiAnt software is an economical, easy-to-learn, and user-friendly method of simulating glioma surgery, especially in resource-constrained countries where expensive neuronavigation systems are not readily available. Apart from cortical sulci/gyri anatomy, FLAIR sequences are ideal for the 3D visualization of nonenhancing diffuse LGGs using the VR technique. In addition to cortical vessels (especially veins), contrast MRI sequences are perfect for the 3D visualization of contrast-enhancing high-grade gliomas.
Collapse
Affiliation(s)
| | - Sarbesh Tiwari
- 2Diagnostic & Interventional Radiology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | | | | | | | - Sayani Mahal
- 2Diagnostic & Interventional Radiology, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India
| | | | | | | | | |
Collapse
|
9
|
Moiraghi A, Prada F, Delaidelli A, Guatta R, May A, Bartoli A, Saini M, Perin A, Wälchli T, Momjian S, Bijlenga P, Schaller K, DiMeco F. Navigated Intraoperative 2-Dimensional Ultrasound in High-Grade Glioma Surgery: Impact on Extent of Resection and Patient Outcome. Oper Neurosurg (Hagerstown) 2021; 18:363-373. [PMID: 31435672 DOI: 10.1093/ons/opz203] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/16/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Maximizing extent of resection (EOR) and reducing residual tumor volume (RTV) while preserving neurological functions is the main goal in the surgical treatment of gliomas. Navigated intraoperative ultrasound (N-ioUS) combining the advantages of ultrasound and conventional neuronavigation (NN) allows for overcoming the limitations of the latter. OBJECTIVE To evaluate the impact of real-time NN combining ioUS and preoperative magnetic resonance imaging (MRI) on maximizing EOR in glioma surgery compared to standard NN. METHODS We retrospectively reviewed a series of 60 cases operated on for supratentorial gliomas: 31 operated under the guidance of N-ioUS and 29 resected with standard NN. Age, location of the tumor, pre- and postoperative Karnofsky Performance Status (KPS), EOR, RTV, and, if any, postoperative complications were evaluated. RESULTS The rate of gross total resection (GTR) in NN group was 44.8% vs 61.2% in N-ioUS group. The rate of RTV > 1 cm3 for glioblastomas was significantly lower for the N-ioUS group (P < .01). In 13/31 (42%), RTV was detected at the end of surgery with N-ioUS. In 8 of 13 cases, (25.8% of the cohort) surgeons continued with the operation until complete resection. Specificity was greater in N-ioUS (42% vs 31%) and negative predictive value (73% vs 54%). At discharge, the difference between pre- and postoperative KPS was significantly higher for the N-ioUS (P < .01). CONCLUSION The use of an N-ioUS-based real-time has been beneficial for resection in noneloquent high-grade glioma in terms of both EOR and neurological outcome, compared to standard NN. N-ioUS has proven usefulness in detecting RTV > 1 cm3.
Collapse
Affiliation(s)
- Alessandro Moiraghi
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy.,Department of Neurological Surgery, University of Virginia Health Science Center, Charlottesville, Virginia.,Focused Ultrasound Foundation, Charlottesville, Virginia
| | - Alberto Delaidelli
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ramona Guatta
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Adrien May
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Bartoli
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Marco Saini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy
| | - Alessandro Perin
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy
| | - Thomas Wälchli
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Group of CNS Angiogenesis and Neurovascular Link, Physician-Scientist Program, Institute for Regenerative Medicine, Neuroscience Center Zurich, University Hospital Zurich, Zurich, Switzerland.,Division of Neurosurgery, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), University Hospital Zurich, Zurich, Switzerland.,Department of Fundamental Neurobiology, Krembil Research Institute, University of Toronto, Toronto, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, Toronto, Canada
| | - Shahan Momjian
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Philippe Bijlenga
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Karl Schaller
- Division of Neurosurgery, University of Geneva Faculty of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico "C. Besta," Milan, Italy.,Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.,Department of Neurological Surgery, Johns Hopkins Medical School, Baltimore, Maryland
| |
Collapse
|
10
|
Möller J, Bartsch A, Lenz M, Tischoff I, Krug R, Welp H, Hofmann MR, Schmieder K, Miller D. Applying machine learning to optical coherence tomography images for automated tissue classification in brain metastases. Int J Comput Assist Radiol Surg 2021; 16:1517-1526. [PMID: 34053010 PMCID: PMC8354973 DOI: 10.1007/s11548-021-02412-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/20/2021] [Indexed: 12/30/2022]
Abstract
Purpose A precise resection of the entire tumor tissue during surgery for brain metastases is essential to reduce local recurrence. Conventional intraoperative imaging techniques all have limitations in detecting tumor remnants. Therefore, there is a need for innovative new imaging methods such as optical coherence tomography (OCT). The purpose of this study is to discriminate brain metastases from healthy brain tissue in an ex vivo setting by applying texture analysis and machine learning algorithms for tissue classification to OCT images. Methods Tumor and healthy tissue samples were collected during resection of brain metastases. Samples were imaged using OCT. Texture features were extracted from B-scans. Then, a machine learning algorithm using principal component analysis (PCA) and support vector machines (SVM) was applied to the OCT scans for classification. As a gold standard, an experienced pathologist examined the tissue samples histologically and determined the percentage of vital tumor, necrosis and healthy tissue of each sample. A total of 14.336 B-scans from 14 tissue samples were included in the classification analysis. Results We were able to discriminate vital tumor from healthy brain tissue with an accuracy of 95.75%. By comparing necrotic tissue and healthy tissue, a classification accuracy of 99.10% was obtained. A generalized classification between brain metastases (vital tumor and necrosis) and healthy tissue was achieved with an accuracy of 96.83%. Conclusions An automated classification of brain metastases and healthy brain tissue is feasible using OCT imaging, extracted texture features and machine learning with PCA and SVM. The established approach can prospectively provide the surgeon with additional information about the tissue, thus optimizing the extent of tumor resection and minimizing the risk of local recurrences.
Collapse
Affiliation(s)
- Jens Möller
- Photonics and Terahertz Technology, Ruhr University Bochum, Bochum, Germany.
| | - Alexander Bartsch
- Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Marcel Lenz
- Photonics and Terahertz Technology, Ruhr University Bochum, Bochum, Germany
| | - Iris Tischoff
- Department of Pathology, University Hospital Bergmannsheil Bochum, Ruhr University Bochum, Bochum, Germany
| | - Robin Krug
- Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Hubert Welp
- Technische Hochschule Georg Agricola, Bochum, Germany
| | - Martin R Hofmann
- Photonics and Terahertz Technology, Ruhr University Bochum, Bochum, Germany
| | - Kirsten Schmieder
- Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| | - Dorothea Miller
- Department of Neurosurgery, University Hospital Knappschaftskrankenhaus Bochum, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Chel H, Bora PK, Ramchiary KK. A fast technique for hyper-echoic region separation from brain ultrasound images using patch based thresholding and cubic B-spline based contour smoothing. ULTRASONICS 2021; 111:106304. [PMID: 33360770 DOI: 10.1016/j.ultras.2020.106304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 11/14/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Ultrasound image guided brain surgery (UGBS) requires an automatic and fast image segmentation method. The level-set and active contour based algorithms have been found to be useful for obtaining topology-independent boundaries between different image regions. But slow convergence limits their use in online US image segmentation. The performance of these algorithms deteriorates on US images because of the intensity inhomogeneity. This paper proposes an effective region-driven method for the segmentation of hyper-echoic (HE) regions suppressing the hypo-echoic and anechoic regions in brain US images. An automatic threshold estimation scheme is developed with a modified Niblack's approach. The separation of the hyper-echoic and non-hyper-echoic (NHE) regions is performed by successively applying patch based intensity thresholding and boundary smoothing. First, a patch based segmentation is performed, which separates roughly the two regions. The patch based approach in this process reduces the effect of intensity heterogeneity within an HE region. An iterative boundary correction step with reducing patch size improves further the regional topology and refines the boundary regions. For avoiding the slope and curvature discontinuities and obtaining distinct boundaries between HE and NHE regions, a cubic B-spline model of curve smoothing is applied. The proposed method is 50-100 times faster than the other level-set based image segmentation algorithms. The segmentation performance and the convergence speed of the proposed method are compared with four other competing level-set based algorithms. The computational results show that the proposed segmentation approach outperforms other level-set based techniques both subjectively and objectively.
Collapse
Affiliation(s)
- Haradhan Chel
- Department of Electronics and Communication, Central Institute of Technology Kokrajhar, Assam 783370, India; City Clinic and Research Centre, Kokrajhar, Assam, India.
| | - P K Bora
- Department of EEE, Indian Institute of Technology Guwahati, Assam, India.
| | - K K Ramchiary
- City Clinic and Research Centre, Kokrajhar, Assam, India.
| |
Collapse
|
12
|
Kaale AJ, Rutabasibwa N, Mchome LL, Lillehei KO, Honce JM, Kahamba J, Ormond DR. The use of intraoperative neurosurgical ultrasound for surgical navigation in low- and middle-income countries: the initial experience in Tanzania. J Neurosurg 2021; 134:630-637. [PMID: 32109864 DOI: 10.3171/2019.12.jns192851] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/30/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Neuronavigation has become a crucial tool in the surgical management of CNS pathology in higher-income countries, but has yet to be implemented in most low- and middle-income countries (LMICs) due to cost constraints. In these resource-limited settings, neurosurgeons typically rely on their understanding of neuroanatomy and preoperative imaging to help guide them through a particular operation, making surgery more challenging for the surgeon and a higher risk for the patient. Alternatives to assist the surgeon improve the safety and efficacy of neurosurgery are important for the expansion of subspecialty neurosurgery in LMICs. A low-cost and efficacious alternative may be the use of intraoperative neurosurgical ultrasound. The authors analyze the preliminary results of the introduction of intraoperative ultrasound in an LMIC setting. METHODS After a training program in intraoperative ultrasound including courses conducted in Dar es Salaam, Tanzania, and Aurora, Colorado, neurosurgeons at the Muhimbili Orthopaedic and Neurosurgical Institute began its independent use. The initial experience is reported from the first 24 prospective cases in which intraoperative ultrasound was used. When possible, ultrasound findings were recorded and compared with postoperative imaging findings in order to establish accuracy of intraoperative interpretation. RESULTS Of 24 cases of intraoperative ultrasound that were reported, 29.2% were spine surgeries and 70.8% were cranial. The majority were tumor cases (95.8%). Lesions were identified through the dura mater in all 24 cases, with 20.8% requiring extension of craniotomy or laminectomy due to inadequate exposure. Postoperative imaging (typically CT) was only performed in 11 cases, but all 11 matched the findings on post-dural closure ultrasound. CONCLUSIONS The use of intraoperative ultrasound, which is affordable and available locally, is changing neurosurgical care in Tanzania. Ultimately, expanding the use of intraoperative B-mode ultrasound in Tanzania and other LMICs may help improve neurosurgical care in these countries in an affordable manner.
Collapse
Affiliation(s)
- Aingaya J Kaale
- 1Division of Neurosurgery, Muhimbili Orthopaedic and Neurosurgical Institute, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; and
| | - Nicephorus Rutabasibwa
- 1Division of Neurosurgery, Muhimbili Orthopaedic and Neurosurgical Institute, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; and
| | - Laurent Lemeri Mchome
- 1Division of Neurosurgery, Muhimbili Orthopaedic and Neurosurgical Institute, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; and
| | | | - Justin M Honce
- 3Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Joseph Kahamba
- 1Division of Neurosurgery, Muhimbili Orthopaedic and Neurosurgical Institute, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; and
| | | |
Collapse
|
13
|
He K, Chi C, Li D, Zhang J, Niu G, Lv F, Wang J, Che W, Zhang L, Ji N, Zhu Z, Tian J, Chen X. Resection and survival data from a clinical trial of glioblastoma multiforme-specific IRDye800-BBN fluorescence-guided surgery. Bioeng Transl Med 2021; 6:e10182. [PMID: 33532584 PMCID: PMC7823121 DOI: 10.1002/btm2.10182] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Supra-maximum surgical tumor resection without neurological damage is highly valuable for treatment and prognosis of patients with glioblastoma multiforme (GBM). We developed a GBM-specific fluorescence probe using IRDye800CW (peak absorption/emission, 778/795 nm) and bombesin (BBN), which (IRDye800-BBN) targets the gastrin-releasing peptide receptor, and evaluated the image-guided resection efficiency, sensitivity, specificity, and survivability. Twenty-nine patients with newly diagnosed GBM were enrolled. Sixteen hours preoperatively, IRDye800-BBN (1 mg in 20 ml sterile water) was intravenously administered. A customized fluorescence surgical navigation system was used intraoperatively. Postoperatively, enhanced magnetic resonance images were used to assess the residual tumor volume, calculate the resection extent, and confirm whether complete resection was achieved. Tumor tissues and nonfluorescent brain tissue in adjacent noneloquent boundary areas were harvested and assessed for diagnostic accuracy. Complete resection was achieved in 82.76% of patients. The median extent of resection was 100% (range, 90.6-100%). Eighty-nine samples were harvested, including 70 fluorescence-positive and 19 fluorescence-negative samples. The sensitivity and specificity of IRDye800-BBN were 94.44% (95% CI, 85.65-98.21%) and 88.24% (95% CI, 62.25-97.94%), respectively. Twenty-five patients were followed up (median, 13.5 [3.1-36.0] months), and 14 had died. The mean preoperative and immediate and 6-month postoperative Karnofsky performance scores were 77.9 ± 11.8, 71.3 ± 19.2, and 82.6 ± 14.7, respectively. The median overall and progression-free survival were 23.1 and 14.1 months, respectively. In conclusion, GBM-specific fluorescent IRDye800-BBN can help neurosurgeons identify the tumor boundary with sensitivity and specificity, and may improve survival outcomes.
Collapse
Affiliation(s)
- Kunshan He
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineBeihang UniversityBeijingChina
- CAS Key Laboratory of Molecular Imaging, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Chongwei Chi
- CAS Key Laboratory of Molecular Imaging, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases (NCRC‐ND)BeijingChina
| | - Jingjing Zhang
- Department of Nuclear Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)BethesdaMarylandUSA
| | - Fangqiao Lv
- Department of Cell Biology, School of Basic Medical SciencesCapital Medical UniversityBeijingChina
| | - Junmei Wang
- Department of Neuropathology, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Wenqiang Che
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases (NCRC‐ND)BeijingChina
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases (NCRC‐ND)BeijingChina
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases (NCRC‐ND)BeijingChina
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data‐Based Precision MedicineBeihang UniversityBeijingChina
- CAS Key Laboratory of Molecular Imaging, Institute of AutomationChinese Academy of SciencesBeijingChina
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN)National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH)BethesdaMarylandUSA
| |
Collapse
|
14
|
Navigated 3D Ultrasound in Brain Metastasis Surgery: Analyzing the Differences in Object Appearances in Ultrasound and Magnetic Resonance Imaging. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10217798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Implementation of intraoperative 3D ultrasound (i3D US) into modern neuronavigational systems offers the possibility of live imaging and subsequent imaging updates. However, different modalities, image acquisition strategies, and timing of imaging influence object appearances. We analyzed the differences in object appearances in ultrasound (US) and magnetic resonance imaging (MRI) in 35 cases of brain metastasis, which were operated in a multimodal navigational setup after intraoperative computed tomography based (iCT) registration. Method: Registration accuracy was determined using the target registration error (TRE). Lesions segmented in preoperative magnetic resonance imaging (preMRI) and i3D US were compared focusing on object size, location, and similarity. Results: The mean and standard deviation (SD) of the TRE was 0.84 ± 0.36 mm. Objects were similar in size (mean ± SD in preMRI: 13.6 ± 16.0 cm3 vs. i3D US: 13.5 ± 16.0 cm3). The Dice coefficient was 0.68 ± 0.22 (mean ± SD), the Hausdorff distance 8.1 ± 2.9 mm (mean ± SD), and the Euclidean distance of the centers of gravity 3.7 ± 2.5 mm (mean ± SD). Conclusion: i3D US clearly delineates tumor boundaries and allows live updating of imaging for compensation of brain shift, which can already be identified to a significant amount before dural opening.
Collapse
|
15
|
Jacobo JA, Avendaño J, Moreno-Jimenez S, Nuñez S, Mamani R. Basic Principles of Intraoperative Ultrasound Applied to Brain Tumor Surgery. INDIAN JOURNAL OF NEUROSURGERY 2020. [DOI: 10.1055/s-0040-1705289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
AbstractIntraoperative ultrasound (US) has been shown to possess great value in assessing tumor volume and localization, especially for primary resection of gliomas and metastatic lesions. Given that US is a technology that is highly user dependent, many surgeons have encountered problems with the usage of this technology, as well as interpretation of intraoperative US images, limiting its full potential. This article focuses on the basic knowledge a neurosurgeon must acquire to properly use and interpret intraoperative US to improve tumor localization and extent of resection during brain tumor surgery.
Collapse
Affiliation(s)
- Javier A. Jacobo
- Department of Surgical Neuro-Oncology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Javier Avendaño
- Department of Surgical Neuro-Oncology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Sergio Moreno-Jimenez
- Department of Surgical Neuro-Oncology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Santiago Nuñez
- Department of Surgical Neuro-Oncology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Rocio Mamani
- Department of Surgical Neuro-Oncology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| |
Collapse
|
16
|
Liang C, Li M, Gong J, Zhang B, Lin C, He H, Zhang K, Guo Y. A new application of ultrasound-magnetic resonance multimodal fusion virtual navigation in glioma surgery. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:736. [PMID: 32042752 DOI: 10.21037/atm.2019.11.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Long-term survival and high-quality life of patients with gliomas depends on the extent of resection (EOR) and the protection of functional white matter fibers. The navigation system provides precise positioning for surgery based on preoperative magnetic resonance imaging (MRI) but the precision decreases when intraoperative brain drift occurs. Ultrasound (US) can support real-time imaging and correct brain shift. The real-time US-MRI multimodal fusion virtual navigation system (UMNS) is a new technique for glioma surgery. In order to obtain a maximum EOR and functional protection, this study aimed to explore the feasibility, efficiency, and safety of real-time UMNS for glioma surgery, and to evaluate the benefit of the new application by UMNS presetting markers between the tumor and functional white matter fiber surgery. Methods A retrospective analysis included 45 patients who underwent glioma surgery, 19 patients with only intraoperative US, and 26 patients with UMNS. A preoperative plan was made by 3D-slicer software based on preoperative MRI. This was combined with a reconstruction of diffusion tensor imaging (DTI) that designed the important locations as "warning points" between functional white matter fibers and tumor. Following patient registration, markers were injected into preset "warning points" under image-guided UMNS in order to give us a warning during surgery in case of postoperative function deficits. The operating time, volumetric assessment in glioma resection, and postoperative complications were evaluated and used to compared those surgeries using intraoperative US (iUS) with those surgeries using intraoperate MRI (iMRI) navigation. Results A total of 45 patients underwent glioma surgery. Gross total removal (GTR) of iUS alone was achieved in 6 of 19 cases, while this was achieved in 22 of 26 cases with UMNS alone, demonstrating an improvement in rate of GTR from 31.58% to 84.62%, respectively. This may be attributable to the superior US image quality provided by UMNS. In 13 of 26 cases, there was improved image quality (from poor/moderate to moderate/good) with the aid of UMNS. In addition, the consistency of EOR of postoperative MRI evaluated by UMNS (92.31%) was higher than when using iUS alone (42.11%). The whole process of intraoperative scanning time and marker injection did not lead to a significant delay of the operating time compared to using iUS alone, and has been reported to be shorter than with iMRI as well. Furthermore, the percentage of postoperative morbidity in the UMNS group was lower than that in the iUS group (motor deficit: 11.54% vs. 42.11%; aphasia: P =3.85% vs. 31.58%, respectively). Conclusions Real-time UMNS is an effective, timesaving technology that offers high quality intraoperative imaging. Injection markers between functional white matter fibers and tumor by UMNS can help to obtain a maximum EOR of glioma and functional protection postoperatively. The integration of iUS into the neuronavigation system offered quick and helpful intra-operative images.
Collapse
Affiliation(s)
- Chaofeng Liang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Manting Li
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Jin Gong
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Baoyu Zhang
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Cong Lin
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Haiyong He
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Ke Zhang
- Department of Radiology, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| | - Ying Guo
- Department of Neurosurgery, 3rd Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
17
|
Grubert RM, Tibana TK, Marchiori E, Kadri PADS, Nunes TF. Intraoperative ultrasound for identifying residual tumor during glioma surgery. Radiol Bras 2019; 52:312-313. [PMID: 31656348 PMCID: PMC6808607 DOI: 10.1590/0100-3984.2018.0046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Renata Motta Grubert
- Hospital Universitário Maria Aparecida Pedrossian da Universidade Federal de Mato Grosso do Sul (HUMAP-UFMS), Campo Grande, MS, Brazil
| | - Tiago Kojun Tibana
- Hospital Universitário Maria Aparecida Pedrossian da Universidade Federal de Mato Grosso do Sul (HUMAP-UFMS), Campo Grande, MS, Brazil
| | - Edson Marchiori
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | - Thiago Franchi Nunes
- Hospital Universitário Maria Aparecida Pedrossian da Universidade Federal de Mato Grosso do Sul (HUMAP-UFMS), Campo Grande, MS, Brazil
| |
Collapse
|
18
|
Wu DF, He W, Lin S, Zee CS, Han B. The real-time ultrasonography for fusion image in glioma neurosugery. Clin Neurol Neurosurg 2018; 175:84-90. [PMID: 30384121 DOI: 10.1016/j.clineuro.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/05/2018] [Accepted: 10/14/2018] [Indexed: 01/16/2023]
Abstract
OBJECTIVES The aim of study is to evaluate the general performance and efficiency of the using real time intraoperative ultrasound system with Volume Navigation system technology in glioma. Compare glioma intraoperative ultrasound and contrast agent ultrasound images to obtained preoperative MRI with fusion image in a real-time. PATIENTS AND METHODS Fifteen patients had been performed fusion imaging involved intraoperative real-time ultrasound and contrast agent ultrasound with preoperative MR imaging including preoperative gadolinium-enhanced MRI from March 2017 to December 2017. The number of tumor was counted online fusion imaging in real time ultrasound with and without preoperative MR. We analyzed ultrasound coplanar MR modalities in real time including tumor location, margin (obscure or defined). In addition, intraoperative ultrasound enhancement pattern was analyzed compare it to preoperative reconstruction gadolinium-enhanced T1-weighted MRI. Two radiologists who made planning ultrasound assessment for the focus lesion based on a 4 scoring system according to the degree of confidence. RESULTS Thirteen of fifteen patients whose automatically registration successful intraoperative neurosurgery accepted preoperative MR examination. Seven of fifteen fine-tuning registration phase were performed and satisfactory with fusion image substantially. Intraoperatively, 73.3% (11/15) glioma nodules were definite on conventional B-mode US by a radiologist who doesn't know the MR result before fusion US with MRI. However, 100% tumors were detected on fusion B-mode ultrasound imaging with MRI. Two radiologists evaluated the score between fusion B-mode ultrasound and CEUS with coplanar MRI and had a result that score was upgraded in 69.2% (9/13) and 84.6% (11/13) patients. Inter-observer agreement was significant (kappa value = 1.0, p < 0.001) in B-mode ultrasound fusion image with MRI. Inter-observer agreement was moderate (kappa value = 0. 0.618, p < 0.001) in CEUS fusion image with MRI. CONCLUSION Fusion imaging is very useful to detect poor sonographic visibility tumor on fusion B-mode US imaging with MR images. Fusion image may demonstrate multiplane images including same standard and nonstandard MRI and US images to help localize tumor. The additional real time fusion CEUS mode image with MR is a safe method for neurosurgery and the use of CEUS should be considered when fusion B-mode ultrasound imaging alone is not satisfactory for margin.
Collapse
Affiliation(s)
- Dong-Fang Wu
- Department of Ultrasound, Beijing Tian tan Hospital, Capital Medical University, 6 Tiantan Xi Li, Dong Cheng District, Beijing, 100050, China
| | - Wen He
- Department of Ultrasound, Beijing Tian tan Hospital, Capital Medical University, 6 Tiantan Xi Li, Dong Cheng District, Beijing, 100050, China.
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xi Li, Dong Cheng District, Beijing, 100050, China
| | - Chi-Shing Zee
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, 90033, CA, USA
| | - Bo Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantan Xi Li, Dong Cheng District, Beijing, 100050, China
| |
Collapse
|
19
|
Ma R, Plaha P. Reaching the Edge of Diffuse Gliomas: Are We There Yet? World Neurosurg 2018; 114:142-143. [PMID: 29548965 DOI: 10.1016/j.wneu.2018.03.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/06/2018] [Indexed: 11/18/2022]
Affiliation(s)
- Ruichong Ma
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Nuffield Department of Surgery, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Contemporary use of intraoperative imaging in glioma surgery: A survey among EANS members. Clin Neurol Neurosurg 2017; 163:133-141. [DOI: 10.1016/j.clineuro.2017.10.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/18/2017] [Accepted: 10/29/2017] [Indexed: 11/18/2022]
|
21
|
|
22
|
Nimsky C, Carl B. Historical, Current, and Future Intraoperative Imaging Modalities. Neurosurg Clin N Am 2017; 28:453-464. [DOI: 10.1016/j.nec.2017.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhang G, Li Z, Si D, Shen L. Diagnostic ability of intraoperative ultrasound for identifying tumor residual in glioma surgery operation. Oncotarget 2017; 8:73105-73114. [PMID: 29069853 PMCID: PMC5641196 DOI: 10.18632/oncotarget.20394] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/09/2017] [Indexed: 11/25/2022] Open
Abstract
Achieving total glioma resection represents a major challenge to neurosurgeons with no distinct margin between tumor and surrounding brain tissue. Many imaging methods are employed in surgery visualization and resection control. We performed this meta-analysis to assess the diagnosis value of intraoperative ultrasound and judged whether ultrasound is a suitable tool in detecting glioma residual. The databases including PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang and Weipu were systematically searched to find out relevant studies and published up to May 5, 2017. A total of 14 studies involving 542 participants met the selection criteria and bivariate mixed effects models were used for analysis. The parameters and their corresponding 95% confidence interval (CI) were computed on Stata 12.0 software. The pooled sensitivity was 0.75 (95%CI: 0.62-0.84), specificity was 0.88 (95%CI: 0.79-0.94), positive likelihood ratios was 6.27 (95%CI: 3.76-10.47), negative likelihood ratios was 0.29 (95%CI: 0.20-0.42), diagnostic odds ratios was 21.83 (95%CI: 14.20-33.55) and area under the curve of summary receiver operator characteristic was 0.89. Stratified meta-analysis showed sensitivity and area under the curve in low-grade glioma were both higher than high-grade glioma. The Deek's plot showed no significant publication bias (t = -1.03, P = 0.33). Intraoperative ultrasound has high overall diagnostic value to identify glioma remnants, especially in low-grade glioma, which shows a benefit for prognosis and life quality of patients. In general, Intraoperative ultrasound is an effective tool for maximizing the extent of glioma resection.
Collapse
Affiliation(s)
- Guangying Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Daolin Si
- Department of Pediatric Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008, China
| |
Collapse
|
24
|
|
25
|
Ishikawa M, Ota Y, Nagai M, Kusaka G, Tanaka Y, Naritaka H. Ultrasonography Monitoring with Superb Microvascular Imaging Technique in Brain Tumor Surgery. World Neurosurg 2017; 97:749.e11-749.e20. [DOI: 10.1016/j.wneu.2016.10.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 01/16/2023]
|
26
|
Intraoperative Ultrasound Technology in Neuro-Oncology Practice—Current Role and Future Applications. World Neurosurg 2016; 93:81-93. [DOI: 10.1016/j.wneu.2016.05.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 11/20/2022]
|
27
|
Sastry R, Bi WL, Pieper S, Frisken S, Kapur T, Wells W, Golby AJ. Applications of Ultrasound in the Resection of Brain Tumors. J Neuroimaging 2016; 27:5-15. [PMID: 27541694 DOI: 10.1111/jon.12382] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 12/23/2022] Open
Abstract
Neurosurgery makes use of preoperative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of preoperative imaging for neuronavigation, however, is diminished by the well-characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography, has dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies.
Collapse
Affiliation(s)
- Rahul Sastry
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Tina Kapur
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - William Wells
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Mursch K, Scholz M, Brück W, Behnke-Mursch J. The value of intraoperative ultrasonography during the resection of relapsed irradiated malignant gliomas in the brain. Ultrasonography 2016; 36:60-65. [PMID: 27776402 PMCID: PMC5207359 DOI: 10.14366/usg.16015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 12/03/2022] Open
Abstract
Purpose The aim of this study was to investigate whether intraoperative ultrasonography (IOUS) helped the surgeon navigate towards the tumor as seen in preoperative magnetic resonance imaging and whether IOUS was able to distinguish between tumor margins and the surrounding tissue. Methods Twenty-five patients suffering from high-grade gliomas who were previously treated by surgery and radiotherapy were included. Intraoperatively, two histopathologic samples were obtained a sample of unequivocal tumor tissue (according to anatomical landmarks and the surgeon’s visual and tactile impressions) and a small tissue sample obtained using a navigated needle when the surgeon decided to stop the resection. This specimen was considered to be a boundary specimen, where no tumor tissue was apparent. The decision to take the second sample was not influenced by IOUS. The effect of IOUS was analyzed semi-quantitatively. Results All 25 samples of unequivocal tumor tissue were histopathologically classified as tumor tissue and were hyperechoic on IOUS. Of the boundary specimens, eight were hypoechoic. Only one harbored tumor tissue (P=0.150). Seventeen boundaries were moderately hyperechoic, and these samples contained all possible histological results (i.e., tumor, infiltration, or no tumor). Conclusion During surgery performed on relapsed, irradiated, high-grade gliomas, IOUS provided a reliable method of navigating towards the core of the tumor. At borders, it did not reliably distinguish between remnants or tumor-free tissue, but hypoechoic areas seldom contained tumor tissue.
Collapse
Affiliation(s)
- Kay Mursch
- Department of Neurosurgery, Zentralklinik, Bad Berka, Germany
| | - Martin Scholz
- Department of Neurosurgery, Klinikum Duisburg, Duisburg, Germany
| | - Wolfgang Brück
- Department of Neuropathology, Georg August Universität, Göttingen, Germany
| | | |
Collapse
|
29
|
Sanai N, Berger MS. Techniques in the Resection of Gliomas. Neurooncol Pract 2015. [DOI: 10.1093/nop/npv048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
30
|
Miller D, Sure U. Current Standards and Future Perspectives in Intraoperative Ultrasound. Neurooncol Pract 2015. [DOI: 10.1093/nop/npv047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
31
|
Perspectives in Intraoperative Diagnostics of Human Gliomas. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:479014. [PMID: 26543495 PMCID: PMC4620377 DOI: 10.1155/2015/479014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/25/2015] [Indexed: 12/31/2022]
Abstract
Amongst large a variety of oncological diseases, malignant gliomas represent one of the most severe types of tumors. They are also the most common type of the brain tumors and account for over half of the astrocytic tumors. According to different sources, the average life expectancy of patients with various glioblastomas varies between 10 and 12 months and that of patients with anaplastic astrocytic tumors between 20 and 24 months. Therefore, studies of the physiology of transformed glial cells are critical for the development of treatment methods. Modern medical approaches offer complex procedures, including the microsurgical tumor removal, radiotherapy, and chemotherapy, supplemented with photodynamic therapy and immunotherapy. The most radical of them is surgical resection, which allows removing the largest part of the tumor, reduces the intracranial hypertension, and minimizes the degree of neurological deficit. However, complete removal of the tumor remains impossible. The main limitations are insufficient visualization of glioma boundaries, due to its infiltrative growth, and the necessity to preserve healthy tissue. This review is devoted to the description of advantages and disadvantages of modern intraoperative diagnostics of human gliomas and highlights potential perspectives for development of their treatment.
Collapse
|
32
|
Zhang ZZ, Shields LBE, Sun DA, Zhang YP, Hunt MA, Shields CB. The Art of Intraoperative Glioma Identification. Front Oncol 2015; 5:175. [PMID: 26284196 PMCID: PMC4520021 DOI: 10.3389/fonc.2015.00175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/14/2015] [Indexed: 01/01/2023] Open
Abstract
A major dilemma in brain-tumor surgery is the identification of tumor boundaries to maximize tumor excision and minimize postoperative neurological damage. Gliomas, especially low-grade tumors, and normal brain have a similar color and texture, which poses a challenge to the neurosurgeon. Advances in glioma resection techniques combine the experience of the neurosurgeon and various advanced technologies. Intraoperative methods to delineate gliomas from normal tissue consist of (1) image-based navigation, (2) intraoperative sampling, (3) electrophysiological monitoring, and (4) enhanced visual tumor demarcation. The advantages and disadvantages of each technique are discussed. A combination of these methods is becoming widely accepted in routine glioma surgery. Gross total resection in conjunction with radiation, chemotherapy, or immune/gene therapy may increase the rates of cure in this devastating disease.
Collapse
Affiliation(s)
- Zoe Z Zhang
- Department of Neurosurgery, University of Minnesota , Minneapolis, MN , USA
| | - Lisa B E Shields
- Norton Neuroscience Institute, Norton Healthcare , Louisville, KY , USA
| | - David A Sun
- Norton Neuroscience Institute, Norton Healthcare , Louisville, KY , USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare , Louisville, KY , USA
| | - Matthew A Hunt
- Department of Neurosurgery, University of Minnesota , Minneapolis, MN , USA
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare , Louisville, KY , USA ; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine , Louisville, KY , USA
| |
Collapse
|
33
|
Harput MV, Gonzalez-Lopez P, Türe U. Three-dimensional reconstruction of the topographical cerebral surface anatomy for presurgical planning with free OsiriX Software. Neurosurgery 2015; 10 Suppl 3:426-35; discussion 435. [PMID: 24662508 DOI: 10.1227/neu.0000000000000355] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND During surgery for intrinsic brain lesions, it is important to distinguish the pathological gyrus from the surrounding normal sulci and gyri. This task is usually tedious because of the pia-arachnoid membranes with their arterial and venous complexes that obscure the underlying anatomy. Moreover, most tumors grow in the white matter without initially distorting the cortical anatomy, making their direct visualization more difficult. OBJECTIVE To create and evaluate a simple and free surgical planning tool to simulate the anatomy of the surgical field with and without vessels. METHODS We used free computer software (OsiriX Medical Imaging Software) that allowed us to create 3-dimensional reconstructions of the cerebral surface with and without cortical vessels. These reconstructions made use of magnetic resonance images from 51 patients with neocortical supratentorial lesions operated on over a period of 21 months (June 2011 to February 2013). The 3-dimensional (3-D) anatomic images were compared with the true surgical view to evaluate their accuracy. In all patients, the landmarks determined by 3-D reconstruction were cross-checked during surgery with high-resolution ultrasonography; in select cases, they were also checked with indocyanine green videoangiography. RESULTS The reconstructed neurovascular structures were confirmed intraoperatively in all patients. We found this technique to be extremely useful in achieving pure lesionectomy, as it defines tumor's borders precisely. CONCLUSION A 3-D reconstruction of the cortical surface can be easily created with free OsiriX software. This technique helps the surgeon perfect the mentally created 3-D picture of the tumor location to carry out cleaner, safer surgeries.
Collapse
Affiliation(s)
- Mehmet V Harput
- Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey
| | | | | |
Collapse
|
34
|
Coburger J, Scheuerle A, Kapapa T, Engelke J, Thal DR, Wirtz CR, König R. Sensitivity and specificity of linear array intraoperative ultrasound in glioblastoma surgery: a comparative study with high field intraoperative MRI and conventional sector array ultrasound. Neurosurg Rev 2015; 38:499-509; discussion 509. [DOI: 10.1007/s10143-015-0627-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/02/2014] [Accepted: 01/19/2015] [Indexed: 11/24/2022]
|
35
|
Rivaz H, Collins DL. Near real-time robust non-rigid registration of volumetric ultrasound images for neurosurgery. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:574-587. [PMID: 25542482 DOI: 10.1016/j.ultrasmedbio.2014.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Ultrasound images are acquired before and after the resection of brain tumors to help the surgeon to localize the tumor and its extent and to minimize the amount of residual tumor after the resection. Because the brain undergoes large deformation between these two acquisitions, deformable image-based registration of these data sets is of substantial clinical importance. In this work, we present an algorithm for non-rigid registration of ultrasound images (RESOUND) that models the deformation with free-form cubic B-splines. We formulate a regularized cost function that uses normalized cross-correlation as the similarity metric. To optimize the cost function, we calculate its analytic derivative and use the stochastic gradient descent technique to achieve near real-time performance. We further propose a robust technique to minimize the effect of non-corresponding regions such as the resected tumor and possible hemorrhage in the post-resection image. Using manually labeled corresponding landmarks in the pre- and post-resection ultrasound volumes, we illustrate that our registration algorithm reduces the mean target registration error from an initial value of 3.7 to 1.5 mm. We also compare RESOUND with the previous work of Mercier et al. (2013) and illustrate that it has three important advantages: (i) it is fully automatic and does not require a manual segmentation of the tumor, (ii) it produces smaller registration errors and (iii) it is about 30 times faster. The clinical data set is available online on the BITE database website.
Collapse
Affiliation(s)
- Hassan Rivaz
- Department of Electrical and Computer Engineering, Concordia PERFORM Centre, Concordia University, Montreal, Quebec, Canada.
| | - D Louis Collins
- McConnell Brain Imaging Center, Montreal Neurologic Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
36
|
Coburger J, Scheuerle A, Thal DR, Engelke J, Hlavac M, Wirtz CR, König R. Linear array ultrasound in low-grade glioma surgery: histology-based assessment of accuracy in comparison to conventional intraoperative ultrasound and intraoperative MRI. Acta Neurochir (Wien) 2015; 157:195-206. [PMID: 25559430 DOI: 10.1007/s00701-014-2314-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/12/2014] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In low-grade glioma (LGG) surgery, intraoperative differentiation between tumor and most likely tumor-free brain tissue can be challenging. Intraoperative ultrasound can facilitate tumor resection. The aim of this study is to evaluate the accuracy of linear array ultrasound in comparison to conventional intraoperative ultrasound (cioUS) and intraoperative high-field MRI (iMRI). METHODS We prospectively enrolled 13 patients harboring a LGG of WHO Grade II. After assumed near total removal, a resection control was performed using navigated cioUS, navigated lioUS, and iMRI. We harvested 30 navigated biopsies from the resection cavity and compared the histopathological findings with the respective imaging results. Spearman's rho was calculated to test for significant correlations. Sensitivity and specificity as well as receiver operating characteristics (ROC) were calculated to assess test performance of each imaging modality. RESULTS Imaging results of lioUS correlated significantly (p < 0.009) with iMRI. Both iMRI and lioUS correlated significantly with final histopathological diagnosis (p < 0.006, p < 0.014). cioUS did not correlate with other imaging findings or with final diagnosis. The highest sensitivity for residual tumor detection was found in iMRI (83 %), followed by lioUS (79 %). The sensitivity of cioUS was only 21 %. Specificity was highest in cioUS (100 %), whereas iMRI and lioUS both achieved 67 %. ROC curves showed fair results for iMRI and lioUS and a poor result for cioUS. CONCLUSIONS Intraoperative resection control in LGGs using lioUS reaches a degree of accuracy close to iMRI. Test results of lioUS are superior to cioUS. cioUS often fails to discriminate solid tumors from "normal" brain tissue during resection control. Only in lesions <10 cc cioUS does show good accuracy.
Collapse
Affiliation(s)
- Jan Coburger
- Department of Neurosurgery, University of Ulm, Ludwig Heilmeyerstr. 2, 89312, Günzburg, Germany,
| | | | | | | | | | | | | |
Collapse
|
37
|
Prada F, Del Bene M, Mattei L, Casali C, Filippini A, Legnani F, Mangraviti A, Saladino A, Perin A, Richetta C, Vetrano I, Moiraghi A, Saini M, DiMeco F. Fusion imaging for intra-operative ultrasound-based navigation in neurosurgery. J Ultrasound 2014; 17:243-51. [PMID: 25177400 DOI: 10.1007/s40477-014-0111-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 06/02/2014] [Indexed: 12/19/2022] Open
Abstract
The major shortcoming of image-guided navigation systems is the use of presurgically acquired image data, which does not account for intra-operative changes such as brain shift, tissue deformation and tissue removal occurring during the surgical procedure. Intra-operative ultrasound (iUS) is becoming widely used in neurosurgery but they lack orientation and panoramic view. In this article, we describe our procedure for US-based real-time neuro-navigation during surgery. We used fusion imaging between preoperative magnetic resonance imaging (MRI) and iUS for brain lesion removal in 67 patients so far. Surgical planning is based on preoperative MRI only. iUS images obtained during surgery are fused with the preoperative MRI. Surgery is performed under intra-operative US control. Relying on US imaging, it is possible to recalibrate navigated MRI imaging, adjusting distortion due to brain shift and tissue resection, continuously updating the two modalities. Ultrasound imaging provides excellent visualization of targets, their margins and surrounding structures. The use of navigated MRI is helpful in better understanding cerebral ultrasound images, providing orientation and panoramic view. Intraoperative US-guided neuro-navigation adjustments are very accurate and helpful in the event of brain shift. The use of this integrated system allows for a true real-time feedback during surgery.
Collapse
Affiliation(s)
- Francesco Prada
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy
| | - Massimiliano Del Bene
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy ; Università degli Studi di Milano, Milan, Italy
| | - Luca Mattei
- Università degli Studi di Milano, Milan, Italy
| | - Cecilia Casali
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy
| | - Assunta Filippini
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy ; Università degli Studi di Milano, Milan, Italy
| | - Federico Legnani
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy
| | | | - Andrea Saladino
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy
| | - Alessandro Perin
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy
| | - Carla Richetta
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy ; Università degli Studi di Milano, Milan, Italy
| | - Ignazio Vetrano
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy ; Università degli Studi di Milano, Milan, Italy
| | - Alessandro Moiraghi
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy ; Università degli Studi di Milano, Milan, Italy
| | - Marco Saini
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy
| | - Francesco DiMeco
- Department of Neurosurgery, Fondazione IRCCS "Istituto Neurologico C. Besta", via Celoria 11, 20133 Milan, Italy ; Department of Neurosurgery, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
38
|
Martirosyan NL, Georges J, Eschbacher JM, Cavalcanti DD, Elhadi AM, Abdelwahab MG, Scheck AC, Nakaji P, Spetzler RF, Preul MC. Potential application of a handheld confocal endomicroscope imaging system using a variety of fluorophores in experimental gliomas and normal brain. Neurosurg Focus 2014; 36:E16. [DOI: 10.3171/2013.11.focus13486] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The authors sought to assess the feasibility of a handheld visible-wavelength confocal endomicroscope imaging system (Optiscan 5.1, Optiscan Pty., Ltd.) using a variety of rapid-acting fluorophores to provide histological information on gliomas, tumor margins, and normal brain in animal models.
Methods
Mice (n = 25) implanted with GL261 cells were used to image fluorescein sodium (FNa), 5-aminolevulinic acid (5-ALA), acridine orange (AO), acriflavine (AF), and cresyl violet (CV). A U251 glioma xenograft model in rats (n = 5) was used to image sulforhodamine 101 (SR101). A swine (n = 3) model with AO was used to identify confocal features of normal brain. Images of normal brain, obvious tumor, and peritumoral zones were collected using the handheld confocal endomicroscope. Histological samples were acquired through biopsies from matched imaging areas. Samples were visualized with a benchtop confocal microscope. Histopathological features in corresponding confocal images and photomicrographs of H & E–stained tissues were reviewed.
Results
Fluorescence induced by FNa, 5-ALA, AO, AF, CV, and SR101 and detected with the confocal endomicroscope allowed interpretation of histological features. Confocal endomicroscopy revealed satellite tumor cells within peritumoral tissue, a definitive tumor border, and striking fluorescent cellular and subcellular structures. Fluorescence in various tumor regions correlated with standard histology and known tissue architecture. Characteristic features of different areas of normal brain were identified as well.
Conclusions
Confocal endomicroscopy provided rapid histological information precisely related to the site of microscopic imaging with imaging characteristics of cells related to the unique labeling features of the fluorophores. Although experimental with further clinical trial validation required, these data suggest that intraoperative confocal imaging can help to distinguish normal brain from tumor and tumor margin and may have application in improving intraoperative decisions during resection of brain tumors.
Collapse
Affiliation(s)
| | - Joseph Georges
- 4School of Life Sciences, Arizona State University, Tempe, Arizona
| | | | | | | | - Mohammed G. Abdelwahab
- 3Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | - Adrienne C. Scheck
- 3Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix; and
| | | | | | | |
Collapse
|
39
|
Picarelli H, Oliveira MDL, Bor-Seng-Shu E, Ribas ESC, Santos AM, Teixeira MJ. Intraoperative ultrasonography for presumed brain metastases: a case series study. ARQUIVOS DE NEURO-PSIQUIATRIA 2013; 70:793-8. [PMID: 23060106 DOI: 10.1590/s0004-282x2012001000008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/15/2012] [Indexed: 11/22/2022]
Abstract
UNLABELLED Brain metastases (BM) are one of the most common intracranial tumors and surgical treatment can improve both the functional outcomes and patient survival, particularly when systemic disease is controlled. Image-guided BM resection using intraoperative exams, such as intraoperative ultrasound (IOUS), can lead to better surgical results. METHODS To evaluate the use of IOUS for BM resection, 20 consecutive patients were operated using IOUS to locate tumors, identify their anatomical relationships and surgical cavity after resection. Technical difficulties, complications, recurrence and survival rates were noted. RESULTS IOUS proved effective for locating, determining borders and defining the anatomical relationships of BM, as well as to identify incomplete tumor resection. No complications related to IOUS were seen. CONCLUSION IOUS is a practical supporting method for the resection of BM, but further studies comparing this method with other intraoperative exams are needed to evaluate its actual contribution and reliability.
Collapse
Affiliation(s)
- Helder Picarelli
- Division of Neurological Surgery, Instituto do Câncer do Estado de São Paulo Octavio Frias de Oliveira, São Paulo SP, Brazil.
| | | | | | | | | | | |
Collapse
|
40
|
Su X, Cheng K, Wang C, Xing L, Wu H, Cheng Z. Image-guided resection of malignant gliomas using fluorescent nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:219-32. [PMID: 23378052 DOI: 10.1002/wnan.1212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intraoperative fluorescence imaging especially near-infrared fluorescence (NIRF) imaging has the potential to revolutionize neurosurgery by providing high sensitivity and real-time image guidance to surgeons for defining gliomas margins. Fluorescence probes including targeted nanoprobes are expected to improve the specificity and selectivity for intraoperative fluorescence or NIRF tumor imaging. The main focus of this article is to provide a brief overview of intraoperative fluorescence imaging systems and probes including fluorescein sodium, 5-aminolevulinic acid, dye-containing nanoparticles, and targeted NIRF nanoprobes for their applications in image-guided resection of malignant gliomas. Moreover, photoacoustic imaging is a promising molecular imaging modality, and its potential applications for brain tumor imaging are also briefly discussed.
Collapse
Affiliation(s)
- Xinhui Su
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Bio-X Program and Stanford Cancer Center, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
41
|
Martirosyan NL, Cavalcanti DD, Eschbacher JM, Delaney PM, Scheck AC, Abdelwahab MG, Nakaji P, Spetzler RF, Preul MC. Use of in vivo near-infrared laser confocal endomicroscopy with indocyanine green to detect the boundary of infiltrative tumor. J Neurosurg 2011; 115:1131-8. [PMID: 21923240 DOI: 10.3171/2011.8.jns11559] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Infiltrative tumor resection is based on regional (macroscopic) imaging identification of tumorous tissue and the attempt to delineate invasive tumor margins in macroscopically normal-appearing tissue, while preserving normal brain tissue. The authors tested miniaturized confocal fiberoptic endomicroscopy by using a near-infrared (NIR) imaging system with indocyanine green (ICG) as an in vivo tool to identify infiltrating glioblastoma cells and tumor margins. METHODS Thirty mice underwent craniectomy and imaging in vivo 14 days after implantation with GL261-luc cells. A 0.4 mg/kg injection of ICG was administered intravenously. The NIR images of normal brain, obvious tumor, and peritumoral zones were collected using the handheld confocal endomicroscope probe. Histological samples were acquired from matching imaged areas for correlation of tissue images. RESULTS In vivo NIR wavelength confocal endomicroscopy with ICG detects fluorescence of tumor cells. The NIR and ICG macroscopic imaging performed using a surgical microscope correlated generally to tumor and peritumor regions, but NIR confocal endomicroscopy performed using ICG revealed individual tumor cells and satellites within peritumoral tissue; a definitive tumor border; and striking fluorescent microvascular, cellular, and subcellular structures (for example, mitoses, nuclei) in various tumor regions correlating with standard clinical histological features and known tissue architecture. CONCLUSIONS Macroscopic fluorescence was effective for gross tumor detection, but NIR confocal endomicroscopy performed using ICG enhanced sensitivity of tumor detection, providing real-time true microscopic histological information precisely related to the site of imaging. This first-time use of such NIR technology to detect cancer suggests that combined macroscopic and microscopic in vivo ICG imaging could allow interactive identification of microscopic tumor cell infiltration into the brain, substantially improving intraoperative decisions.
Collapse
Affiliation(s)
- Nikolay L Martirosyan
- Neurosurgery Research Laboratory, Division of Neurological Surgery, Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Comparing two approaches to rigid registration of three-dimensional ultrasound and magnetic resonance images for neurosurgery. Int J Comput Assist Radiol Surg 2011; 7:125-36. [PMID: 21633799 DOI: 10.1007/s11548-011-0620-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/10/2011] [Indexed: 10/18/2022]
|
43
|
Two-dimensional high-end ultrasound imaging compared to intraoperative MRI during resection of low-grade gliomas. J Clin Neurosci 2011; 18:669-73. [DOI: 10.1016/j.jocn.2010.08.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/13/2010] [Indexed: 11/21/2022]
|
44
|
Gerganov VM, Samii A, Stieglitz L, Giordano M, Luedemann WO, Samii M, Fahbusch R. Typical 3-D localization of tumor remnants of WHO grade II hemispheric gliomas--lessons learned from the use of intraoperative high-field MRI control. Acta Neurochir (Wien) 2011; 153:479-87. [PMID: 21234619 DOI: 10.1007/s00701-010-0911-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Complete resection of grade II gliomas might prolong survival but is not always possible. The goal of the study was to evaluate the location of unexpected grade II gliomas remnants after assumed complete removal with intraoperative (iop) MRI and to assess the reason for their non-detection. METHODS Intraoperative MR images of 35 patients with hemispheric grade II gliomas, acquired after assumed complete removal of preoperatively segmented tumor/tumor part, were studied for existence of unexpected tumor remnants. Remnants location was classified in relation to tumor cavity in axial and vertical planes. The relation of remnants to retractor position and to surgeons' visual axis, and the role of neuronavigational accuracy and brain shift, was assessed. RESULTS Unexpected remnants were found in 16 patients (46%). In 29.2%, the reason was loss of neuronavigational accuracy. In 21%, remnants were in that part of the resection cavity, where the retractor had been placed initially. In 17%, they were deeply located and hidden by the retractor. In 13%, remnants were hidden by the overlapping brain; and in 21%, the reason was not obvious. In 75% of all temporomesial tumors, remnants were posterolateral to the resection cavity. Remnants detection with iopMRI and update of neuronavigational data allowed further removal in 14 of 16 cases. In two cases, remnant location precluded their removal. CONCLUSIONS Distribution of tumor remnants of grade II gliomas tends to follow some patterns. Targeted attention to the areas of possible remnants could increase the radicality of surgery, even if intraoperative imaging is not performed.
Collapse
|
45
|
Rohde V, Coenen VA. Intraoperative 3-dimensional ultrasound for resection control during brain tumour removal: preliminary results of a prospective randomized study. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 109:187-90. [PMID: 20960341 DOI: 10.1007/978-3-211-99651-5_29] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
INTRODUCTION The amount of resection is closely related to survival in brain tumours. To enhance resection, especially intraoperative magnetic resonance imaging (MRI) has been applied. The aim of this prospective, randomized study was to test if intraoperative 3-D ultrasound likewise can be used for resection control. METHODS 16 patients, who underwent surgery for intraaxial tumours in non-eloquent brain areas, were initially included into this prospective study. In two patients, the small size of the craniotomy hindered intraoperative ultrasound imaging. In 14 patients, 3-D ultrasound images were obtained before and after opening of the dura, during tumour removal, prior to evaluation by a blinded investigator for identification of tumour remnants, and after dura closure. Seven patients were randomized to complete tumour removal according to the impression of the surgeon (group 1). Seven patients were randomized to incomplete tumour removal (tumour remnant <1cm) (group 2); in these patients, the neurosurgeon intentionally left a tumour remnant prior to evaluation by the blinded investigator. The tumour remnant was then removed. It was tested if 3-D ultrasound can correctly identify complete and incomplete tumour resection. All patients underwent early postoperative MRI. RESULTS In two patients (one each of the two groups) the image quality was too poor for a meaningful intraoperative evaluation. In the six patients randomized for incomplete tumour removal, 3-D ultrasound correctly identified tumour remnants in four patients (67%). In six patients randomized for complete tumour removal, 3-D ultrasound confirmed complete tumour resection in three patients. In addition, 3-D ultrasound identified correctly one tumour remnant in a patient randomized for complete tumour removal. Thus, the sensitivity for tumour remnant detection increased to 71% (five of seven patients) and that of confirmation of complete tumour removal was 60 % (three of five patients). CONCLUSION The number of investigated patients is still to low to allow definite conclusions. However, the study results suggest, that 3-D ultrasound is especially helpful for detection of overseen brain tumour tissue.
Collapse
Affiliation(s)
- Veit Rohde
- Department of Neurosurgery, Georg-August-University Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany.
| | | |
Collapse
|
46
|
Solheim O, Selbekk T, Jakola AS, Unsgård G. Ultrasound-guided operations in unselected high-grade gliomas--overall results, impact of image quality and patient selection. Acta Neurochir (Wien) 2010; 152:1873-86. [PMID: 20652608 DOI: 10.1007/s00701-010-0731-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/23/2010] [Indexed: 11/29/2022]
Abstract
BACKGROUND A number of tools, including intraoperative ultrasound, are reported to facilitate surgical resection of high-grade gliomas. However, results from selected surgical series do not necessarily reflect the effectiveness in common neurosurgical practice. Delineation of seemingly similar brain tumours vary in different ultrasound-guided operations, perhaps limiting usefulness in certain patients. METHODS We explore and describe the results associated with use of the SonoWand system with intraoperative ultrasound in a population-based, unselected, high-grade glioma series. Surgeons filled out questionnaires about presumed extent of resection, use of ultrasound and ultrasound image quality just after surgery. We evaluate the impact of ultrasound image quality. We also explore the importance of patient selection for surgical results. RESULTS Of 156 consecutive malignant glioma operations, 142 (91%) were resections whilst 14 (9%) were only biopsies. We achieved gross total resection (GTR) in 37% of all high-grade glioma resections, whilst worsening of functional status was seen in 13%. The risk of getting worse was significantly higher in reoperations, resections in eloquent locations, resections in cases with poor ultrasound image quality, resection when surgeons' resection grade estimates were inaccurate and in cases with surgery-related complications. Aiming for GTR, unifocality of lesion, non-eloquent location and medium or good ultrasound image quality were identified as independent factors associated with achieving GTR. CONCLUSION We report good overall results, both in terms of resection grades and functional outcome in consecutive malignant glioma resections, in which intraoperative ultrasound was used in 95%. We observed a seeming dose-response relationship between ultrasound image quality and clinical and radiological results. This may suggest that better ultrasound facilitates better surgery. The study also clearly demonstrates that, in terms of surgical results, the selection of patients seems to be much more important than the selection of surgical tools.
Collapse
Affiliation(s)
- Ole Solheim
- Department of Neuroscience, Norwegian University of Science and Technology, 7005, Trondheim, Norway.
| | | | | | | |
Collapse
|
47
|
Kim C, Qin R, Xu JS, Wang LV, Xu R. Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:010510. [PMID: 20210423 PMCID: PMC2839794 DOI: 10.1117/1.3302808] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 01/01/2010] [Accepted: 01/06/2010] [Indexed: 05/19/2023]
Abstract
We develop a novel dual-modal contrast agent-encapsulated-ink poly(lactic-co-glycolic acid) (PLGA) microbubbles and nanobubbles-for photoacoustic and ultrasound imaging. Soft gelatin phantoms with embedded tumor simulators of encapsulated-ink PLGA microbubbles and nanobubbles in various concentrations are clearly shown in both photoacoustic and ultrasound images. In addition, using photoacoustic imaging, we successfully image the samples positioned below 1.8-cm-thick chicken breast tissues. Potentially, simultaneous photoacoustic and ultrasound imaging enhanced by encapsulated-dye PLGA microbubbles or nanobubbles can be a valuable tool for intraoperative assessment of tumor boundaries and therapeutic margins.
Collapse
|
48
|
|