1
|
Shanahan R, Avsar P, Watson C, Moore Z, Patton D, McEvoy NL, Curley G, O'Connor T. The impact of brain tissue oxygenation monitoring on the Glasgow Outcome Scale/Glasgow Outcome Scale Extended in patients with moderate to severe traumatic brain injury: A systematic review. Nurs Crit Care 2024; 29:1460-1469. [PMID: 37735107 DOI: 10.1111/nicc.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND Traumatic brain injuries (TBIs) are one of the leading causes of death or long-term disability around the world. As a result of improvements in supportive care, patients are surviving more severe insults with more pronounced dependency on their families, hospitals, and long-term care facilities. The introduction of brain tissue oxygenation (PbtO2) monitoring aims to recognize episodes of reduced cerebral perfusion with and without associated increased intracranial pressure (ICP). AIM The aim of this review is to determine the impact of PbtO2 on the Glasgow Outcome Scale/Glasgow Outcome Scale Extended (GOS/GOSE) in patients with moderate to severe TBI. STUDY DESIGN Systematic review with narrative and meta-analysis. All original research in which adult patients undergoing PbtO2 were compared with a control group of traditional ICP/cerebral perfusion pressure (CPP) monitoring. Both randomized controlled trials and observational studies were included in this review. METHODS Databases were searched in September 2022. The primary outcome of the review was the impact of PbtO2 monitoring on GOS/GOSE, while secondary outcomes were mortality and length of stay (LOS) in the intensive care unit (ICU). RESULTS Seven studies with a combined number of 770 patients were included in the review. These patients were adults ≥16 years of age. Only two of the studies included found a statistically significant association between PbtO2 monitoring and improved long-term neurological outcomes in patients with TBI (p = .01, p < .01). A meta-analysis of the secondary outcomes identified an associated reduction of mortality in favour of the group treated with PbtO2 monitoring (p < .0001). Results from studies examining LOS in ICU have demonstrated an associated increase of LOS in ICU in patients treated with PbtO2-guided therapy. CONCLUSION From the studies included in this review, only two found a statistically significant association between PbtO2 monitoring and long-term outcomes. It is unclear whether PbtO2 goal-directed therapy has a positive impact on the long-term neurological functions and mortality of patients suffering from TBI. A multicentre randomized controlled trial may provide further evidence, but not necessarily conclusive. RELEVANCE TO CLINICAL PRACTICE Further research is warranted to determine the efficacy of the introduction of this new monitoring system to guide local policy change.
Collapse
Affiliation(s)
- Ruth Shanahan
- Beaumont Hospital, Dublin, Ireland
- Department of Anaesthesia and Critical Care, Beaumont Hospital, Dublin, Ireland
| | - Pinar Avsar
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Chanel Watson
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Zena Moore
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing & Midwifery, Griffith University, Mount Gravatt, Queensland, Australia
- School of Health Sciences, Faculty of Life and Health Sciences Ulster University, UK
- Department of Public Health, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
- Lida Institute, Shanghai, China
- Cardiff University, Cardiff, UK
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
| | - Declan Patton
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing & Midwifery, Griffith University, Mount Gravatt, Queensland, Australia
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Natalie L McEvoy
- Department of Anaesthesia and Critical Care, RCSI, Dublin, Ireland
| | - Ger Curley
- Beaumont Hospital, Dublin, Ireland
- Department of Anaesthesia and Critical Care, Beaumont Hospital, Dublin, Ireland
- Department of Anaesthesia and Critical Care, RCSI, Dublin, Ireland
| | - Tom O'Connor
- School of Nursing & Midwifery, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- Skin Wounds and Trauma (SWaT) Research Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- School of Nursing & Midwifery, Griffith University, Mount Gravatt, Queensland, Australia
- Lida Institute, Shanghai, China
- Fakeeh College of Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Wang Z, Zhang R, Han Z, Wang J, Wu R, Zhao W, Zhang X, Bao J, Yang W, Zhang Z. Assessment of traumatic brain injury treatment guided by continuous monitoring of intracranial pressure and brain tissue oxygen partial pressure: A single-center pilot study. J Clin Neurosci 2024; 130:110884. [PMID: 39447393 DOI: 10.1016/j.jocn.2024.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Severe traumatic brain injury (TBI) is a leading cause of death and disability. Monitoring intracranial pressure (ICP) is recommended, but the data on the outcomes are conflicting. Adding continuous brain tissue oxygen partial pressure (PbtO2) monitoring may have some benefit but the OXY-TC suggested it did not improve 6-month neurological outcomes. This single-center pilot randomized controlled study aimed to evaluate whether adding PbtO2 monitoring was feasible and could improve the prognosis of severe TBI. The participants were randomized into either an ICP alone or an ICP + PbtO2 group for 7 days, with treatment protocols based on existing guidelines. Clinical parameters were collected hourly. The primary outcome was the feasibility of using PbtO2 monitoring. The secondary outcomes were 6-month survival, analyzed by the log-rank test, the 3- and 6-month Glasgow Outcome Scale (GOS) scores, compared between groups by chi-squared test. Seventy patients were included (36 ICP, 34 ICP + PbtO2). The ICP + PbtO2 group had lower mean daily ICP (13.4 vs. 18.2 mmHg, P = 0.0024) and higher mean daily cerebral perfusion pressure (82.1 vs. 74.5 mmHg, P = 0.0055). The ICP + PbtO2 group had higher 6-month survival (79.4 % vs. 55.6 %, P = 0.0337) and more favorable outcomes at 3 months (67.6 % vs. 38.9 %, P = 0.0160) and 6 months (70.6 % vs. 41.7 %, P = 0.0149). Adding PbtO2 monitoring to ICP monitoring is feasible in patients with severe TBI and could maybe improve the intermediate-term outcomes. The results will serve to design larger trials.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China.
| | - Ruijian Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhitong Han
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Junqing Wang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Rile Wu
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Weiping Zhao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Xiaojun Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Weiran Yang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhilong Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Zhang C, Zhou L, Zhang K, Huang J, Cao L, Lou Y, Fan Y, Zhang X, Wang Y, Cui W, Hu L, Zhang G. Brain tissue oxygen pressure combined with intracranial pressure monitoring may improve clinical outcomes for patients with severe traumatic brain injury: a systemic review and meta-analysis. PeerJ 2024; 12:e18086. [PMID: 39399425 PMCID: PMC11468803 DOI: 10.7717/peerj.18086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/21/2024] [Indexed: 10/15/2024] Open
Abstract
Background Although the optimization of brain oxygenation is thought to improve the prognosis, the effect of brain tissue oxygen pressure (PbtO2) for patients with severe traumatic brain injury (STBI) remains controversial. Therefore, the present study aimed to determine whether adding PbtO2 to intracranial pressure (ICP) monitoring improves clinical outcomes for patients with STBI. Methods PubMed, Embase, Scopus and Cochrane Library were searched for eligible trials from their respective inception through April 10th, 2024. We included clinical trials contrasting the combined monitoring of PbtO2 and ICP versus isolated ICP monitoring among patients with STBI. The primary outcome was favorable neurological outcome at 6 months, and secondary outcomes including the in-hospital mortality, long-term mortality, length of stay in intensive care unit (ICU) and hospital. Results A total of 16 studies (four randomized studies and 12 cohort studies) were included in the meta-analysis. Compared with isolated ICP monitoring, the combined monitoring was associated with a higher favorable neurological outcome rate at 6 months (RR 1.33, 95% CI [1.17-1.51], P < 0.0001, I2 = 0%), reduced long-term mortality (RR 0.72, 95% CI [0.59-0.87], P = 0.0008, I2 = 2%). No significant difference was identified in the in-hospital mortality (RR 0.81, 95% CI 0.66 to 1.01, P = 0.06, I2 = 32%), length of stay in ICU (MD 2.10, 95% CI [-0.37-4.56], P = 0.10, I2 = 78%) and hospital (MD 1.07, 95% CI [-2.54-4.67], P = 0.56, I2 = 49%) between two groups. However, the pooled results of randomized studies did not show beneficial effect of combined monitoring in favorable neurological outcome and long-term mortality. Conclusions Currently, there is limited evidence to prove that the combined PbtO2 and ICP monitoring may contribute to improved neurological outcome and long-term mortality for patients with STBI. However, the benefit of combined monitoring should be further validated in more randomized studies.
Collapse
Affiliation(s)
- Chengcheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Emergency Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Lingmin Zhou
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Critical Care Medicine, First People’s Hospital of Taizhou, Taizhou, China
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Department of Critical Care Medicine, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Lanxin Cao
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhang Lou
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushi Fan
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyun Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yesong Wang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Cui
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihua Hu
- Department of Critical Care Medicine, Hospital of Zhejiang People’s Armed Police, Hangzhou, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, China
| |
Collapse
|
4
|
Ha EJ. Optimizing RBC Transfusion Strategies in Traumatic Brain Injury: Insights on Early Resuscitation and Cerebral Oxygenation. Korean J Neurotrauma 2024; 20:137-145. [PMID: 39372109 PMCID: PMC11450338 DOI: 10.13004/kjnt.2024.20.e26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Effective early resuscitation and maintenance of brain oxygenation are critical for improving the outcomes of patients with severe traumatic brain injury (TBI). Red blood cell (RBC) transfusion plays a vital role in this process. Although RBC transfusion can enhance cerebral oxygenation and stabilize hemodynamics, it also poses significant risks including transfusion-related lung injury and transfusion-associated circulatory overload, highlighting the importance of meticulous transfusion management. This review explores transfusion strategies during the early resuscitation phase and the management of anemia in patients with severe TBI, focusing on appropriate treatment targets, utilizing monitoring-based personalized approaches, and summarizing recent research and current insights.
Collapse
Affiliation(s)
- Eun Jin Ha
- Department of Critical Care Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Santana LS, Diniz JBC, Solla DJF, Neville IS, Figueiredo EG, Mota Telles JP. Brain tissue oxygen combined with intracranial pressure monitoring versus isolated intracranial pressure monitoring in patients with traumatic brain injury: an updated systematic review and meta-analysis. Neurol Sci 2024; 45:3051-3059. [PMID: 38353849 DOI: 10.1007/s10072-024-07392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 06/15/2024]
Abstract
Monitoring intracranial pressure (ICP) is pivotal in the management of severe traumatic brain injury (TBI), but secondary brain injuries can arise despite normal ICP levels. Cerebral tissue oxygenation monitoring (PbtO2) may detect neuronal tissue infarction thresholds, enhancing neuroprotection. We performed a systematic review and meta-analysis to evaluate the effects of combined cerebral tissue oxygenation (PbtO2) and ICP compared to isolated ICP monitoring in patients with TBI. PubMed, Embase, Cochrane, and Web of Sciences databases were searched for trials published up to June 2023. A total of 16 studies comprising 37,820 patients were included. ICP monitoring was universal, with additional placement of PbtO2 in 2222 individuals (5.8%). The meta-analysis revealed a reduction in mortality (OR 0.57, 95% CI 0.37-0.89, p = 0.01), a greater likelihood of favorable outcomes (OR 2.28, 95% CI 1.66-3.14, p < 0.01), and a lower chance of poor outcomes (OR 0.51, 95% CI 0.34-0.79, p < 0.01) at 6 months for the PbtO2 plus ICP group. However, these patients experienced a longer length of hospital stay (MD 2.35, 95% CI 0.50-4.20, p = 0.01). No significant difference was found in hospital mortality rates (OR 0.81, 95% CI 0.61-1.08, p = 0.16) or intensive care unit length of stay (MD 2.46, 95% CI - 0.11-5.04, p = 0.06). The integration of PbtO2 to ICP monitoring improved mortality outcomes and functional recovery at 6 months in patients with TBI. PROSPERO (International Prospective Register of Systematic Reviews) CRD42022383937; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=383937.
Collapse
Affiliation(s)
| | | | - Davi Jorge Fontoura Solla
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Iuri Santana Neville
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - Eberval Gadelha Figueiredo
- Department of Neurology, Division of Neurosurgery, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Rua Dr Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, SP, 05403-010, Brazil
| | - João Paulo Mota Telles
- Department of Neurology, University of São Paulo, Av Dr Arnaldo, 455 - Cerqueira César, São Paulo, SP, 01246-903, Brazil.
| |
Collapse
|
6
|
Shen Y, Wen D, Liang Z, Wan L, Jiang Q, He H, He M. Brain tissue oxygen partial pressure monitoring and prognosis of patients with traumatic brain injury: a meta-analysis. Neurosurg Rev 2024; 47:222. [PMID: 38758384 PMCID: PMC11101534 DOI: 10.1007/s10143-024-02439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/27/2024] [Indexed: 05/18/2024]
Abstract
To assess whether monitoring brain tissue oxygen partial pressure (PbtO2) or employing intracranial pressure (ICP)/cerebral perfusion pressure (CCP)-guided management improves patient outcomes, including mortality, hospital length of stay (LOS), mean daily ICP and mean daily CCP during the intensive care unit(ICU)stay. We searched the Web of Science, EMBASE, PubMed, Cochrane Library, and MEDLINE databases until December 12, 2023. Prospective randomized controlled and cohort studies were included. A meta-analysis was performed for the primary outcome measure, mortality, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Eleven studies with a total of 37,492 patients were included. The mortality in the group with PbtO2 was 29.0% (odds ratio: 0.73;95% confidence interval [CI]:0.56-0.96; P = 0.03; I = 55%), demonstrating a significant benefit. The overall hospital LOS was longer in the PbtO2 group than that in the ICP/CPP group (mean difference:2.03; 95% CI:1.03-3.02; P<0.0001; I = 39%). The mean daily ICP in the PbtO2 monitoring group was lower than that in the ICP/CPP group (mean difference:-1.93; 95% CI: -3.61 to -0.24; P = 0.03; I = 41%). Moreover, PbtO2 monitoring did not improve the mean daily CPP (mean difference:2.43; 95%CI: -1.39 to 6.25;P = 0.21; I = 56%).Compared with ICP/CPP monitoring, PbtO2 monitoring reduced the mortality and the mean daily ICP in patients with severe traumatic brain injury; however, no significant effect was noted on the mean daily CPP. In contrast, ICP/CPP monitoring alone was associated with a short hospital stay.
Collapse
Affiliation(s)
- Yuqi Shen
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Dan Wen
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Zhenghua Liang
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Li Wan
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Qingli Jiang
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Haiyan He
- Intensive Care Unit, School of Medicine, Mianyang Central Hospital, University of Electronic Science and Technology of China, Mianyang, Sichuan Province, China
| | - Mei He
- Department of Nursing, School of Medicine, Mei He: RN, BSN, Mianyang Central Hospital, University of Electronic Science and Technology of China, No.12 Changjia Alley, Jingzhong Street, Fucheng District, Mianyang, 621000, Sichuan Province, China.
| |
Collapse
|
7
|
Avoiding brain hypoxia in severe traumatic brain injury in settings with limited resources - A pathophysiological guide. J Crit Care 2023; 75:154260. [PMID: 36773368 DOI: 10.1016/j.jcrc.2023.154260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 02/11/2023]
Abstract
Cerebral oxygenation represents the balance between oxygen delivery, consumption and utilization by the brain, and therefore reflects the adequacy of cerebral perfusion. Different factors can influence the amount of oxygen to the brain including arterial blood pressure, hemoglobin levels, systemic oxygenation, and transfer of oxygen from blood to the cerebral microcirculation. A mismatch between cerebral oxygen supply and demand results in cerebral hypoxia/ischemia, and is associated with secondary brain damage and worsened outcome after acute brain injury. Therefore, monitoring and prompt treatment of cerebral oxygenation compromise is warranted in both neuro and general intensive care unit populations. Several tools have been proposed for the assessment of cerebral oxygenation, including non-invasive/invasive or indirect/direct methods, including Jugular Venous Oxygen Saturation (SjO2), Partial Brain Tissue Oxygen Tension (PtiO2), Near infrared spectroscopy (NIRS), Transcranial Doppler, electroencephalography and Computed Tomography. In this manuscript, we aim to review the pathophysiology of cerebral oxygenation, describe monitoring technics, and generate recommendations for avoiding brain hypoxia in settings with low availability of resources for direct brain oxygen monitoring.
Collapse
|
8
|
Brain Tissue Oxygen Levels as a Perspective Therapeutic Target in Traumatic Brain Injury. Retrospective Cohort Study. J Crit Care Med (Targu Mures) 2023; 9:12-19. [PMID: 36890978 PMCID: PMC9987269 DOI: 10.2478/jccm-2023-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/30/2022] [Indexed: 02/10/2023] Open
Abstract
Introduction Management of traumatic brain injury (TBI) requires a multidisciplinary approach and represents a significant challenge for both neurosurgeons and intensivists. The role of brain tissue oxygenation (PbtO2) monitoring and its impact on posttraumatic outcomes remains a controversial topic. Aim of the study Our study aimed to evaluate the impact of PbtO2 monitoring on mortality, 30 days and 6 months neurological outcomes in patients with severe TBI compared with those resulting from standard intracranial pressure (ICP) monitoring. Material and methods In this retrospective cohort study, we analysed the outcomes of 77 patients with severe TBI who met the inclusion criteria. These patients were divided into two groups, including 37 patients who were managed with ICP and PbtO2 monitoring protocols and 40 patients who were managed using ICP protocols alone. Results There were no significant differences in demographic data between the two groups. We found no statistically significant differences in mortality or Glasgow Outcome Scale (GOS) scores one month after TBI. However, our results revealed that GOS scores at 6 months had improved significantly among patients managed with PbtO2; this finding was particularly notable for Glasgow Outcome Scale (GOS) scores of 4-5. Close monitoring and management of reductions in PbtO2, particularly by increasing the fraction of inspired oxygen, was associated with higher partial pressures of oxygen in this group. Conclusions Monitoring of PbtO2 may facilitate the appropriate evaluation and treatment of low PbtO2 and represents a promising tool for the management of patients with severe TBI. Additional studies will be needed to confirm these findings.
Collapse
|
9
|
The Impact of Invasive Brain Oxygen Pressure Guided Therapy on the Outcome of Patients with Traumatic Brain Injury: A Systematic Review and Meta-Analysis. Neurocrit Care 2022; 37:779-789. [PMID: 36180764 DOI: 10.1007/s12028-022-01613-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
Abstract
Traumatic brain injury (TBI) is a major public health burden, causing death and disability worldwide. Intracranial hypertension and brain hypoxia are the main mechanisms of secondary brain injury. As such, management strategies guided by intracranial pressure (ICP) and brain oxygen (PbtO2) monitoring could improve the prognosis of these patients. Our objective was to summarize the current evidence regarding the impact of PbtO2-guided therapy on the outcome of patients with TBI. We performed a systematic search of PubMed, Scopus, and the Cochrane library databases, following the protocol registered in PROSPERO. Only studies comparing PbtO2/ICP-guided therapy with ICP-guided therapy were selected. Primary outcome was neurological outcome at 3 and 6 months assessed by using the Glasgow Outcome Scale; secondary outcomes included hospital and long-term mortality, burden of intracranial hypertension, and brain tissue hypoxia. Out of 6254 retrieved studies, 15 studies (n = 37,245 patients, of who 2184 received PbtO2-guided therapy) were included in the final analysis. When compared with ICP-guided therapy, the use of combined PbO2/ICP-guided therapy was associated with a higher probability of favorable neurological outcome (odds ratio 2.21 [95% confidence interval 1.72-2.84]) and of hospital survival (odds ratio 1.15 [95% confidence interval 1.04-1.28]). The heterogeneity (I2) of the studies in each analysis was below 40%. However, the quality of evidence was overall low to moderate. In this meta-analysis, PbtO2-guided therapy was associated with reduced mortality and more favorable neurological outcome in patients with TBI. The low-quality evidence underlines the need for the results from ongoing phase III randomized trials.
Collapse
|
10
|
Barrit S, Al Barajraji M, El Hadweh S, Dewitte O, Torcida N, Andre J, Taccone FS, Schuind S, Gouvêa Bogossian E. Brain Tissue Oxygenation-Guided Therapy and Outcome in Traumatic Brain Injury: A Single-Center Matched Cohort Study. Brain Sci 2022; 12:brainsci12070887. [PMID: 35884694 PMCID: PMC9315682 DOI: 10.3390/brainsci12070887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 12/10/2022] Open
Abstract
Brain tissue oxygenation (PbtO2)-guided therapy can improve the neurological outcome of traumatic brain injury (TBI) patients. With several Phase-III ongoing studies, most of the existing evidence is based on before-after cohort studies and a phase-II randomized trial. The aim of this study was to assess the effectiveness of PbtO2-guided therapy in a single-center cohort. We performed a retrospective analysis of consecutive severe TBI patients admitted to our center who received either intracranial pressure (ICP) guided therapy (from January 2012 to February 2016) or ICP/PbtO2-guided therapy (February 2017 to December 2019). A genetic matching was performed based on covariates including demographics, comorbidities, and severity scores on admission. Intracranial hypertension (IH) was defined as ICP > 20 mmHg for at least 5 min. Brain hypoxia (BH) was defined as PbtO2 < 20 mmHg for at least 10 min. IH and BH were targeted by specific interventions. Mann−Whitney U and Fisher’s exact tests were used to assess differences between groups. A total of 35 patients were matched in both groups: significant differences in the occurrence of IH (ICP 85.7% vs. ICP/PbtO2 45.7%, p < 0.01), ICU length of stay [6 (3−13) vs. 16 (9−25) days, p < 0.01] and Glasgow Coma Scale at ICU discharge [10 (5−14) vs. 13 (11−15), p = 0.036] were found. No significant differences in ICU mortality and Glasgow Outcome Scales at 3 months were observed. This study suggests that the role of ICP/PbtO2-guided therapy should await further confirmation in well-conducted large phase III studies.
Collapse
Affiliation(s)
- Sami Barrit
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Mejdeddine Al Barajraji
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Salim El Hadweh
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Olivier Dewitte
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Nathan Torcida
- Department of Neurology, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Joachim Andre
- Department of Radiology, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
| | - Sophie Schuind
- Department of Neurosurgery, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (S.B.); (M.A.B.); (S.E.H.); (O.D.); (S.S.)
| | - Elisa Gouvêa Bogossian
- Department of Intensive Care, Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium;
- Correspondence:
| |
Collapse
|
11
|
Hays LM, Udy A, Adamides AA, Anstey JR, Bailey M, Bellapart J, Byrne K, Cheng A, Jamie Cooper D, Drummond KJ, Haenggi M, Jakob SM, Higgins AM, Lewis PM, Hunn MK, McNamara R, Menon DK, Murray L, Reddi B, Trapani T, Vallance S, Young PJ, Diaz-Arrastia R, Shutter L, Murray PT, Curley GF, Nichol A. Effects of brain tissue oxygen (PbtO2) guided management on patient outcomes following severe traumatic brain injury: A systematic review and meta-analysis. J Clin Neurosci 2022; 99:349-358. [DOI: 10.1016/j.jocn.2022.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 11/30/2022]
|
12
|
Schweingruber N, Mader M, Wiehe A, Röder F, Göttsche J, Kluge S, Westphal M, Czorlich P, Gerloff C. A recurrent machine learning model predicts intracranial hypertension in neurointensive care patients. Brain 2022; 145:2910-2919. [PMID: 35139181 PMCID: PMC9486888 DOI: 10.1093/brain/awab453] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/24/2021] [Accepted: 11/19/2021] [Indexed: 11/14/2022] Open
Abstract
The evolution of intracranial pressure (ICP) of critically ill patients admitted to a neurointensive care unit (ICU) is difficult to predict. Besides the underlying disease and compromised intracranial space, ICP is affected by a multitude of factors, many of which are monitored on the ICU, but the complexity of the resulting patterns limits their clinical use. This paves the way for new machine learning (ML) techniques to assist clinical management of patients undergoing invasive ICP monitoring independent of the underlying disease. An institutional cohort (ICP-ICU) of patients with invasive ICP monitoring (n = 1346) was used to train recurrent ML models to predict the occurrence of ICP increases of ≥ 22mmHg over a long (> 2 hours) time period in the upcoming hours. External validation was performed on patients undergoing invasive ICP measurement in two publicly available datasets (Medical Information Mart for Intensive Care (MIMIC, n = 998) and eICU Collaborative Research Database (eICU, n = 1634)). Different distances (1h-24 h) between prediction time point and upcoming critical phase were evaluated, demonstrating a decrease in performance but still robust AUC-ROC with larger distances (24 h AUC-ROC: ICP-ICU 0.826 ± 0.0071, MIMIC 0.836 ± 0.0063, eICU 0.779 ± 0.0046, 1 h AUC-ROC: ICP-ICU 0.982 ± 0.0008, MIMIC 0.965 ± 0.0010, eICU 0.941 ± 0.0025). The model operates on sparse hourly data and is stable in handling variable input lengths and missingness through its nature of recurrence and internal memory. Calculation of gradient-based feature importance revealed individual underlying decisions for our Long Short Time Memory (LSTM) based model and thereby provided improved clinical interpretability. Recurrent ML models have the potential to be an effective tool for the prediction of ICP increases with high translational potential.
Collapse
Affiliation(s)
- Nils Schweingruber
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Marius Mader
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf, Hamburg 20246, Germany.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University
| | - Anton Wiehe
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Informatics, University of Hamburg, Hamburg, 22527, Germany
| | - Frank Röder
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany.,Department of Informatics, University of Hamburg, Hamburg, 22527, Germany
| | - Jennifer Göttsche
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Patrick Czorlich
- Department of Neurosurgery, University Medical Centre Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Centre Hamburg-Eppendorf, Hamburg, 20246, Germany
| |
Collapse
|
13
|
|
14
|
Batson C, Gomez A, Sainbhi AS, Froese L, Zeiler FA. Association of Age and Sex With Multi-Modal Cerebral Physiology in Adult Moderate/Severe Traumatic Brain Injury: A Narrative Overview and Future Avenues for Personalized Approaches. Front Pharmacol 2021; 12:676154. [PMID: 34899283 PMCID: PMC8652202 DOI: 10.3389/fphar.2021.676154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of age and biological sex on outcome in moderate/severe traumatic brain injury (TBI) has been documented in large cohort studies, with advanced age and male sex linked to worse long-term outcomes. However, the association between age/biological sex and high-frequency continuous multi-modal monitoring (MMM) cerebral physiology is unclear, with only sparing reference made in guidelines and major literature in moderate/severe TBI. In this narrative review, we summarize some of the largest studies associating various high-frequency MMM parameters with age and biological sex in moderate/severe TBI. To start, we present this by highlighting the representative available literature on high-frequency data from Intracranial Pressure (ICP), Cerebral Perfusion Pressure (CPP), Extracellular Brain Tissue Oxygenation (PbtO2), Regional Cerebral Oxygen Saturations (rSO2), Cerebral Blood Flow (CBF), Cerebral Blood Flow Velocity (CBFV), Cerebrovascular Reactivity (CVR), Cerebral Compensatory Reserve, common Cerebral Microdialysis (CMD) Analytes and their correlation to age and sex in moderate/severe TBI cohorts. Then we present current knowledge gaps in the literature, discuss biological implications of age and sex on cerebrovascular monitoring in TBI and some future avenues for bedside research into the cerebrovascular physiome after TBI.
Collapse
Affiliation(s)
- C Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A S Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - L Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - F A Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Hoffman H, Abi-Aad K, Bunch KM, Beutler T, Otite FO, Chin LS. Outcomes associated with brain tissue oxygen monitoring in patients with severe traumatic brain injury undergoing intracranial pressure monitoring. J Neurosurg 2021; 135:1799-1806. [PMID: 34852324 DOI: 10.3171/2020.11.jns203739] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Brain tissue oxygen monitoring combined with intracranial pressure (ICP) monitoring in patients with severe traumatic brain injury (sTBI) may confer better outcomes than ICP monitoring alone. The authors sought to investigate this using a national database. METHODS The National Trauma Data Bank from 2013 to 2017 was queried to identify patients with sTBI who had an external ventricular drain or intraparenchymal ICP monitor placed. Patients were stratified according to the placement of an intraparenchymal brain tissue oxygen tension (PbtO2) monitor, and a 2:1 propensity score matching pair was used to compare outcomes in patients with and those without PbtO2 monitoring. Sensitivity analyses were performed using the entire cohort, and each model was adjusted for age, sex, Glasgow Coma Scale score, Injury Severity Score, presence of hypotension, insurance, race, and hospital teaching status. The primary outcome of interest was in-hospital mortality, and secondary outcomes included ICU length of stay (LOS) and overall LOS. RESULTS A total of 3421 patients with sTBI who underwent ICP monitoring were identified. Of these, 155 (4.5%) patients had a PbtO2 monitor placed. Among the propensity score-matched patients, mortality occurred in 35.4% of patients without oxygen monitoring and 23.4% of patients with oxygen monitoring (OR 0.53, 95% CI 0.33-0.85; p = 0.007). The unfavorable discharge rates were 56.3% and 47.4%, respectively, in patients with and those without oxygen monitoring (OR 1.41, 95% CI 0.87-2.30; p = 0.168). There was no difference in overall LOS, but patients with PbtO2 monitoring had a significantly longer ICU LOS and duration of mechanical ventilation. In the sensitivity analysis, PbtO2 monitoring was associated with decreased odds of mortality (OR 0.56, 95% CI 0.37-0.84) but higher odds of unfavorable discharge (OR 1.59, 95% CI 1.06-2.40). CONCLUSIONS When combined with ICP monitoring, PbtO2 monitoring was associated with lower inpatient mortality for patients with sTBI. This supports the findings of the recent Brain Oxygen Optimization in Severe Traumatic Brain Injury phase 2 (BOOST 2) trial and highlights the importance of the ongoing BOOST3 trial.
Collapse
Affiliation(s)
| | | | | | - Timothy Beutler
- Departments of1Neurosurgery
- 3Neurology, State University of New York Upstate Medical University, Syracuse, New York
| | - Fadar O Otite
- 3Neurology, State University of New York Upstate Medical University, Syracuse, New York
| | | |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Each year in the United States there are over 2.5 million visits to emergency departments for traumatic brain injury (TBI), 300,000 hospitalizations, and 50,000 deaths. TBI initiates a complex cascade of events which can lead to significant secondary brain damage. Great interest exists in directly measuring cerebral oxygen delivery and demand after TBI to prevent this secondary injury. Several invasive, catheter-based devices are now available which directly monitor the partial pressure of oxygen in brain tissue (PbtO2), yet significant equipoise exists regarding their clinical use in severe TBI. RECENT FINDINGS There are currently three ongoing multicenter randomized controlled trials studying the use of PbtO2 monitoring in severe TBI: BOOST-3, OXY-TC, and BONANZA. All three have similar inclusion/exclusion criteria, treatment protocols, and outcome measures. Despite mixed existing evidence, use of PbtO2 is already making its way into new TBI guidelines such as the recent Seattle International Brain Injury Consensus Conference. Analysis of high-fidelity data from multimodal monitoring, however, suggests that PbtO2 may only be one piece of the puzzle in severe TBI. SUMMARY While current evidence regarding the use of PbtO2 remains mixed, three ongoing clinical trials are expected to definitively answer the question of what role PbtO2 monitoring plays in severe TBI.
Collapse
Affiliation(s)
- Matthew R. Leach
- University of Pittsburgh, Department of Critical Care Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213
| | - Lori A. Shutter
- University of Pittsburgh, Department of Critical Care Medicine, 3550 Terrace Street, Scaife Hall, Suite 600, Pittsburgh, PA 15213
| |
Collapse
|
17
|
Svedung Wettervik TM, Lewén A, Enblad P. Fine Tuning of Traumatic Brain Injury Management in Neurointensive Care-Indicative Observations and Future Perspectives. Front Neurol 2021; 12:638132. [PMID: 33716941 PMCID: PMC7943830 DOI: 10.3389/fneur.2021.638132] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/20/2021] [Indexed: 01/01/2023] Open
Abstract
Neurointensive care (NIC) has contributed to great improvements in clinical outcomes for patients with severe traumatic brain injury (TBI) by preventing, detecting, and treating secondary insults and thereby reducing secondary brain injury. Traditional NIC management has mainly focused on generally applicable escalated treatment protocols to avoid high intracranial pressure (ICP) and to keep the cerebral perfusion pressure (CPP) at sufficiently high levels. However, TBI is a very heterogeneous disease regarding the type of injury, age, comorbidity, secondary injury mechanisms, etc. In recent years, the introduction of multimodality monitoring, including, e.g., pressure autoregulation, brain tissue oxygenation, and cerebral energy metabolism, in addition to ICP and CPP, has increased the understanding of the complex pathophysiology and the physiological effects of treatments in this condition. In this article, we will present some potential future approaches for more individualized patient management and fine-tuning of NIC, taking advantage of multimodal monitoring to further improve outcome after severe TBI.
Collapse
Affiliation(s)
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Rakhit S, Nordness MF, Lombardo SR, Cook M, Smith L, Patel MB. Management and Challenges of Severe Traumatic Brain Injury. Semin Respir Crit Care Med 2020; 42:127-144. [PMID: 32916746 DOI: 10.1055/s-0040-1716493] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in trauma patients, and can be classified into mild, moderate, and severe by the Glasgow coma scale (GCS). Prehospital, initial emergency department, and subsequent intensive care unit (ICU) management of severe TBI should focus on avoiding secondary brain injury from hypotension and hypoxia, with appropriate reversal of anticoagulation and surgical evacuation of mass lesions as indicated. Utilizing principles based on the Monro-Kellie doctrine and cerebral perfusion pressure (CPP), a surrogate for cerebral blood flow (CBF) should be maintained by optimizing mean arterial pressure (MAP), through fluids and vasopressors, and/or decreasing intracranial pressure (ICP), through bedside maneuvers, sedation, hyperosmolar therapy, cerebrospinal fluid (CSF) drainage, and, in refractory cases, barbiturate coma or decompressive craniectomy (DC). While controversial, direct ICP monitoring, in conjunction with clinical examination and imaging as indicated, should help guide severe TBI therapy, although new modalities, such as brain tissue oxygen (PbtO2) monitoring, show great promise in providing strategies to optimize CBF. Optimization of the acute care of severe TBI should include recognition and treatment of paroxysmal sympathetic hyperactivity (PSH), early seizure prophylaxis, venous thromboembolism (VTE) prophylaxis, and nutrition optimization. Despite this, severe TBI remains a devastating injury and palliative care principles should be applied early. To better affect the challenging long-term outcomes of severe TBI, more and continued high quality research is required.
Collapse
Affiliation(s)
- Shayan Rakhit
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Trauma, Emergency General Surgery, and Surgical Critical Care, Department of Surgery, Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mina F Nordness
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Trauma, Emergency General Surgery, and Surgical Critical Care, Department of Surgery, Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sarah R Lombardo
- Division of Trauma, Emergency General Surgery, and Surgical Critical Care, Department of Surgery, Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Madison Cook
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Meharry Medical College, Nashville, Tennessee
| | - Laney Smith
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Washington and Lee University, Lexington, Virginia
| | - Mayur B Patel
- Critical Illness, Brain Dysfunction, and Survivorship Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Division of Trauma, Emergency General Surgery, and Surgical Critical Care, Department of Surgery, Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Neurosurgery and Hearing and Speech Sciences, Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, Tennessee.,Surgical Service, Nashville VA Medical Center, Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, Tennessee.,Geriatric Research, Education, and Clinical Center Service, Nashville VA Medical Center, Tennessee Valley Healthcare System, US Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
19
|
Payen JF, Richard M, Francony G, Audibert G, Barbier EL, Bruder N, Dahyot-Fizelier C, Geeraerts T, Gergele L, Puybasset L, Vigue B, Skaare K, Bosson JL, Bouzat P. Comparison of strategies for monitoring and treating patients at the early phase of severe traumatic brain injury: the multicentre randomised controlled OXY-TC trial study protocol. BMJ Open 2020; 10:e040550. [PMID: 32820002 PMCID: PMC7443301 DOI: 10.1136/bmjopen-2020-040550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Intracranial hypertension is considered as an independent risk factor of mortality and neurological disabilities after severe traumatic brain injury (TBI). However, clinical studies have demonstrated that episodes of brain ischaemia/hypoxia are common despite normalisation of intracranial pressure (ICP). This study assesses the impact on neurological outcome of guiding therapeutic strategies based on the monitoring of both brain tissue oxygenation pressure (PbtO2) and ICP during the first 5 days following severe TBI. METHODS AND ANALYSIS Multicentre, open-labelled, randomised controlled superiority trial with two parallel groups in 300 patients with severe TBI. Intracerebral monitoring must be in place within the first 16 hours post-trauma. Patients are randomly assigned to the ICP group or to the ICP + PbtO2 group. The ICP group is managed according to the international guidelines to maintain ICP≤20 mm Hg. The ICP + PbtO2 group is managed to maintain PbtO2 ≥20 mm Hg in addition to the conventional optimisation of ICP. The primary outcome measure is the neurological status at 6 months as assessed using the extended Glasgow Outcome Scale. Secondary outcome measures include quality-of-life assessment, mortality rate, therapeutic intensity and incidence of critical events during the first 5 days. Analysis will be performed according to the intention-to-treat principle and full statistical analysis plan developed prior to database freeze. ETHICS AND DISSEMINATION This study has been approved by the Institutional Review Board of Sud-Est V (14-CHUG-48) and from the National Agency for Medicines and Health Products Safety (Agence Nationale de Sécurité du Médicament et des produits de santé) (141 435B-31). Results will be presented at scientific meetings and published in peer-reviewed publications.The study was registered with ClinTrials NCT02754063 on 28 April 2016 (pre-results).
Collapse
Affiliation(s)
- Jean-Francois Payen
- Department of Anaesthesia and Intensive Care, Univ. Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut des Neurosciences, INSERM, U1216, Grenoble, France
| | - Marion Richard
- Department of Anaesthesia and Intensive Care, Univ. Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut des Neurosciences, INSERM, U1216, Grenoble, France
| | - Gilles Francony
- Department of Anaesthesia and Intensive Care, Univ. Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut des Neurosciences, INSERM, U1216, Grenoble, France
| | - Gérard Audibert
- Department of Anaesthesia and Intensive Care, Lorraine University, Nancy University Hospital, Nancy, France
| | - Emmanuel L Barbier
- Department of Anaesthesia and Intensive Care, Univ. Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble Institut des Neurosciences, INSERM, U1216, Grenoble, France
| | - Nicolas Bruder
- Department of Anaesthesiology and Intensive Care, Aix-Marseille University, Assistance Publique - Hôpitaux de Marseille, Marseille, France
| | - Claire Dahyot-Fizelier
- Department of Anaesthesia and Intensive Care, Poitiers University Hospital and Poitiers Hospital, Pharmacology of antimicrobial agents, INSERM U1070, Poitiers, France
| | - Thomas Geeraerts
- Department of Anaesthesia and Intensive Care, Toulouse University Hospital and Toulouse 3-Paul Sabatier University, Toulouse, France
| | - Laurent Gergele
- Department of Intensive care, Ramsay Sante, Hopital Privé de la Loire, Saint-Etienne, France
| | - Louis Puybasset
- Department of Anaesthesia and Critical Care, Sorbonne University, GRC 29, AP-HP, DMU DREAM, Pitié-Salpêtrière Hospital, Paris, France
| | - Bernard Vigue
- Department of Anaesthesia and Intensive care, Centre Hospitalier Universitaire de Bicêtre, Assistance Publique - Hopitaux de Paris, Le Kremlin Bicêtre, France
| | - Kristina Skaare
- Department of Public Health, Univ. Grenoble Alpes, CHU Grenoble Alpes, Grenoble, France
| | - Jean Luc Bosson
- TIMC IMAG, Centre Hospitalier Universitaire Grenoble Alpes, Grenoble, France
| | - Pierre Bouzat
- Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| |
Collapse
|
20
|
Wettervik TS, Engquist H, Howells T, Lenell S, Rostami E, Hillered L, Enblad P, Lewén A. Arterial Oxygenation in Traumatic Brain Injury-Relation to Cerebral Energy Metabolism, Autoregulation, and Clinical Outcome. J Intensive Care Med 2020; 36:1075-1083. [PMID: 32715850 PMCID: PMC8343201 DOI: 10.1177/0885066620944097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Ischemic and hypoxic secondary brain insults are common and detrimental in traumatic brain injury (TBI). Treatment aims to maintain an adequate cerebral blood flow with sufficient arterial oxygen content. It has been suggested that arterial hyperoxia may be beneficial to the injured brain to compensate for cerebral ischemia, overcome diffusion barriers, and improve mitochondrial function. In this study, we investigated the relation between arterial oxygen levels and cerebral energy metabolism, pressure autoregulation, and clinical outcome. Methods: This retrospective study was based on 115 patients with severe TBI treated in the neurointensive care unit, Uppsala university hospital, Sweden, 2008 to 2018. Data from cerebral microdialysis (MD), arterial blood gases, hemodynamics, and intracranial pressure were analyzed the first 10 days post-injury. The first day post-injury was studied in particular. Results: Arterial oxygen levels were higher and with greater variability on the first day post-injury, whereas it was more stable the following 9 days. Normal-to-high mean pO2 was significantly associated with better pressure autoregulation/lower pressure reactivity index (P = .02) and lower cerebral MD-lactate (P = .04) on day 1. Patients with limited cerebral energy metabolic substrate supply (MD-pyruvate below 120 µM) and metabolic disturbances with MD-lactate-/pyruvate ratio (LPR) above 25 had significantly lower arterial oxygen levels than those with limited MD-pyruvate supply and normal MD-LPR (P = .001) this day. Arterial oxygenation was not associated with clinical outcome. Conclusions: Maintaining a pO2 above 12 kPa and higher may improve oxidative cerebral energy metabolism and pressure autoregulation, particularly in cases of limited energy substrate supply in the early phase of TBI. Evaluating the cerebral energy metabolic profile could yield a better patient selection for hyperoxic treatment in future trials.
Collapse
Affiliation(s)
| | - Henrik Engquist
- Department of Surgical Sciences/Anesthesia and Intensive Care, 8097Uppsala University, Uppsala, Sweden
| | - Timothy Howells
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Samuel Lenell
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Elham Rostami
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Per Enblad
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| | - Anders Lewén
- Department of Neuroscience, Section of Neurosurgery, 8097Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
van Dijck JTJM, Mostert CQB, Greeven APA, Kompanje EJO, Peul WC, de Ruiter GCW, Polinder S. Functional outcome, in-hospital healthcare consumption and in-hospital costs for hospitalised traumatic brain injury patients: a Dutch prospective multicentre study. Acta Neurochir (Wien) 2020; 162:1607-1618. [PMID: 32410121 PMCID: PMC7295836 DOI: 10.1007/s00701-020-04384-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The high occurrence and acute and chronic sequelae of traumatic brain injury (TBI) cause major healthcare and socioeconomic challenges. This study aimed to describe outcome, in-hospital healthcare consumption and in-hospital costs of patients with TBI. METHODS We used data from hospitalised TBI patients that were included in the prospective observational CENTER-TBI study in three Dutch Level I Trauma Centres from 2015 to 2017. Clinical data was completed with data on in-hospital healthcare consumption and costs. TBI severity was classified using the Glasgow Coma Score (GCS). Patient outcome was measured by in-hospital mortality and Glasgow Outcome Score-Extended (GOSE) at 6 months. In-hospital costs were calculated following the Dutch guidelines for cost calculation. RESULTS A total of 486 TBI patients were included. Mean age was 56.1 ± 22.4 years and mean GCS was 12.7 ± 3.8. Six-month mortality (4.2%-66.7%), unfavourable outcome (GOSE ≤ 4) (14.6%-80.4%) and full recovery (GOSE = 8) (32.5%-5.9%) rates varied from patients with mild TBI (GCS13-15) to very severe TBI (GCS3-5). Length of stay (8 ± 13 days) and in-hospital costs (€11,920) were substantial and increased with higher TBI severity, presence of intracranial abnormalities, extracranial injury and surgical intervention. Costs were primarily driven by admission (66%) and surgery (13%). CONCLUSION In-hospital mortality and unfavourable outcome rates were rather high, but many patients also achieved full recovery. Hospitalised TBI patients show substantial in-hospital healthcare consumption and costs, even in patients with mild TBI. Because these costs are likely to be an underestimation of the actual total costs, more research is required to investigate the actual costs-effectiveness of TBI care.
Collapse
Affiliation(s)
- Jeroen T J M van Dijck
- Department of Neurosurgery, University Neurosurgical Center Holland, LUMC, HMC & Haga Teaching Hospital, Leiden, The Hague, The Netherlands.
- LUMC, Albinusdreef 2, J-11-R-83, 2333 ZA, Leiden, The Netherlands.
| | - Cassidy Q B Mostert
- Department of Neurosurgery, University Neurosurgical Center Holland, LUMC, HMC & Haga Teaching Hospital, Leiden, The Hague, The Netherlands
| | | | - Erwin J O Kompanje
- Department of Intensive Care, Erasmus MC-University Medical Centre Rotterdam, Rotterdam, The Netherlands
- Department of Medical Ethics and Philosophy of Medicine, Erasmus MC-University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wilco C Peul
- Department of Neurosurgery, University Neurosurgical Center Holland, LUMC, HMC & Haga Teaching Hospital, Leiden, The Hague, The Netherlands
| | - Godard C W de Ruiter
- Department of Neurosurgery, University Neurosurgical Center Holland, LUMC, HMC & Haga Teaching Hospital, Leiden, The Hague, The Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus MC-University Medical Centre Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
22
|
Consenso internacional sobre la monitorización de la presión tisular cerebral de oxígeno en pacientes neurocríticos. Neurocirugia (Astur) 2020; 31:24-36. [DOI: 10.1016/j.neucir.2019.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/11/2019] [Indexed: 01/20/2023]
|
23
|
Mader MM, Leidorf A, Hecker A, Heimann A, Mayr PSM, Kempski O, Alessandri B, Wöbker G. Evaluation of a New Multiparameter Brain Probe for Simultaneous Measurement of Brain Tissue Oxygenation, Cerebral Blood Flow, Intracranial Pressure, and Brain Temperature in a Porcine Model. Neurocrit Care 2019; 29:291-301. [PMID: 29949006 PMCID: PMC6208836 DOI: 10.1007/s12028-018-0541-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND A novel multiparameter brain sensor (MPBS) allows the simultaneous measurement of brain tissue oxygenation (ptiO2), cerebral blood flow (CBF), intracranial pressure (ICP), and brain temperature with a single catheter. This laboratory investigation evaluates the MPBS in an animal model in relation to established reference probes. METHODS The study group consisted of 17 juvenile male pigs. Four MPBS and four reference probes were implanted per pig and compared simultaneously. The measured parameters were challenged by standardized provocations such as hyperoxia, dobutamine, and norepinephrine application, hypercapnia and hypoxia in combination with and without a controlled cortical impact (CCI) injury. Mean values over 2 min were collected for predefined time points and were analyzed using Bland-Altman plots. RESULTS The protocol was successfully conducted in 15 pigs of which seven received CCI. ICP and ptiO2 were significantly influenced by the provocations. Subtraction of MPBS from reference values revealed a mean difference (limits of agreement) of 3.7 (- 20.5 to 27.9) mm Hg, - 2.9 (- 7.9 to 2.1) mm Hg, and 5.1 (- 134.7 to 145.0) % for ptiO2, ICP, and relative CBF, respectively. CONCLUSIONS The MPBS is a promising measurement tool for multiparameter neuromonitoring. The conducted study demonstrates the in vivo functionality of the probe. Comparison with standard probes revealed a deviation which is mostly analogous to other multiparameter devices. However, further evaluation of the device is necessary before it can reliably be used for clinical decision making.
Collapse
Affiliation(s)
- Marius M Mader
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany.,Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Leidorf
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andreas Hecker
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Axel Heimann
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Petra S M Mayr
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Oliver Kempski
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Beat Alessandri
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Gabriele Wöbker
- HELIOS Universitätsklinikum Wuppertal, University Witten/Herdecke, 42283 , Wuppertal, Germany
| |
Collapse
|
24
|
Correlation between Glasgow coma scale and Jugular venous oxygen saturation in severe traumatic brain injury. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2013.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
25
|
van Dijck JTJM, Dijkman MD, Ophuis RH, de Ruiter GCW, Peul WC, Polinder S. In-hospital costs after severe traumatic brain injury: A systematic review and quality assessment. PLoS One 2019; 14:e0216743. [PMID: 31071199 PMCID: PMC6508680 DOI: 10.1371/journal.pone.0216743] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/28/2019] [Indexed: 12/19/2022] Open
Abstract
Background The in-hospital treatment of patients with traumatic brain injury (TBI) is considered to be expensive, especially in patients with severe TBI (s-TBI). To improve future treatment decision-making, resource allocation and research initiatives, this study reviewed the in-hospital costs for patients with s-TBI and the quality of study methodology. Methods A systematic search was performed using the following databases: PubMed, MEDLINE, Embase, Web of Science, Cochrane library, CENTRAL, Emcare, PsychINFO, Academic Search Premier and Google Scholar. Articles published before August 2018 reporting in-hospital acute care costs for patients with s-TBI were included. Quality was assessed by using a 19-item checklist based on the CHEERS statement. Results Twenty-five out of 2372 articles were included. In-hospital costs per patient were generally high and ranged from $2,130 to $401,808. Variation between study results was primarily caused by methodological heterogeneity and variable patient and treatment characteristics. The quality assessment showed variable study quality with a mean total score of 71% (range 48% - 96%). Especially items concerning cost data scored poorly (49%) because data source, cost calculation methodology and outcome reporting were regularly unmentioned or inadequately reported. Conclusions Healthcare consumption and in-hospital costs for patients with s-TBI were high and varied widely between studies. Costs were primarily driven by the length of stay and surgical intervention and increased with higher TBI severity. However, drawing firm conclusions on the actual in-hospital costs of patients sustaining s-TBI was complicated due to variation and inadequate quality of the included studies. Future economic evaluations should focus on the long-term cost-effectiveness of treatment strategies and use guideline recommendations and common data elements to improve study quality.
Collapse
Affiliation(s)
- Jeroen T. J. M. van Dijck
- Department of Neurosurgery, Neurosurgical Center Holland, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurosurgery, Neurosurgical Center Holland, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurosurgery, Neurosurgical Center Holland, Haga Teaching Hospital, The Hague, The Netherlands
- * E-mail:
| | - Mark D. Dijkman
- Department of Neurosurgery, Neurosurgical Center Holland, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurosurgery, Neurosurgical Center Holland, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurosurgery, Neurosurgical Center Holland, Haga Teaching Hospital, The Hague, The Netherlands
| | - Robbin H. Ophuis
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Godard C. W. de Ruiter
- Department of Neurosurgery, Neurosurgical Center Holland, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurosurgery, Neurosurgical Center Holland, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurosurgery, Neurosurgical Center Holland, Haga Teaching Hospital, The Hague, The Netherlands
| | - Wilco C. Peul
- Department of Neurosurgery, Neurosurgical Center Holland, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurosurgery, Neurosurgical Center Holland, Haaglanden Medical Center, The Hague, The Netherlands
- Department of Neurosurgery, Neurosurgical Center Holland, Haga Teaching Hospital, The Hague, The Netherlands
| | - Suzanne Polinder
- Department of Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
26
|
Stocker RA. Intensive Care in Traumatic Brain Injury Including Multi-Modal Monitoring and Neuroprotection. Med Sci (Basel) 2019; 7:medsci7030037. [PMID: 30813644 PMCID: PMC6473302 DOI: 10.3390/medsci7030037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Moderate to severe traumatic brain injuries (TBI) require treatment in an intensive care unit (ICU) in close collaboration of a multidisciplinary team consisting of different medical specialists such as intensivists, neurosurgeons, neurologists, as well as ICU nurses, physiotherapists, and ergo-/logotherapists. Major goals include all measurements to prevent secondary brain injury due to secondary brain insults and to optimize frame conditions for recovery and early rehabilitation. The distinction between moderate and severe is frequently done based on the Glascow Coma Scale and therefore often is just a snapshot at the early time of assessment. Due to its pathophysiological pathways, an initially as moderate classified TBI may need the same sophisticated surveillance, monitoring, and treatment as a severe form or might even progress to a severe and difficult to treat affection. As traumatic brain injury is rather a syndrome comprising a range of different affections to the brain and as, e.g., age-related comorbidities and treatments additionally may have a great impact, individual and tailored treatment approaches based on monitoring and findings in imaging and respecting pre-injury comorbidities and their therapies are warranted.
Collapse
Affiliation(s)
- Reto A Stocker
- Institute for Anesthesiology and Intensive Care Medicine, Klinik Hirslanden, CH-8032 Zurich, Switzerland.
| |
Collapse
|
27
|
Lazaridis C, Rusin CG, Robertson CS. Secondary brain injury: Predicting and preventing insults. Neuropharmacology 2018; 145:145-152. [PMID: 29885419 DOI: 10.1016/j.neuropharm.2018.06.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/07/2018] [Accepted: 06/04/2018] [Indexed: 11/17/2022]
Abstract
Mortality or severe disability affects the majority of patients after severe traumatic brain injury (TBI). Adherence to the brain trauma foundation guidelines has overall improved outcomes; however, traditional as well as novel interventions towards intracranial hypertension and secondary brain injury have come under scrutiny after series of negative randomized controlled trials. In fact, it would not be unfair to say there has been no single major breakthrough in the management of severe TBI in the last two decades. One plausible hypothesis for the aforementioned failures is that by the time treatment is initiated for neuroprotection, or physiologic optimization, irreversible brain injury has already set in. We, and others, have recently developed predictive models based on machine learning from continuous time series of intracranial pressure and partial brain tissue oxygenation. These models provide accurate predictions of physiologic crises events in a timely fashion, offering the opportunity for an earlier application of targeted interventions. In this article, we review the rationale for prediction, discuss available predictive models with examples, and offer suggestions for their future prospective testing in conjunction with preventive clinical algorithms. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Christos Lazaridis
- Division of Neurocritical Care, Department of Neurology, Baylor College of Medicine, Houston, TX, United States; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States.
| | - Craig G Rusin
- Department of Pediatric Cardiology, Baylor College of Medicine, Houston, TX, United States
| | - Claudia S Robertson
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
28
|
Harutyunyan G, Harutyunyan G, Mkhoyan G. New Viewpoint in Exaggerated Increase of PtiO 2 With Normobaric Hyperoxygenation and Reasons to Limit Oxygen Use in Neurotrauma Patients. Front Med (Lausanne) 2018; 5:119. [PMID: 29872657 PMCID: PMC5972302 DOI: 10.3389/fmed.2018.00119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 04/10/2018] [Indexed: 01/06/2023] Open
Affiliation(s)
| | | | - Gagik Mkhoyan
- Anesthesiology and Intensive Care, Erebouni Medical Center, Yerevan, Armenia
| |
Collapse
|
29
|
Abstract
Traumatic brain injury remains a serious public health problem, causing death and disability for millions. In order to maximize outcomes in the face of a complex injury to a complex organ, a variety of advanced neuromonitoring techniques may be used to guide surgical and medical decision-making. Because of the heterogeneity of injury types and the plethora of treatment confounders present in this patient population, the scientific study of specific interventions is challenging. This challenge highlights the need for a firm understanding of the anatomy and pathophysiology of brain injuries when making clinical decisions in the intensive care unit.
Collapse
|
30
|
Mateo J, Payen D, Ghout I, Vallée F, Lescot T, Welschbillig S, Tazarourte K, Azouvi P, Weiss JJ, Aegerter P, Vigué B. Impact of extended monitoring-guided intensive care on outcome after severe traumatic brain injury: A prospective multicentre cohort study (PariS-TBI study). Brain Inj 2017; 31:1642-1650. [PMID: 28925746 DOI: 10.1080/02699052.2017.1370554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE We evaluated whether an integrated monitoring with systemic and specific monitoring affect mortality and disability in adults with severe traumatic brain injury (sTBI). METHODS Adults with severeTBI (Glasgow Coma Scale [GCS] ≤ 8) admitted alive in intensive care units (ICUs) were prospectively included. Primary endpoints were in-hospital 30-day mortality and extended Glasgow outcome score (GOSE) at 3 years. Association with the intensity of monitoring and outcome was studied by comparing a high level of monitoring (HLM) (systemic and ≥3 specific monitoring) and low level of monitoring (LLM) (systemic and 0-2 specific monitoring) and using inverse probability weighting procedure. RESULTS 476 patients were included and IPW was used to improve the balance between the two groups of treatments (HLM/LMM). Overall hospital mortality (at 30 days) was 43%, being significantly lower in HLM than LLM group (27% vs. 53%: RR, 1.63: 95% CI: 1.23-2.15). The 14-day hospital mortality was also lower in the HLM group than expected, based upon the CRASH prediction model (35%). At 3 years, disability was not significantly different between the monitoring groups. CONCLUSIONS After adjustment, HLM group improved short-term mortality but did not show any improvement in the 3-year outcome compared with LLM.
Collapse
Affiliation(s)
- Joaquim Mateo
- a Department of Anesthesiology and Critical Care , Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, University Paris 7 Diderot , Paris , France
| | - Didier Payen
- a Department of Anesthesiology and Critical Care , Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, University Paris 7 Diderot , Paris , France
| | - Idir Ghout
- b Unité de Recherche Clinique Paris-Ouest , Hôpital Ambroise Paré, AP-HP , Boulogne , France
| | - Fabrice Vallée
- a Department of Anesthesiology and Critical Care , Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, University Paris 7 Diderot , Paris , France
| | - Thomas Lescot
- c Department of Anesthesiology and Critical Care , Pitié-Salpêtrière University Hospital, APHP, University Paris 6 , Paris , France
| | - Stephane Welschbillig
- a Department of Anesthesiology and Critical Care , Lariboisière University Hospital, Assistance Publique-Hôpitaux de Paris, University Paris 7 Diderot , Paris , France
| | - Karim Tazarourte
- d SAMU 77, Mobile Care Unit , Marc Jacquet Hospital , Melun , France
| | - Philippe Azouvi
- e Department of Physical Medicine and Rehabilitation , Raymond Poincaré Hospital, Assistance Publique-Hôpitaux de Paris , Garches , France
| | - Jean-Jacques Weiss
- f Department of Public Health , Centre Ressources Francilien du Traumatisme Crânien , Paris , France
| | - Philippe Aegerter
- g UMR-S 1168, INSERM , Université Versailles St-Quentin , Paris , France
| | - Bernard Vigué
- h Department of Anesthesiology and Intensive Care , Bicêtre University Hospital, Assistance Publique-Hôpitaux de Paris, University Paris Sud , Le Kremlin Bicêtre , France
| |
Collapse
|
31
|
Nordström CH, Koskinen LO, Olivecrona M. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care. Front Neurol 2017; 8:274. [PMID: 28674514 PMCID: PMC5474476 DOI: 10.3389/fneur.2017.00274] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022] Open
Abstract
Neurocritical care (NCC) is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP) and cerebral blood flow (CBF) and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood-brain barrier (BBB) and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2) and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP) ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia) or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance, the information from all monitoring techniques should be presented bedside online. Accordingly, in the future, the chemical variables obtained from microdialysis will probably be analyzed by biochemical sensors.
Collapse
Affiliation(s)
| | - Lars-Owe Koskinen
- Department of Clinical Neuroscience, Division of Neurosurgery, Umeå University, Umeå, Sweden
| | - Magnus Olivecrona
- Faculty of Health and Medicine, Department of Anesthesia and Intensive Care, Section for Neurosurgery Örebro University Hospital, Örebro University, Örebro, Sweden
- Department for Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
32
|
Brain Multimodality Monitoring: A New Tool in Neurocritical Care of Comatose Patients. Crit Care Res Pract 2017; 2017:6097265. [PMID: 28555164 PMCID: PMC5438832 DOI: 10.1155/2017/6097265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/11/2017] [Accepted: 03/29/2017] [Indexed: 12/04/2022] Open
Abstract
Neurocritical care patients are at risk of developing secondary brain injury from inflammation, ischemia, and edema that follows the primary insult. Recognizing clinical deterioration due to secondary injury is frequently challenging in comatose patients. Multimodality monitoring (MMM) encompasses various tools to monitor cerebral metabolism, perfusion, and oxygenation aimed at detecting these changes to help modify therapies before irreversible injury sets in. These tools include intracranial pressure (ICP) monitors, transcranial Doppler (TCD), Hemedex™ (thermal diffusion probe used to measure regional cerebral blood flow), microdialysis catheter (used to measure cerebral metabolism), Licox™ (probe used to measure regional brain tissue oxygen tension), and continuous electroencephalography. Although further research is needed to demonstrate their impact on improving clinical outcomes, their contribution to illuminate the black box of the brain in comatose patients is indisputable. In this review, we further elaborate on commonly used MMM parameters, tools used to measure them, and the indications for monitoring per current consensus guidelines.
Collapse
|
33
|
Mortality and Outcome Comparison Between Brain Tissue Oxygen Combined with Intracranial Pressure/Cerebral Perfusion Pressure–Guided Therapy and Intracranial Pressure/Cerebral Perfusion Pressure–Guided Therapy in Traumatic Brain Injury: A Meta-Analysis. World Neurosurg 2017; 100:118-127. [DOI: 10.1016/j.wneu.2016.12.097] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 11/21/2022]
|
34
|
Abstract
Traumatic brain injury (TBI) represents a wide spectrum of disease and disease severity. Because the primary brain injury occurs before the patient enters the health care system, medical interventions seek principally to prevent secondary injury. Anesthesia teams that provide care for patients with TBI both in and out of the operating room should be aware of the specific therapies and needs of this unique and complex patient population.
Collapse
|
35
|
Abstract
A mismatch between cerebral oxygen supply and demand can lead to cerebral hypoxia/ischemia and deleterious outcomes. Cerebral oxygenation monitoring is an important aspect of multimodality neuromonitoring. It is increasingly deployed whenever intracranial pressure monitoring is indicated. Although there is a large body of evidence demonstrating an association between cerebral hypoxia/ischemia and poor outcomes, it remains to be determined whether restoring cerebral oxygenation leads to improved outcomes. Randomized prospective studies are required to address uncertainties about cerebral oxygenation monitoring and management. This article describes the different methods of monitoring cerebral oxygenation, their indications, evidence base, limitations, and future perspectives.
Collapse
Affiliation(s)
- Matthew A Kirkman
- Neurocritical Care Unit, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, UK
| | - Martin Smith
- Neurocritical Care Unit, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
36
|
Kessel B, Alfici R, Korin A, Olsha O, Dudkiewicz M, Oren M. Real time cerebral perfusion monitoring in acute trauma patients: a preliminary study. ANZ J Surg 2016; 86:598-601. [PMID: 26924545 DOI: 10.1111/ans.13461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Management of traumatic brain injury is focused on preventing secondary damage. Early recognition of brain ischaemia may improve the final outcome of the trauma victim. The primary aim of this study was to examine the correlation between peripheral oxygen pulse oximetry and brain oxygen saturation measured by a near infrared oximetry device. A second aim was to evaluate the influence of different factors such as fluid and blood administration on brain tissue oxygenation. METHODS This was a prospective pilot study. Mechanically ventilated trauma patients admitted to the trauma unit had cerebral-somatic oxygen saturation monitoring. Oximeter readings (rSO2) were prospectively collected and compared with concurrent values for peripheral pulse oximetry (SO2). Data were recorded every 15 min and during interventions such as administration of a fluid bolus and blood administration. All interventions were based on accepted clinical parameters. RESULTS Thirty-three patients were enrolled. A total of 210 simultaneous measurements of rSO2 and pulse oximetry values were performed. There was correlation between these two parameters in only one third of patients. Twenty-seven events of possible brain ischemia, defined as rSO2 values less than 50 or a decrease of more than 20% from the baseline, were observed. In 68 (77.2%) of these measurements there was no decrease of peripheral SO2. Significant increases in rSO2 were observed only during administration of fluid boluses. CONCLUSIONS A cerebral oxygenation monitoring device may recognize the possible events of brain ischaemia which are not reflected by pulse oximetry. Fluid administration was the only factor found to improve brain saturation.
Collapse
Affiliation(s)
- Boris Kessel
- Trauma Unit, Hillel Yaffe Medical Center, Hadera, Israel
| | - Ricardo Alfici
- Surgical Division, Hillel Yaffe Medical Center, Hadera, Israel
| | | | - Oded Olsha
- Surgery Department, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Mickey Dudkiewicz
- Hospital Administration, Hillel Yaffe Medical Center, Hadera, Israel
| | - Meir Oren
- Hospital Administration, Hillel Yaffe Medical Center, Hadera, Israel
| |
Collapse
|
37
|
Hawryluk GWJ, Phan N, Ferguson AR, Morabito D, Derugin N, Stewart CL, Knudson MM, Manley G, Rosenthal G. Brain tissue oxygen tension and its response to physiological manipulations: influence of distance from injury site in a swine model of traumatic brain injury. J Neurosurg 2016; 125:1217-1228. [PMID: 26848909 DOI: 10.3171/2015.7.jns15809] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The optimal site for placement of tissue oxygen probes following traumatic brain injury (TBI) remains unresolved. The authors used a previously described swine model of focal TBI and studied brain tissue oxygen tension (PbtO2) at the sites of contusion, proximal and distal to contusion, and in the contralateral hemisphere to determine the effect of probe location on PbtO2 and to assess the effects of physiological interventions on PbtO2 at these different sites. METHODS A controlled cortical impact device was used to generate a focal lesion in the right frontal lobe in 12 anesthetized swine. PbtO2 was measured using Licox brain tissue oxygen probes placed at the site of contusion, in pericontusional tissue (proximal probe), in the right parietal region (distal probe), and in the contralateral hemisphere. PbtO2 was measured during normoxia, hyperoxia, hypoventilation, and hyperventilation. RESULTS Physiological interventions led to expected changes, including a large increase in partial pressure of oxygen in arterial blood with hyperoxia, increased intracranial pressure (ICP) with hypoventilation, and decreased ICP with hyperventilation. Importantly, PbtO2 decreased substantially with proximity to the focal injury (contusion and proximal probes), and this difference was maintained at different levels of fraction of inspired oxygen and partial pressure of carbon dioxide in arterial blood. In the distal and contralateral probes, hypoventilation and hyperventilation were associated with expected increased and decreased PbtO2 values, respectively. However, in the contusion and proximal probes, these effects were diminished, consistent with loss of cerebrovascular CO2 reactivity at and near the injury site. Similarly, hyperoxia led to the expected rise in PbtO2 only in the distal and contralateral probes, with little or no effect in the proximal and contusion probes, respectively. CONCLUSIONS PbtO2 measurements are strongly influenced by the distance from the site of focal injury. Physiological alterations, including hyperoxia, hyperventilation, and hypoventilation substantially affect PbtO2 values distal to the site of injury but have little effect in and around the site of contusion. Clinical interpretations of brain tissue oxygen measurements should take into account the spatial relation of probe position to the site of injury. The decision of where to place a brain tissue oxygen probe in TBI patients should also take these factors into consideration.
Collapse
Affiliation(s)
- Gregory W J Hawryluk
- Department of Neurological Surgery, University of Utah, Salt Lake City, Utah.,Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Nicolas Phan
- Brain and Spinal Injury Center, and.,Division of Neurological Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Adam R Ferguson
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Diane Morabito
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Nikita Derugin
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Campbell L Stewart
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - M Margaret Knudson
- Department of General Surgery, University of California, San Francisco, California
| | - Geoffrey Manley
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and
| | - Guy Rosenthal
- Department of Neurological Surgery.,Brain and Spinal Injury Center, and.,Department of Neurosurgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
38
|
Quintard H, Patet C, Suys T, Marques-Vidal P, Oddo M. Normobaric hyperoxia is associated with increased cerebral excitotoxicity after severe traumatic brain injury. Neurocrit Care 2016; 22:243-50. [PMID: 25168744 DOI: 10.1007/s12028-014-0062-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Normobaric oxygen therapy is frequently applied in neurocritical care, however, whether supplemental FiO2 has beneficial cerebral effects is still controversial. We examined in patients with severe traumatic brain injury (TBI) the effect of incremental FiO2 on cerebral excitotoxicity, quantified by cerebral microdialysis (CMD) glutamate. METHODS This was a retrospective analysis of a database of severe TBI patients monitored with CMD and brain tissue oxygen (PbtO2). The relationship of FiO2--categorized into four separate ranges (<40, 41-60, 61-80, and >80 %)--with CMD glutamate was examined using ANOVA with Tukey's post hoc test. RESULTS A total of 1,130 CMD samples from 36 patients--monitored for a median of 4 days--were examined. After adjusting for brain (PbtO2, intracranial pressure, cerebral perfusion pressure, lactate/pyruvate ratio, Marshall CT score) and systemic (PaCO2, PaO2, hemoglobin, APACHE score) covariates, high FiO2 was associated with a progressive increase in CMD glutamate [8.8 (95 % confidence interval 7.4-10.2) µmol/L at FiO2 < 40 % vs. 12.8 (10.9-14.7) µmol/L at 41-60 % FiO2, 19.3 (15.6-23) µmol/L at 61-80 % FiO2, and 22.6 (16.7-28.5) µmol/L at FiO2 > 80 %; multivariate-adjusted p < 0.05]. The threshold of FiO2-related increase in CMD glutamate was lower for samples with normal versus low PbtO2 < 20 mmHg (FiO2 > 40 % vs. FiO2 > 60 %). Hyperoxia (PaO2 > 150 mmHg) was also associated with increased CMD glutamate (adjusted p < 0.001). CONCLUSIONS Incremental normobaric FiO2 levels were associated with increased cerebral excitotoxicity in patients with severe TBI, independent from PbtO2 and other important cerebral and systemic determinants. These data suggest that supra-normal oxygen may aggravate secondary brain damage after severe TBI.
Collapse
Affiliation(s)
- Hervé Quintard
- Department of Intensive Care Medicine, Neuroscience Critical Care Research Group Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Hospital, Rue du Bugnon 46, BH 08.623, 1011, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
39
|
Godoy D, Murillo-Cabezas F, Egea-Guerrero J, Carmona-Suazo J, Muñoz-Sánchez M. Diagramas para interpretar y corregir eventos fisiopatológicos desencadenados tras el traumatismo craneoencefálico grave. Med Intensiva 2015; 39:445-7. [DOI: 10.1016/j.medin.2014.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/14/2014] [Indexed: 10/24/2022]
|
40
|
A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients. BIOMED RESEARCH INTERNATIONAL 2015; 2015:529580. [PMID: 26413530 PMCID: PMC4564619 DOI: 10.1155/2015/529580] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/18/2022]
Abstract
The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP-) guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI) patients. From 2009 to 2010, TBI patients with a Glasgow coma scale <12 were recruited from 6 collaborative hospitals in northern Taiwan, excluding patients with severe systemic injuries, fixed and dilated pupils, and other major diseases. In total, 23 patients were treated with PbtO2-guided management (PbtO2 > 20 mmHg), and 27 patients were treated with ICP-guided therapy (ICP < 20 mmHg and CPP > 60 mmHg) in the neurosurgical intensive care unit (NICU); demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.
Collapse
|
41
|
Sheriff FG, Hinson HE. Pathophysiology and clinical management of moderate and severe traumatic brain injury in the ICU. Semin Neurol 2015; 35:42-9. [PMID: 25714866 DOI: 10.1055/s-0035-1544238] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Moderate and severe traumatic brain injury (TBI) is the leading cause of morbidity and mortality among young individuals in high-income countries. Its pathophysiology is divided into two major phases: the initial neuronal injury (or primary injury) followed by secondary insults (secondary injury). Multimodality monitoring now offers neurointensivists the ability to monitor multiple physiologic parameters that act as surrogates of brain ischemia and hypoxia, the major driving forces behind secondary brain injury. The heterogeneity of the pathophysiology of TBI makes it necessary to take into consideration these interacting physiologic factors when recommending for or against any therapies; it may also account for the failure of all the neuroprotective therapies studied so far. In this review, the authors focus on neuroclinicians and neurointensivists, and discuss the developments in therapeutic strategies aimed at optimizing intracranial pressure and cerebral perfusion pressure, and minimizing cerebral hypoxia. The management of moderate to severe TBI in the intensive care unit is moving away from a pure "threshold-based" treatment approach toward consideration of patient-specific characteristics, including the state of cerebral autoregulation. The authors also include a concise discussion on the management of medical and neurologic complications peculiar to TBI as well as an overview of prognostication.
Collapse
Affiliation(s)
- Faheem G Sheriff
- Department of Neurology, Oregon Health Science University, Portland, Oregon
| | - Holly E Hinson
- Department of Neurology, Oregon Health Science University, Portland, Oregon
| |
Collapse
|
42
|
Yuan Q, Wu X, Sun Y, Yu J, Li Z, Du Z, Mao Y, Zhou L, Hu J. Impact of intracranial pressure monitoring on mortality in patients with traumatic brain injury: a systematic review and meta-analysis. J Neurosurg 2014; 122:574-87. [PMID: 25479125 DOI: 10.3171/2014.10.jns1460] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECT Some studies have demonstrated that intracranial pressure (ICP) monitoring reduces the mortality of traumatic brain injury (TBI). But other studies have shown that ICP monitoring is associated with increased mortality. Thus, the authors performed a meta-analysis of studies comparing ICP monitoring with no ICP monitoring in patients who have suffered a TBI to determine if differences exist between these strategies with respect to mortality, intensive care unit (ICU) length of stay (LOS), and hospital LOS. METHODS The authors systematically searched MEDLINE, EMBASE, and the Cochrane Central Register of Controlled Trials (Central) from their inception to October 2013 for relevant studies. Randomized clinical trials and prospective cohort, retrospective observational cohort, and case-control studies that compared ICP monitoring with no ICP monitoring for the treatment of TBI were included in the analysis. Studies included had to report at least one point of mortality in an ICP monitoring group and a no-ICP monitoring group. Data were extracted for study characteristics, patient demographics, baseline characteristics, treatment details, and study outcomes. RESULTS A total of 14 studies including 24,792 patients were analyzed. The meta-analysis provides no evidence that ICP monitoring decreased the risk of death (pooled OR 0.93 [95% CI 0.77-1.11], p = 0.40). However, 7 of the studies including 12,944 patients were published after 2012 (January 2012 to October 2013), and they revealed that ICP monitoring was significantly associated with a greater decrease in mortality than no ICP monitoring (pooled OR 0.56 [95% CI 0.41-0.78], p = 0.0006). In addition, 7 of the studies conducted in North America showed no evidence that ICP monitoring decreased the risk of death, similar to the studies conducted in other regions. ICU LOSs were significantly longer for the group subjected to ICP monitoring (mean difference [MD] 0.29 [95% CI 0.21-0.37]; p < 0.00001). In the pooled data, the hospital LOS with ICP monitoring was also significantly longer than with no ICP monitoring (MD 0.21 [95% CI 0.04-0.37]; p = 0.01). CONCLUSIONS In this systematic review and meta-analysis of ICP monitoring studies, the authors found that the current clinical evidence does not indicate that ICP monitoring overall is significantly superior to no ICP monitoring in terms of the mortality of TBI patients. However, studies published after 2012 indicated a lower mortality in patients who underwent ICP monitoring.
Collapse
Affiliation(s)
- Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oddo M, Bösel J. Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care 2014; 21 Suppl 2:S103-20. [PMID: 25208670 DOI: 10.1007/s12028-014-0024-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Maintenance of adequate oxygenation is a mainstay of intensive care, however, recommendations on the safety, accuracy, and the potential clinical utility of invasive and non-invasive tools to monitor brain and systemic oxygenation in neurocritical care are lacking. A literature search was conducted for English language articles describing bedside brain and systemic oxygen monitoring in neurocritical care patients from 1980 to August 2013. Imaging techniques e.g., PET are not considered. A total of 281 studies were included, the majority described patients with traumatic brain injury (TBI). All tools for oxygen monitoring are safe. Parenchymal brain oxygen (PbtO2) monitoring is accurate to detect brain hypoxia, and it is recommended to titrate individual targets of cerebral perfusion pressure (CPP), ventilator parameters (PaCO2, PaO2), and transfusion, and to manage intracranial hypertension, in combination with ICP monitoring. SjvO2 is less accurate than PbtO2. Given limited data, NIRS is not recommended at present for adult patients who require neurocritical care. Systemic monitoring of oxygen (PaO2, SaO2, SpO2) and CO2 (PaCO2, end-tidal CO2) is recommended in patients who require neurocritical care.
Collapse
Affiliation(s)
- Mauro Oddo
- Department of Intensive Care Medicine, Faculty of Biology and Medicine, CHUV-Lausanne University Hospital, 1011, Lausanne, Switzerland,
| | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Increased intracranial pressure (ICP) is associated with worse outcome after traumatic brain injury (TBI), but whether its management improves the outcome is unclear. In this review, we will examine the implications of the Benchmark Evidence from South American Trials: Treatment of Intracranial Pressure (BEST TRIP) trial, evidence for an influence of ICP care on outcome, and a need for greater understanding of the pathophysiology than just ICP through multimodal monitoring (MMM) to enhance the outcome. RECENT FINDINGS The primary impact of the BEST TRIP trial, a randomized clinical trial that examined two TBI management strategies, one that used an ICP monitor, is in research and should not alter clinical practice. Analyses of large databases suggest TBI care based on the Brain Trauma Foundation guidelines and management of intracranial hypertension can improve patient outcome. However, accumulating evidence demonstrates there are several mechanisms of secondary brain injury (SBI), for example, microvascular dysfunction or alterations in glucose utilization that cannot be detected using an ICP monitor. In these patients, growing clinical evidence suggests that MMM can help manage SBI and improve TBI outcome. SUMMARY ICP-based monitoring and treatment alone may not be enough to enhance TBI outcome, but ICP and cerebral perfusion pressure therapy remain important in TBI care. Although high-quality evidence for MMM is limited, it should be more widely adapted to better understand the complex pathophysiology after TBI, better target care, and identify new therapeutic opportunities.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW The care of critically ill brain-injured patients is complex and requires careful balancing of cerebral and systemic treatment priorities. A growing number of studies have reported improved outcomes when patients are admitted to dedicated neurocritical care units (NCCUs). The reasons for this observation have not been definitively clarified. RECENT FINDINGS When recently published articles are combined with older literature, there have been more than 40 000 patients assessed in observational studies that compare neurological and general ICUs. Although results are heterogeneous, admission to NCCUs is associated with lower mortality and a greater chance of favorable recovery. These findings are remarkable considering that there are few interventions in neurocritical care that have been demonstrated to be efficacious in randomized trials. Whether the relationship is causal is still being elucidated but potential explanations include higher patient volume and, in turn, greater clinician experience; more emphasis on and adherence to protocols to avoid secondary brain injury; practice differences related to prognostication and withdrawal of life-sustaining interventions; and differences in the use and interpretation of neuroimaging and neuromonitoring data. SUMMARY Neurocritical care is an evolving field that is associated with improvements in outcomes over the past decade. Further research is required to determine how monitoring and treatment protocols can be optimized.
Collapse
|
46
|
Narotam PK, Morrison JF, Schmidt MD, Nathoo N. Physiological complexity of acute traumatic brain injury in patients treated with a brain oxygen protocol: utility of symbolic regression in predictive modeling of a dynamical system. J Neurotrauma 2014; 31:630-41. [PMID: 24195645 DOI: 10.1089/neu.2013.3104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Predictive modeling of emergent behavior, inherent to complex physiological systems, requires the analysis of large complex clinical data streams currently being generated in the intensive care unit. Brain tissue oxygen protocols have yielded outcome benefits in traumatic brain injury (TBI), but the critical physiological thresholds for low brain oxygen have not been established for a dynamical patho-physiological system. High frequency, multi-modal clinical data sets from 29 patients with severe TBI who underwent multi-modality neuro-clinical care monitoring and treatment with a brain oxygen protocol were analyzed. The inter-relationship between acute physiological parameters was determined using symbolic regression (SR) as the computational framework. The mean patient age was 44.4±15 with a mean admission GCS of 6.6±3.9. Sixty-three percent sustained motor vehicle accidents and the most common pathology was intra-cerebral hemorrhage (50%). Hospital discharge mortality was 21%, poor outcome occurred in 24% of patients, and good outcome occurred in 56% of patients. Criticality for low brain oxygen was intracranial pressure (ICP) ≥22.8 mm Hg, for mortality at ICP≥37.1 mm Hg. The upper therapeutic threshold for cerebral perfusion pressure (CPP) was 75 mm Hg. Eubaric hyperoxia significantly impacted partial pressure of oxygen in brain tissue (PbtO2) at all ICP levels. Optimal brain temperature (Tbr) was 34-35°C, with an adverse effect when Tbr≥38°C. Survivors clustered at [Formula: see text] Hg vs. non-survivors [Formula: see text] 18 mm Hg. There were two mortality clusters for ICP: High ICP/low PbtO2 and low ICP/low PbtO2. Survivors maintained PbtO2 at all ranges of mean arterial pressure in contrast to non-survivors. The final SR equation for cerebral oxygenation is: [Formula: see text]. The SR-model of acute TBI advances new physiological thresholds or boundary conditions for acute TBI management: PbtO2≥25 mmHg; ICP≤22 mmHg; CPP≈60-75 mmHg; and Tbr≈34-37°C. SR is congruous with the emerging field of complexity science in the modeling of dynamical physiological systems, especially during pathophysiological states. The SR model of TBI is generalizable to known physical laws. This increase in entropy reduces uncertainty and improves predictive capacity. SR is an appropriate computational framework to enable future smart monitoring devices.
Collapse
|
47
|
KOIZUMI H, SUEHIRO E, FUJIYAMA Y, SUGIMOTO K, INOUE T, SUZUKI M. Update on intensive neuromonitoring for patients with traumatic brain injury: a review of the literature and the current situation. Neurol Med Chir (Tokyo) 2014; 54:870-7. [PMID: 25367587 PMCID: PMC4533348 DOI: 10.2176/nmc.ra.2014-0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 06/28/2014] [Indexed: 11/20/2022] Open
Abstract
Intracranial pressure (ICP) measurements are fundamental in the present protocols for intensive care of patients during the acute stage of severe traumatic brain injury. However, the latest report of a large scale randomized clinical trial indicated no association of ICP monitoring with any significant improvement in neurological outcome in severely head injured patients. Aggressive treatment of patients with therapeutic hypothermia during the acute stage of traumatic brain injury also failed to show any significant beneficial effects on clinical outcome. This lack of significant results in clinical trials has limited the therapeutic strategies available for treatment of severe traumatic brain injury. However, combined application of different types of neuromonitoring, including ICP measurement, may have potential benefits for understanding the pathophysiology of damaged brains. The combination of monitoring techniques is expected to increase the precision of the data and aid in prevention of secondary brain damage, as well as assist in determining appropriate time periods for therapeutic interventions. In this study, we have characterized the techniques used to monitor patients during the acute severe traumatic brain injury stage, in order to establish the beneficial effects on outcome observed in clinical studies conducted in the past and to follow up any valuable clues that point to additional strategies for aggressive management of these patients.
Collapse
Affiliation(s)
- Hiroyasu KOIZUMI
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Eiichi SUEHIRO
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Yuichi FUJIYAMA
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Kazutaka SUGIMOTO
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Takao INOUE
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| | - Michiyasu SUZUKI
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Yamaguchi
| |
Collapse
|
48
|
Prabhakar H, Sandhu K, Bhagat H, Durga P, Chawla R. Current concepts of optimal cerebral perfusion pressure in traumatic brain injury. J Anaesthesiol Clin Pharmacol 2014; 30:318-27. [PMID: 25190937 PMCID: PMC4152669 DOI: 10.4103/0970-9185.137260] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Traumatic brain injury (TBI) consists of varied pathophysiological consequences and alteration of intracranial dynamics, reduction of the cerebral blood flow and oxygenation. In the past decade more emphasis has been directed towards optimizing cerebral perfusion pressure (CPP) in patients who have suffered TBI. Injured brain may show signs of ischemia if CPP remains below 50 mmHg and raising the CPP above 60 mmHg may avoid cerebral oxygen desaturation. Though CPP above 70 mmHg is influential in achieving an improved patient outcome, maintenance of CPP higher than 70 mmHg was associated with greater risk of acute respiratory distress syndrome (ARDS). The target CPP has been laid within 50-70 mmHg. Cerebral blood flow and metabolism are heterogeneous after TBI and with regional temporal differences in the requirement for CPP. Brain monitoring techniques such as jugular venous oximetry, monitoring of brain tissue oxygen tension (PbrO2), and cerebral microdialysis provide complementary and specific information that permits the selection of the optimal CPP. This review highlights the rationale for use CPP directed therapies and neuromonitoring to identify optimal CPP of head injured patients. The article also reviews the evidence provided by various clinical trials regarding optimal CPP and their application in the management of head injured patients.
Collapse
Affiliation(s)
- Hemanshu Prabhakar
- Department of Neuroanaesthesiology, Neurosciences Centre, All India Institute of Medical Sciences, PGIMER, Chandigarh, India
| | - Kavita Sandhu
- Department of Neuroanaesthesiology and Critical Care, Max Superspeciality Hospital, PGIMER, Chandigarh, India
| | - Hemant Bhagat
- Department of Anaesthesia and Intensive Care, PGIMER, Chandigarh, India
| | - Padmaja Durga
- Department of Anesthesiology and Intensive Care, Nizam's Institute of Medical Sciences, Hyderabad, India
| | - Rajiv Chawla
- Department of Anaesthesiology and Intensive Care, G B Pant Hospital, New Delhi, India
| |
Collapse
|
49
|
Bohman LE, Pisapia JM, Sanborn MR, Frangos S, Lin E, Kumar M, Park S, Kofke WA, Stiefel MF, LeRoux PD, Levine JM. Response of brain oxygen to therapy correlates with long-term outcome after subarachnoid hemorrhage. Neurocrit Care 2014; 19:320-8. [PMID: 23949477 DOI: 10.1007/s12028-013-9890-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Brain oxygen (PbtO2) monitoring can help guide care of poor-grade aneurysmal subarachnoid hemorrhage (aSAH) patients. The relationship between PbtO2-directed therapy and long-term outcome is unclear. We hypothesized that responsiveness to PbtO2-directed interventions is associated with outcome. METHODS Seventy-six aSAH patients who underwent PbtO2 monitoring were included. Long-term outcome [Glasgow Outcome Score-Extended (GOS-E) and modified Rankin Scale (mRS)] was ascertained using the social security death database and structured telephone interviews. Univariate and multivariate regression were used to identify variables that correlated with outcome. RESULTS Data from 64 patients were analyzed (12 were lost to follow-up). There were 530 episodes of compromised PbtO2 (<20 mmHg) during a total of 7,174 h of monitor time treated with 1,052 interventions. Forty-two patients (66 %) survived to discharge. Median follow-up was 8.5 months (range 0.1-87). At most recent follow-up 35 (55 %) patients were alive, and 28 (44 %) had a favorable outcome (mRS ≤3). In multivariate ordinal regression analysis, only age and response to PbtO2-directed intervention correlated significantly with outcome. Increased age was associated with worse outcome (coeff. 0.8, 95 % CI 0.3-1.3, p = 0.003), and response to PbtO2-directed intervention was associated with improved outcome (coeff. -2.12, 95 % CI -4.0 to -0.26, p = 0.03). Patients with favorable outcomes had a 70 % mean rate of response to PbtO2-directed interventions whereas patients with poor outcomes had a 45 % response rate (p = 0.005). CONCLUSIONS Response to PbtO2-directed intervention is associated with improved long-term functional outcome in aSAH patients.
Collapse
Affiliation(s)
- Leif-Erik Bohman
- Department of Neurosurgery, Hospital of the University of Pennsylvania, 3 W Gates, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kraitsy K, Uecal M, Grossauer S, Bruckmann L, Pfleger F, Ropele S, Fazekas F, Gruenbacher G, Patz S, Absenger M, Porubsky C, Smolle-Juettner F, Tezer I, Molcanyi M, Fasching U, Schaefer U. Repetitive long-term hyperbaric oxygen treatment (HBOT) administered after experimental traumatic brain injury in rats induces significant remyelination and a recovery of sensorimotor function. PLoS One 2014; 9:e97750. [PMID: 24848795 PMCID: PMC4029808 DOI: 10.1371/journal.pone.0097750] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 04/24/2014] [Indexed: 12/20/2022] Open
Abstract
Cells in the central nervous system rely almost exclusively on aerobic metabolism. Oxygen deprivation, such as injury-associated ischemia, results in detrimental apoptotic and necrotic cell loss. There is evidence that repetitive hyperbaric oxygen therapy (HBOT) improves outcomes in traumatic brain-injured patients. However, there are no experimental studies investigating the mechanism of repetitive long-term HBOT treatment-associated protective effects. We have therefore analysed the effect of long-term repetitive HBOT treatment on brain trauma-associated cerebral modulations using the lateral fluid percussion model for rats. Trauma-associated neurological impairment regressed significantly in the group of HBO-treated animals within three weeks post trauma. Evaluation of somatosensory-evoked potentials indicated a possible remyelination of neurons in the injured hemisphere following HBOT. This presumption was confirmed by a pronounced increase in myelin basic protein isoforms, PLP expression as well as an increase in myelin following three weeks of repetitive HBO treatment. Our results indicate that protective long-term HBOT effects following brain injury is mediated by a pronounced remyelination in the ipsilateral injured cortex as substantiated by the associated recovery of sensorimotor function.
Collapse
Affiliation(s)
- Klaus Kraitsy
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Muammer Uecal
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Stefan Grossauer
- Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Lukas Bruckmann
- Department of Neurosurgery, Medical University of Graz, Graz, Austria
| | - Florentina Pfleger
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Stefan Ropele
- Clinical Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Franz Fazekas
- Clinical Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Gerda Gruenbacher
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Silke Patz
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Markus Absenger
- Core Facility Microscopy, Centre for Medical Research, Medical University of Graz, Graz, Austria
| | - Christian Porubsky
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Freyja Smolle-Juettner
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Irem Tezer
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Marek Molcanyi
- Department of Neurosurgery, University of Cologne, Cologne, Germany
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Ulrike Fasching
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
| | - Ute Schaefer
- Research Unit for Experimental Neurotraumatology, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|