1
|
Magnussen AS, Olsen MH, Korshøj AR, Mathiesen T, Forsse A, Bjarkam CR. Multimodal neuromonitoring in the nordic countries: experiences and attitudes - a multi-institutional survey. Acta Neurochir (Wien) 2025; 167:70. [PMID: 40072683 PMCID: PMC11903619 DOI: 10.1007/s00701-025-06479-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Multimodal neuromonitoring (MMM) aids early detection of secondary brain injury in neurointensive care and facilitates research in pathophysiologic mechanisms of the injured brain. Invasive ICP monitoring has been the gold standard for decades, however additional methods exist (aMMM). It was hypothesized that local practices regarding aMMM vary considerably and that inter-and intracenter consensus is low. The survey aimed to investigate this hypothesis including the knowledge, attitudes towards, and use of aMMM in the neurointensive care setting in the Nordic countries. METHOD The survey was distributed amongst 54 neurosurgical trainees at a Nordic neurosurgery training course and supplemented with 16 center-appointed neuromonitoring experts representing 16 of the 19 neurosurgical centers in the Nordic countries (Norway, Sweden, Denmark, and Finland). RESULTS The response rate was 100% amongst the training course attendents, as well as the center-appointed experts with a total of 70 respondents. The experts covered 16/19 Nordic centers. In-center disagreement was high concerning the use of aMMM methods. In patients with traumatic brain injury, subarachnoid hemorrhage, or other acute brain injuries 50% of the appointed experts stated transcranial Doppler ultrasound (TCD) to be used in most cases in their ICU, and an additional 25% for selected cases. Most appointed experts agreed on electroencephalography (EEG) for selected cases 63%, but only 19% for most cases. Routine use of Invasive brain tissue oxygenation (PbtO2) was stated by 25-63% and cerebral microdialysis (CMD) by 19-38%. The main perceived concerns with aMMM methods were the usefulness for outcome-changing interventions (43%) and financial issues (19%). Most respondents (67%) believed automated combined analysis of aMMM to be a likely future scenario. CONCLUSION There was a remarkable variation in the reported use of aMMM among Nordic neurosurgical centers, indicating an extensive lack of consensus on need and utility. Surprisingly routine use of TCD was stated by 75%, presumably for routine monitoring of SAH patients, whereas CMD was mostly considered a research tool. Interestingly, junior staff and appointed experts disagreed on intended local routines, indicating that application of aMMM was more governed organically and by case than on explicit guidelines or that uniform management was not prioritized.
Collapse
Affiliation(s)
- Anna Søgaard Magnussen
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 8, Copenhagen, 2100, Denmark
| | - Markus Harboe Olsen
- Department of Neuroanesthesiology, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anders Rosendal Korshøj
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 8, Copenhagen, 2100, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Axel Forsse
- Department of Neurosurgery, The Neuroscience Centre, Copenhagen University Hospital - Rigshospitalet, Inge Lehmanns Vej 8, Copenhagen, 2100, Denmark.
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
2
|
Wang Z, Zhang R, Han Z, Wang J, Wu R, Zhao W, Zhang X, Bao J, Yang W, Zhang Z. Assessment of traumatic brain injury treatment guided by continuous monitoring of intracranial pressure and brain tissue oxygen partial pressure: A single-center pilot study. J Clin Neurosci 2024; 130:110884. [PMID: 39447393 DOI: 10.1016/j.jocn.2024.110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Severe traumatic brain injury (TBI) is a leading cause of death and disability. Monitoring intracranial pressure (ICP) is recommended, but the data on the outcomes are conflicting. Adding continuous brain tissue oxygen partial pressure (PbtO2) monitoring may have some benefit but the OXY-TC suggested it did not improve 6-month neurological outcomes. This single-center pilot randomized controlled study aimed to evaluate whether adding PbtO2 monitoring was feasible and could improve the prognosis of severe TBI. The participants were randomized into either an ICP alone or an ICP + PbtO2 group for 7 days, with treatment protocols based on existing guidelines. Clinical parameters were collected hourly. The primary outcome was the feasibility of using PbtO2 monitoring. The secondary outcomes were 6-month survival, analyzed by the log-rank test, the 3- and 6-month Glasgow Outcome Scale (GOS) scores, compared between groups by chi-squared test. Seventy patients were included (36 ICP, 34 ICP + PbtO2). The ICP + PbtO2 group had lower mean daily ICP (13.4 vs. 18.2 mmHg, P = 0.0024) and higher mean daily cerebral perfusion pressure (82.1 vs. 74.5 mmHg, P = 0.0055). The ICP + PbtO2 group had higher 6-month survival (79.4 % vs. 55.6 %, P = 0.0337) and more favorable outcomes at 3 months (67.6 % vs. 38.9 %, P = 0.0160) and 6 months (70.6 % vs. 41.7 %, P = 0.0149). Adding PbtO2 monitoring to ICP monitoring is feasible in patients with severe TBI and could maybe improve the intermediate-term outcomes. The results will serve to design larger trials.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China.
| | - Ruijian Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhitong Han
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Junqing Wang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Rile Wu
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Weiping Zhao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Xiaojun Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Jingang Bao
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Weiran Yang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| | - Zhilong Zhang
- Department of Neurosurgery, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
3
|
Erklauer JC, Lai YC. The State of the Field of Pediatric Multimodality Neuromonitoring. Neurocrit Care 2024; 40:1160-1170. [PMID: 37864125 DOI: 10.1007/s12028-023-01858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/08/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The use of multimodal neuromonitoring in pediatrics is in its infancy relative to adult neurocritical care. Multimodal neuromonitoring encompasses the amalgamation of information from multiple individual neuromonitoring devices to gain a more comprehensive understanding of the condition of the brain. It allows for adaptation to the changing state of the brain throughout various stages of injury with potential to individualize and optimize therapies. METHODS Here we provide an overview of multimodal neuromonitoring in pediatric neurocritical care and its potential application in the future. RESULTS Multimodal neuromonitoring devices are key to the process of multimodal neuromonitoring, allowing for visualization of data trends over time and ideally improving the ability of clinicians to identify patterns and find meaning in the immense volume of data now encountered in the care of critically ill patients at the bedside. Clinical use in pediatrics requires more study to determine best practices and impact on patient outcomes. Potential uses include guidance for targets of physiological parameters in the setting of acute brain injury, neuroprotection for patients at high risk for brain injury, and neuroprognostication. Implementing multimodal neuromonitoring in pediatric patients involves interprofessional collaboration with the development of a simultaneous comprehensive program to support the use of multimodal neuromonitoring while maintaining the fundamental principles of the delivery of neurocritical care at the bedside. CONCLUSIONS The possible benefits of multimodal neuromonitoring are immense and have great potential to advance the field of pediatric neurocritical care and the health of critically ill children.
Collapse
Affiliation(s)
- Jennifer C Erklauer
- Divisions of Critical Care Medicine and Pediatric Neurology and Developmental Neurosciences, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - Yi-Chen Lai
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Foreman B, Kapinos G, Wainwright MS, Ngwenya LB, O'Phelan KH, LaRovere KL, Kirschen MP, Appavu B, Lazaridis C, Alkhachroum A, Maciel CB, Amorim E, Chang JJ, Gilmore EJ, Rosenthal ES, Park S. Practice Standards for the Use of Multimodality Neuromonitoring: A Delphi Consensus Process. Crit Care Med 2023; 51:1740-1753. [PMID: 37607072 PMCID: PMC11036878 DOI: 10.1097/ccm.0000000000006016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
OBJECTIVES To address areas in which there is no consensus for the technologies, effort, and training necessary to integrate and interpret information from multimodality neuromonitoring (MNM). DESIGN A three-round Delphi consensus process. SETTING Electronic surveys and virtual meeting. SUBJECTS Participants with broad MNM expertise from adult and pediatric intensive care backgrounds. INTERVENTIONS None. MEASUREMENTS AND MAIN RESULTS Two rounds of surveys were completed followed by a virtual meeting to resolve areas without consensus and a final survey to conclude the Delphi process. With 35 participants consensus was achieved on 49% statements concerning MNM. Neurologic impairment and the potential for MNM to guide management were important clinical considerations. Experts reached consensus for the use of MNM-both invasive and noninvasive-for patients in coma with traumatic brain injury, aneurysmal subarachnoid hemorrhage, and intracranial hemorrhage. There was consensus that effort to integrate and interpret MNM requires time independent of daily clinical duties, along with specific skills and expertise. Consensus was reached that training and educational platforms are necessary to develop this expertise and to provide clinical correlation. CONCLUSIONS We provide expert consensus in the clinical considerations, minimum necessary technologies, implementation, and training/education to provide practice standards for the use of MNM to individualize clinical care.
Collapse
Affiliation(s)
- Brandon Foreman
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
| | - Gregory Kapinos
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mark S Wainwright
- Division of Pediatric Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA
| | - Laura B Ngwenya
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
| | | | - Kerri L LaRovere
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Matthew P Kirschen
- Departments of Anesthesiology and Critical Care Medicine, Pediatrics and Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Brian Appavu
- Departments of Child Health and Neurology, Phoenix Children's, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | - Christos Lazaridis
- Departments of Neurology and Neurosurgery, University of Chicago, Chicago, IL
| | | | - Carolina B Maciel
- Department of Neurology & Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY
- Division of Pediatric Neurology, Seattle Children's Hospital, University of Washington, Seattle, WA
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH
- Department of Neurology, University of Miami, Miami, FL
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Departments of Anesthesiology and Critical Care Medicine, Pediatrics and Neurology, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
- Departments of Child Health and Neurology, Phoenix Children's, University of Arizona College of Medicine-Phoenix, Phoenix, AZ
- Departments of Neurology and Neurosurgery, University of Chicago, Chicago, IL
- Departments of Neurology and Neurosurgery, University of Florida, Tampa, FL
- Department of Neurology, University of Utah, Salt Lake City, UT
- Department of Neurology, Yale University, New Haven, CT
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
- Department of Critical Care and Georgetown University, Department of Neurology, MedStar Washington Hospital Center, Washington, DC
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY
| | - Edilberto Amorim
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA
| | - Jason J Chang
- Department of Critical Care and Georgetown University, Department of Neurology, MedStar Washington Hospital Center, Washington, DC
| | | | - Eric S Rosenthal
- Department of Neurology, Massachusetts General Hospital, Boston, MA
| | - Soojin Park
- Departments of Neurology and Biomedical Informatics, Columbia University, New York, NY
| |
Collapse
|
5
|
Favilla CG, Carter S, Hartl B, Gitlevich R, Mullen MT, Yodh AG, Baker WB, Konecky S. Validation of the Openwater wearable optical system: cerebral hemodynamic monitoring during a breath hold maneuver. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296612. [PMID: 37873126 PMCID: PMC10592983 DOI: 10.1101/2023.10.11.23296612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Bedside cerebral blood flow (CBF) monitoring has the potential to inform and improve care for acute neurologic diseases, but technical challenges limit the use of existing techniques in clinical practice. Here we validate the Openwater optical system, a novel wearable headset that uses laser speckle contrast to monitor microvascular hemodynamics. We monitored 25 healthy adults with the Openwater system and concurrent transcranial Doppler (TCD) while performing a breath-hold maneuver to increase CBF. Relative blood flow (rBF) was derived from the changes in speckle contrast, and relative blood volume (rBV) was derived from the changes in speckle average intensity. A strong correlation was observed between beat-to-beat optical rBF and TCD-measured cerebral blood flow velocity (CBFv), R=0.79; the slope of the linear fit indicates good agreement, 0.87 (95% CI:0.83-0.92). Beat-to-beat rBV and CBFv were strongly correlated, R=0.72, but as expected the two variables were not proportional; changes in rBV were smaller than CBFv changes, with linear fit slope of 0.18 (95% CI:0.17-0.19). Further, strong agreement was found between rBF and CBFv waveform morphology and related metrics. This first in vivo validation of the Openwater optical system highlights its potential as a cerebral hemodynamic monitor, but additional validation is needed in disease states.
Collapse
|
6
|
Vitt JR, Loper NE, Mainali S. Multimodal and autoregulation monitoring in the neurointensive care unit. Front Neurol 2023; 14:1155986. [PMID: 37153655 PMCID: PMC10157267 DOI: 10.3389/fneur.2023.1155986] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Given the complexity of cerebral pathology in patients with acute brain injury, various neuromonitoring strategies have been developed to better appreciate physiologic relationships and potentially harmful derangements. There is ample evidence that bundling several neuromonitoring devices, termed "multimodal monitoring," is more beneficial compared to monitoring individual parameters as each may capture different and complementary aspects of cerebral physiology to provide a comprehensive picture that can help guide management. Furthermore, each modality has specific strengths and limitations that depend largely on spatiotemporal characteristics and complexity of the signal acquired. In this review we focus on the common clinical neuromonitoring techniques including intracranial pressure, brain tissue oxygenation, transcranial doppler and near-infrared spectroscopy with a focus on how each modality can also provide useful information about cerebral autoregulation capacity. Finally, we discuss the current evidence in using these modalities to support clinical decision making as well as potential insights into the future of advanced cerebral homeostatic assessments including neurovascular coupling.
Collapse
Affiliation(s)
- Jeffrey R. Vitt
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
- Department of Neurology, UC Davis Medical Center, Sacramento, CA, United States
| | - Nicholas E. Loper
- Department of Neurological Surgery, UC Davis Medical Center, Sacramento, CA, United States
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
7
|
Andersson H, Tamaddon A, Malekian M, Ydström K, Siemund R, Ullberg T, Wasselius J. Comparison of image quality between a novel mobile CT scanner and current generation stationary CT scanners. Neuroradiology 2023; 65:503-512. [PMID: 36441234 PMCID: PMC9905188 DOI: 10.1007/s00234-022-03089-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/12/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Point-of-care imaging with mobile CT scanners offers several advantages, provided that the image quality is satisfactory. Our aim was to compare image quality of a novel mobile CT to stationary scanners for patients in a neurosurgical intensive care unit (ICU). METHODS From November 2020 to April 2021, all patients above 18 years of age examined by a mobile CT scanner at a neurosurgical ICU were included if they also had a stationary head CT examination during the same hospitalization. Quantitative image quality parameters included attenuation and noise in six predefined regions of interest, as well as contrast-to-noise ratio between gray and white matter. Subjective image quality was rated on a 4-garde scale, by four radiologists blinded to scanner parameters. RESULTS Fifty patients were included in the final study population. Radiation dose and image attenuation values were similar for mobCT and stationary CTs. There was a small statistically significant difference in subjective quality rating between mobCT and stationary CT images. Two radiologists favored the stationary CT images, one was neutral, and one favored mobCT images. For overall image quality, 14% of mobCT images were rated grade 1 (poor image quality) compared to 8% for stationary CT images. CONCLUSION Point-of-care brain CT imaging was successfully performed on clinical neurosurgical ICU patients with small reduction in image quality, predominantly affecting the posterior fossa, compared to high-end stationary CT scanners.
Collapse
Affiliation(s)
- Henrik Andersson
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden ,Department of Clinical Sciences, Lund University, 22100 Lund, Sweden
| | - Ashkan Tamaddon
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden
| | - Mazdak Malekian
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden
| | - Kristina Ydström
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, 22185 Lund, Sweden ,Medical Radiation Physics Malmö, Department of Translational Medicine, Lund University, 22100 Lund, Sweden
| | - Roger Siemund
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden ,Department of Clinical Sciences, Lund University, 22100 Lund, Sweden
| | - Teresa Ullberg
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85 Lund, Sweden ,Department of Clinical Sciences, Lund University, 22100 Lund, Sweden
| | - Johan Wasselius
- Department of Medical Imaging and Physiology, Skåne University Hospital, 221 85, Lund, Sweden. .,Department of Clinical Sciences, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
8
|
Sarigul B, De Macêdo Filho LJM, Hawryluk GWJ. Invasive Monitoring in Traumatic Brain Injury. CURRENT SURGERY REPORTS 2022. [DOI: 10.1007/s40137-022-00332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Cortical Spreading Depolarizations and Clinically Measured Scalp EEG Activity After Aneurysmal Subarachnoid Hemorrhage and Traumatic Brain Injury. Neurocrit Care 2022; 37:49-59. [PMID: 34997536 PMCID: PMC9810077 DOI: 10.1007/s12028-021-01418-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Spreading depolarizations (SDs) are associated with worse outcome following subarachnoid hemorrhage (SAH) and traumatic brain injury (TBI), but gold standard detection requires electrocorticography with a subdural strip electrode. Electroencephalography (EEG) ictal-interictal continuum abnormalities are associated with poor outcomes after TBI and with both delayed cerebral ischemia (DCI) and poor outcomes after SAH. We examined rates of SD detection in patients with SAH and TBI with intraparenchymal and subdural strip electrodes and assessed which continuous EEG (cEEG) measures were associated with intracranially quantified SDs. METHODS In this single-center cohort, we included patients with SAH and TBI undergoing ≥ 24 h of interpretable intracranial monitoring via eight-contact intraparenchymal or six-contact subdural strip platinum electrodes or both. SDs were rated according to established consensus criteria and compared with cEEG findings rated according to the American Clinical Neurophysiology Society critical care EEG monitoring consensus criteria: lateralized rhythmic delta activity, generalized rhythmic delta activity, lateralized periodic discharges, generalized periodic discharges, any ictal-interictal continuum, or a composite scalp EEG tool for seizure risk estimation: the 2HELPS2B score. Among patients with SAH, cEEG was assessed for validated DCI biomarkers: new or worsening epileptiform abnormalities and new background deterioration. RESULTS Over 6 years, SDs were recorded in 5 (18%) of 28 patients recorded with intraparenchymal electrodes and 4 (40%) of 10 patients recorded with subdural strip electrodes. There was no significant association between occurrence of SDs and day 1 cEEG findings (American Clinical Neurophysiology Society main terms lateralized periodic discharges, generalized periodic discharges, lateralized rhythmic delta activity, or seizures, individually or in combination). After SAH, established cEEG DCI predictors were not associated with SDs. CONCLUSIONS Intraparenchymal recordings yielded low rates of SD, and documented SDs were not associated with ictal-interictal continuum abnormalities or other cEEG DCI predictors. Identifying scalp EEG correlates of SD may require training computational EEG analytics and use of gold standard subdural strip electrocorticography recordings.
Collapse
|
10
|
Kirschen MP, LaRovere K, Balakrishnan B, Erklauer J, Francoeur C, Ganesan SL, Jayakar A, Lovett M, Luchette M, Press CA, Wolf M, Ferrazzano P, Wainwright MS, Appavu B. A Survey of Neuromonitoring Practices in North American Pediatric Intensive Care Units. Pediatr Neurol 2022; 126:125-130. [PMID: 34864306 PMCID: PMC9135309 DOI: 10.1016/j.pediatrneurol.2021.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Neuromonitoring is the use of continuous measures of brain physiology to detect clinically important events in real-time. Neuromonitoring devices can be invasive or non-invasive and are typically used on patients with acute brain injury or at high risk for brain injury. The goal of this study was to characterize neuromonitoring infrastructure and practices in North American pediatric intensive care units (PICUs). METHODS An electronic, web-based survey was distributed to 70 North American institutions participating in the Pediatric Neurocritical Care Research Group. Questions related to the clinical use of neuromonitoring devices, integrative multimodality neuromonitoring capabilities, and neuromonitoring infrastructure were included. Survey results were presented using descriptive statistics. RESULTS The survey was completed by faculty at 74% (52 of 70) of institutions. All 52 institutions measure intracranial pressure and have electroencephalography capability, whereas 87% (45 of 52) use near-infrared spectroscopy and 40% (21/52) use transcranial Doppler. Individual patient monitoring decisions were driven by institutional protocols and collaboration between critical care, neurology, and neurosurgery attendings. Reported device utilization varied by brain injury etiology. Only 15% (eight of 52) of institutions utilized a multimodality neuromonitoring platform to integrate and synchronize data from multiple devices. A database of neuromonitoring patients was maintained at 35% (18 of 52) of institutions. Funding for neuromonitoring programs was variable with contributions from hospitals (19%, 10 of 52), private donations (12%, six of 52), and research funds (12%, six of 52), although 73% (40 of 52) have no dedicated funds. CONCLUSIONS Neuromonitoring indications, devices, and infrastructure vary by institution in North American pediatric critical care units. Noninvasive modalities were utilized more liberally, although not uniformly, than invasive monitoring. Further studies are needed to standardize the acquisition, interpretation, and reporting of clinical neuromonitoring data, and to determine whether neuromonitoring systems impact neurological outcomes.
Collapse
Affiliation(s)
- Matthew P Kirschen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Kerri LaRovere
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Binod Balakrishnan
- Division of Pediatric Critical Care Medicine, Children's Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jennifer Erklauer
- Departments of Critical Care Medicine and Neurology, Texas Children's Hospital, Houston, Texas
| | - Conall Francoeur
- Department of Pediatrics, CHU de Québec - Université Laval Research Center, Quebec City, Quebec, Canada
| | - Saptharishi Lalgudi Ganesan
- Department of Paediatrics, Children's Hospital of Western Ontario, Schulich School of Medicine & Dentistry at the Western University, London, Ontario, Canada
| | - Anuj Jayakar
- Department of Neurology, Nicklaus Children's Hospital, Miami, Florida
| | - Marlina Lovett
- Division of Critical Care Medicine, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Matthew Luchette
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Craig A Press
- Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael Wolf
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Peter Ferrazzano
- Division of Critical Care Medicine, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Mark S Wainwright
- Division of Pediatric Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Brian Appavu
- Department of Neurosciences, Barrow Neurological Institute at Phoenix Children's Hospital, University of Arizona College of Medicine - Phoenix, Phoenix, UK
| |
Collapse
|
11
|
Relationship of the vascular territory affected by delayed cerebral ischemia and the location of the ruptured aneurysm in patients with aneurysmal subarachnoid hemorrhage. Neurosurg Rev 2021; 44:3479-3486. [PMID: 33782797 PMCID: PMC8592963 DOI: 10.1007/s10143-021-01522-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/08/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the area most at risk of delayed cerebral ischemia (DCI) in relation to the location of the ruptured aneurysm in patients with aneurysmal subarachnoid hemorrhage (aSAH) and, therefore, help to choose the site for focal multimodal neuromonitoring. METHODS We retrospectively analyzed angiographic findings, CCT scans, and patient charts of patients who were admitted with aSAH to our neurosurgical intensive care unit between 2009 and 2017. DCI was defined as infarction on CCT 2-6 weeks after aSAH. RESULTS DCI occurred in 17.9% out of 357 included patients. A DCI occurring in the vascular territory of the artery carrying the ruptured aneurysm was found in 81.0% of patients with anterior circulation aneurysms but only in 16.7% with posterior circulation aneurysms (Fisher's exact, p=0.003). The vascular territory most frequently showing a DCI was the ipsilateral MCA territory (86.7%) in ICA aneurysms, the contra- (71.4%) and the ipsilateral (64.3%) ACA territory in ACA aneurysms, the right (93.8%) and the left (81.3%) ACA territory in AcomA aneurysms, and the ipsilateral MCA territory in MCA aneurysms (69.2%) as well as in VA/PICA/SCA aneurysms (100.0%). DCI after the rupture of a BA aneurysm occurred with 33.3% in 6 out of 8 vascular territories, respectively. DCI of multiple vascular territories occurred in 100.0% of BA aneurysms, 87.5% of AcomA aneurysms, 71.4% of ACA aneurysms, 40.0% of ICA aneurysms, 38.5% of MCA aneurysms, and 33.3% of VA/PICA/SCA aneurysms. DISCUSSION Few studies exist that could determine the area most at risk of a DCI after an aSAH. Our data could identify the territory most at risk for DCI with a probability of > 60% except for BA aneurysms, which showed DCI in various areas and patients suffering from multiple DCIs. Either the ipsilateral ACA or MCA were affected by the DCI in about 80% of ACA and more than 90% of AcomA, ICA, MCA, and VA/PICA/SCA aneurysms. Therefore, local intraparenchymal neuromonitoring in the ACA/MCA watershed area might detect the vast majority of DCIs for all aneurysm locations, except for BA aneurysms. In ACA and AcomA aneurysms, bilateral DCI of the ACA territory was common, and bilateral probe positioning might be considered for monitoring high-risk patients. Non-focal monitoring methods might be preferably used after BA aneurysm rupture.
Collapse
|
12
|
Oh JY, Jo K, Joo W, Yoo DS, Park H. Temperature Difference between Brain and Axilla according to Body Temperature in the Patient with Brain Injury. Korean J Neurotrauma 2020; 16:147-156. [PMID: 33163422 PMCID: PMC7607042 DOI: 10.13004/kjnt.2020.16.e40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 11/21/2022] Open
Abstract
Objective Commonly, brain temperature is estimated from measurements of body temperature. However, temperature difference between brain and body is still controversy. The objective of this study is to know temperature gradient between the brain and axilla according to body temperature in the patient with brain injury. Methods A total of 135 patients who had undergone cranial operation and had the thermal diffusion flow meter (TDF) insert were included in this analysis. The brain and axilla temperatures were measured simultaneously every 2 hours with TDF (2 kinds of devices: SABER 2000 and Hemedex) and a mercury thermometer. Saved data were divided into 3 groups according to axillary temperature. Three groups are hypothermia group (less than 36.4°C), normothermia group (between 36.5°C and 37.5°C), and hyperthermia group (more than 37.6°C). Results The temperature difference between brain temperature and axillary temperature was 0.93±0.50°C in all data pairs, whereas it was 1.28±0.56°C in hypothermia, 0.87±0.43°C in normothermia, and 0.71±0.41°C in hyperthermia. The temperature difference was statistically significant between the hypothermia and normothermia groups (p=0.000), but not between the normothermia and hyperthermia group (p=0.201). Conclusion This study show that brain temperature is significantly higher than the axillary temperature and hypothermia therapy is associated with large brain-axilla temperature gradients. If you do not have a special brain temperature measuring device, the results of this study will help predict brain temperature by measuring axillary temperature.
Collapse
Affiliation(s)
- Jong-Yang Oh
- Department of Neurosurgery, Saengsaeng Hospital, Bucheon, Korea
| | - Kwangwook Jo
- Department of Neurosurgery, Bucheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Wonil Joo
- Department of Neurosurgery, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Do-Sung Yoo
- Department of Neurosurgery, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | - Haekwan Park
- Department of Neurosurgery, Eunpyeong St. Mary's Hospital, The Catholic University of Korea, College of Medicine, Seoul, Korea
| |
Collapse
|
13
|
Othman MH, Bhattacharya M, Møller K, Kjeldsen S, Grand J, Kjaergaard J, Dutta A, Kondziella D. Resting-State NIRS-EEG in Unresponsive Patients with Acute Brain Injury: A Proof-of-Concept Study. Neurocrit Care 2020; 34:31-44. [PMID: 32333214 DOI: 10.1007/s12028-020-00971-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Neurovascular-based imaging techniques such as functional MRI (fMRI) may reveal signs of consciousness in clinically unresponsive patients but are often subject to logistical challenges in the intensive care unit (ICU). Near-infrared spectroscopy (NIRS) is another neurovascular imaging technique but low cost, can be performed serially at the bedside, and may be combined with electroencephalography (EEG), which are important advantages compared to fMRI. Combined NIRS-EEG, however, has never been evaluated for the assessment of neurovascular coupling and consciousness in acute brain injury. METHODS We explored resting-state oscillations in eight-channel NIRS oxyhemoglobin and eight-channel EEG band-power signals to assess neurovascular coupling, the prerequisite for neurovascular-based imaging detection of consciousness, in patients with acute brain injury in the ICU (n = 9). Conscious neurological patients from step-down units and wards served as controls (n = 14). Unsupervised adaptive mixture-independent component analysis (AMICA) was used to correlate NIRS-EEG data with levels of consciousness and clinical outcome. RESULTS Neurovascular coupling between NIRS oxyhemoglobin (0.07-0.13 Hz) and EEG band-power (1-12 Hz) signals at frontal areas was sensitive and prognostic to changing consciousness levels. AMICA revealed a mixture of five models from EEG data, with the relative probabilities of these models reflecting levels of consciousness over multiple days, although the accuracy was less than 85%. However, when combined with two channels of bilateral frontal neurovascular coupling, weighted k-nearest neighbor classification of AMICA probabilities distinguished unresponsive patients from conscious controls with > 90% accuracy (positive predictive value 93%, false discovery rate 7%) and, additionally, identified patients who subsequently failed to recover consciousness with > 99% accuracy. DISCUSSION We suggest that NIRS-EEG for monitoring of acute brain injury in the ICU is worthy of further exploration. Normalization of neurovascular coupling may herald recovery of consciousness after acute brain injury.
Collapse
Affiliation(s)
- Marwan H Othman
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mahasweta Bhattacharya
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Kirsten Møller
- Department of Neuroanesthesiology, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Kjeldsen
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Johannes Grand
- Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jesper Kjaergaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anirban Dutta
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark. .,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Alambyan V, Pace J, Sukpornchairak P, Yu X, Alnimir H, Tatton R, Chitturu G, Yarlagadda A, Ramos-Estebanez C. Imaging Guidance for Therapeutic Delivery: The Dawn of Neuroenergetics. Neurotherapeutics 2020; 17:522-538. [PMID: 32240530 PMCID: PMC7283376 DOI: 10.1007/s13311-020-00843-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Modern neurocritical care relies on ancillary diagnostic testing in the form of multimodal monitoring to address acute changes in the neurological homeostasis. Much of our armamentarium rests upon physiological and biochemical surrogates of organ or regional level metabolic activity, of which a great deal is invested at the metabolic-hemodynamic-hydrodynamic interface to rectify the traditional intermediaries of glucose consumption. Despite best efforts to detect cellular neuroenergetics, current modalities cannot appreciate the intricate coupling between astrocytes and neurons. Invasive monitoring is not without surgical complication, and noninvasive strategies do not provide an adequate spatial or temporal resolution. Without knowledge of the brain's versatile behavior in specific metabolic states (glycolytic vs oxidative), clinical practice would lag behind laboratory empiricism. Noninvasive metabolic imaging represents a new hope in delineating cellular, nigh molecular level energy exchange to guide targeted management in a diverse array of neuropathology.
Collapse
Affiliation(s)
- Vilakshan Alambyan
- Department of Neurology, Albert Einstein Medical Center, Philadelphia, Pennsylvania, USA
| | - Jonathan Pace
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Persen Sukpornchairak
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xin Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hamza Alnimir
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ryan Tatton
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gautham Chitturu
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anisha Yarlagadda
- Department of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ciro Ramos-Estebanez
- Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
15
|
Surgical preference regarding different materials for custom-made allograft cranioplasty in patients with calvarial defects: Results from an internal audit covering the last 20 years. J Clin Neurosci 2020; 74:98-103. [DOI: 10.1016/j.jocn.2020.01.087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/27/2020] [Indexed: 11/19/2022]
|
16
|
Baker WB, Balu R, He L, Kavuri VC, Busch DR, Amendolia O, Quattrone F, Frangos S, Maloney-Wilensky E, Abramson K, Mahanna Gabrielli E, Yodh AG, Andrew Kofke W. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury. J Cereb Blood Flow Metab 2019; 39:1469-1485. [PMID: 31088234 PMCID: PMC6681541 DOI: 10.1177/0271678x19846657] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Rapid detection of ischemic conditions at the bedside can improve treatment of acute brain injury. In this observational study of 11 critically ill brain-injured adults, we employed a monitoring approach that interleaves time-resolved near-infrared spectroscopy (TR-NIRS) measurements of cerebral oxygen saturation and oxygen extraction fraction (OEF) with diffuse correlation spectroscopy (DCS) measurement of cerebral blood flow (CBF). Using this approach, we demonstrate the clinical promise of non-invasive, continuous optical monitoring of changes in CBF and cerebral metabolic rate of oxygen (CMRO2). In addition, the optical CBF and CMRO2 measures were compared to invasive brain tissue oxygen tension (PbtO2), thermal diffusion flowmetry CBF, and cerebral microdialysis measures obtained concurrently. The optical CBF and CMRO2 information successfully distinguished between ischemic, hypermetabolic, and hyperemic conditions that arose spontaneously during patient care. Moreover, CBF monitoring during pressor-induced changes of mean arterial blood pressure enabled assessment of cerebral autoregulation. In total, the findings suggest that this hybrid non-invasive neurometabolic optical monitor (NNOM) can facilitate clinical detection of adverse physiological changes in brain injured patients that are otherwise difficult to measure with conventional bedside monitoring techniques.
Collapse
Affiliation(s)
- Wesley B Baker
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.,2 Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ramani Balu
- 3 Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lian He
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Venkaiah C Kavuri
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - David R Busch
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Anesthesiology & Pain Management and Neurology & Neurotherapeutics, University of Texas Southwestern, Dallas, TX, USA
| | - Olivia Amendolia
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Francis Quattrone
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Suzanne Frangos
- 6 Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kenneth Abramson
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Arjun G Yodh
- 4 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - W Andrew Kofke
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
17
|
Szatala A, Young B. Implementation of a Data Acquisition and Integration Device in the Neurologic Intensive Care Unit. AACN Adv Crit Care 2019; 30:40-47. [PMID: 30842072 DOI: 10.4037/aacnacc2019188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The neurologic intensive care unit has evolved into a data-rich, complex arena. Various neurologic monitors, collectively referred to as multimodality monitoring, provide clinicians with a plethora of real-time information about a comatose patient's condition. The time and cognitive burden required to synthesize the available data and reach meaningful clinical conclusions can be overwhelming. The Moberg Component Neuromonitoring System (Moberg Research, Inc) is a data acquisition and integration device that collects data from multiple monitors, displaying them on a single screen in a way that highlights physiological trends throughout a patient's clinical course. Implementation of the Moberg Component Neuromonitoring System in the neurologic intensive care unit can improve understanding of a patient's neurophysiology, enhance clinical decision-making, and improve quality of care. Use of a staged process of implementation including exploration, installation, initial implementation, and full implementation can bring technology to the bedside in a sustainable fashion.
Collapse
Affiliation(s)
- Amanda Szatala
- Amanda Szatala is Clinical Nurse Specialist, Neurointensive and Progressive Care Unit, Penn Presbyterian Medical Center, 51 N 39th St, Philadelphia, PA 19104 . Bethany Young is Clinical Nurse Specialist, Neurointensive Care Unit, Hospital of the University of Pennsylvania, Philadelphia
| | - Bethany Young
- Amanda Szatala is Clinical Nurse Specialist, Neurointensive and Progressive Care Unit, Penn Presbyterian Medical Center, 51 N 39th St, Philadelphia, PA 19104 . Bethany Young is Clinical Nurse Specialist, Neurointensive Care Unit, Hospital of the University of Pennsylvania, Philadelphia
| |
Collapse
|
18
|
Appavu B, Foldes ST, Adelson PD. Clinical trials for pediatric traumatic brain injury: definition of insanity? J Neurosurg Pediatr 2019; 23:661-669. [PMID: 31153150 DOI: 10.3171/2019.2.peds18384] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 11/06/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of morbidity and mortality in children both in the United States and throughout the world. Despite valiant efforts and multiple clinical trials completed over the last few decades, there are no high-level recommendations for pediatric TBI available in current guidelines. In this review, the authors explore key findings from the major pediatric clinical trials in children with TBI that have shaped present-day recommendations and the insights gained from them. The authors also offer a perspective on potential efforts to improve the efficacy of future clinical trials in children following TBI.
Collapse
Affiliation(s)
- Brian Appavu
- 1Barrow Neurological Institute at Phoenix Children's Hospital; and
- 2University of Arizona College of Medicine-Phoenix, Department of Child Health, Phoenix, Arizona
| | - Stephen T Foldes
- 1Barrow Neurological Institute at Phoenix Children's Hospital; and
| | - P David Adelson
- 1Barrow Neurological Institute at Phoenix Children's Hospital; and
- 2University of Arizona College of Medicine-Phoenix, Department of Child Health, Phoenix, Arizona
| |
Collapse
|