1
|
Zhao WJ, Fan YP, Ou GY, Qiao XY. LASS2 impairs proliferation of glioma stem cells and migration and invasion of glioma cells mainly via inhibition of EMT and apoptosis promotion. J Cancer 2022; 13:2281-2292. [PMID: 35517425 PMCID: PMC9066216 DOI: 10.7150/jca.71256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 02/05/2023] Open
Abstract
LAG1 longevity assurance homolog 2 (LASS2), a highly conserved transmembrane protein, has been reported in several cancer types. However, the roles of LASS2 in glioma biology remain elusive. In the present study, we investigated the expression of LAAS2 in human glioma tissues and the effects of LASS2 on glioma stem cell (GSC) proliferation. Roles of LASS2 in glioma cell migration and invasion were also researched both in vitro and in vivo. Our results demonstrated that the level of LASS2 is gradually reduced with the increase of glioma grade. The level of LASS2 is significantly lower in GSCs than in non GSCs, whereas LASS2 overexpression reduced the sphere formation and promoted the differentiation of CD133+ glioblastoma cells, as was indicated by reduced levels of CD133 and Nestin. In addition, LASS2 overexpression significantly reduced colony formation, migration, and invasion of glioma cells by promoting tumor cell apoptosis and inhibiting epithelial-mesenchymal transition (EMT). Overexpression of LASS2 inhibited U-87 MG cell-derived glioma xenograft growth in nude mice in a manner similar to in vitro. Our findings indicate that LASS2 can function as a suppressor of glioma growth, suggesting that modulation of LASS2 expression may contribute to a novel strategy for the management of glioma via inhibition of GSCs.
Collapse
Affiliation(s)
- Wei-Jiang Zhao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Yi-Pu Fan
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Guan-Yong Ou
- Center for Neuroscience, Shantou University Medical College, Shantou 515041, Guangdong, P.R. China
| | - Xin-Yu Qiao
- Cell Biology Department, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, P.R. China
| |
Collapse
|
2
|
Do ASMS, Amano T, Edwards LA, Zhang L, De Peralta-Venturina M, Yu JS. CD133 mRNA-Loaded Dendritic Cell Vaccination Abrogates Glioma Stem Cell Propagation in Humanized Glioblastoma Mouse Model. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:295-303. [PMID: 32728617 PMCID: PMC7378271 DOI: 10.1016/j.omto.2020.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
Cancer stem cells are initiating cells of cancer and propagate its growth through self-renewal and differentiation of its daughter cells. CD133 is a cell surface antigen that is present on glioma stem cells and has been used to prospectively isolate glioma stem cells. We hypothesized that a major histocompatibility complex (MHC)-independent and long-lasting immune response against CD133 could be generated by transfecting CD133 mRNA into dendritic cells and vaccinating animals with experimental gliomas. To test this hypothesis, we developed a novel humanized mouse model using CD34-positive hematopoietic stem cells. We confirmed the robust simultaneous activation of CD8- and CD4-positive T cells by dendritic cell vaccination with modified CD133 mRNA leading to a potent and long-lived immune response, with subsequent abrogation of CD133-positive glioma stem cell propagation and tumor growth. This study for the first time demonstrates in both a humanized mouse model and in a syngeneic mouse model of glioblastoma that targeting a glioma stem cell-associated antigen is an effective strategy to target and kill glioma stem cells. This novel and simple humanized mouse model for immunotherapy is a significant advance in our ability to test human-specific immunotherapies for glioblastoma.
Collapse
Affiliation(s)
| | - Takayuki Amano
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lincoln A Edwards
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lei Zhang
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
3
|
Lv D, Ma QH, Duan JJ, Wu HB, Zhao XL, Yu SC, Bian XW. Optimized dissociation protocol for isolating human glioma stem cells from tumorspheres via fluorescence-activated cell sorting. Cancer Lett 2016; 377:105-15. [PMID: 27091400 DOI: 10.1016/j.canlet.2016.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/12/2016] [Accepted: 04/12/2016] [Indexed: 12/28/2022]
Abstract
Fluorescence-activated cell sorting (FACS) based on the surface marker CD133 is the most common method for isolating glioma stem cells (GSCs) from heterogeneous glioma cell populations. Optimization of this method will have profound implications for the future of GSC research. Five commonly used digestion reagents, Liberase-TL, trypsin, TrypLE, Accutase, and non-enzymatic cell dissociation solution (NECDS), were used to dissociate glioma tumorspheres derived from two primary glioma specimens (091214 and 090116) and the cell lines U87 and T98G. The dissociation time, cell viability, retention of CD133, and stemness capacity were assessed. The results showed that single cells derived from the Liberase-TL (200 µg/ml) group exhibited high viability and less damage to the antigen CD133. However, the efficiency of NECDS for dissociating the tumorspheres into single cells was fairly low. Meanwhile, the use of this digestion reagent resulted in obvious cellular and antigenic impairments. Taken together, Liberase-TL (200 µg/ml) is an ideal reagent for isolating GSCs from tumorspheres. In contrast, the use of NECDS for such a protocol should be carefully considered.
Collapse
Affiliation(s)
- Donglai Lv
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Qing-Hua Ma
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Jiang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Hai-Bo Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Xi-Long Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400037, China; Key Laboratory of Tumor Immunology and Pathology of Ministry of Education, Chongqing 400037, China.
| |
Collapse
|
4
|
Jin F, Zhang R, Feng S, Yuan CT, Zhang RY, Han GK, Li GH, Yu XZ, Liu Y, Kong LS, Zhang SL, Zhao L. Pathological features of transplanted tumor established by CD133 positive TJ905 glioblastoma stem-like cells. Cancer Cell Int 2015; 15:60. [PMID: 26136642 PMCID: PMC4487198 DOI: 10.1186/s12935-015-0208-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 05/22/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND This study is to explore the pathological features of transplanted tumor established by CD133 positive TJ905 glioblastoma stem-like cells. METHODS CD133 positive TJ905 glioma cells were separated by immunomagnetic beads to isolate glioma stem-like cells. TJ905 cells and stem-like cells were inoculated subcutaneously into the mice to establish model of transplanted tumor, respectively. Mice growing condition and behavior were observed. HE staining assay, immunohistochemical assay for GFAP, Ki-67 and Olig-2, and CD34 marked microvascular density (MVD) test were performed. RESULTS The growing condition and behavior of mice in TJ905 stem cell group was more exaggerated and the models showed stronger malignant features pathologically than that in TJ905 cell group. Glial fibrillary acidic protein (GFAP) in TJ905 cell and stem-like cell group showed the transplanted tumor originated from astrocytes. Expression of Ki-67 and oligodendrocyte transcription factor-2 (Olig-2) in TJ905 stem cells was higher notably and CD34 expression in stem cell group was significantly higher than that in the other two groups. CONCLUSIONS Pathological features of transplanted tumor established by CD133 positive glioblastoma stem-like cells show more malignant. Use of TJ905 stem cells to establish transplanted tumor model in nude mice is excellent for glioma research.
Collapse
Affiliation(s)
- Feng Jin
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 PR China
| | - Ran Zhang
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 PR China
| | - Song Feng
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 PR China
| | - Chuan-Tao Yuan
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029 PR China
| | - Ren-Ya Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272029 PR China
| | - Guang-Kui Han
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 PR China
| | - Gen-Hua Li
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 PR China
| | - Xi-Zhen Yu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 PR China
| | - Yang Liu
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 PR China
| | - Ling-Sheng Kong
- Department of Neurosurgery, Affiliated Hospital of Jining Medical University, and Shangdong Provincial Key Laboratory of Stem Cells and Neuro-oncology, Jining, Shandong 272029 PR China
| | - Shu-Ling Zhang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 PR China
| | - Lei Zhao
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 PR China
| |
Collapse
|
5
|
NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, enhances the radiosensitivity of human glioma stem cells in vitro. Acta Pharmacol Sin 2013; 34:681-90. [PMID: 23603977 DOI: 10.1038/aps.2013.22] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIM NVP-BEZ235 is a novel dual PI3K/mTOR inhibitor and shows dramatic effects on gliomas. The aim of this study was to investigate the effects of NVP-BEZ235 on the radiosensitivity and autophagy of glioma stem cells (GSCs) in vitro. METHODS Human GSCs (SU-2) were tested. The cell viability and survival from ionizing radiation (IR) were evaluated using MTT and clonogenic survival assay, respectively. Immunofluorescence assays were used to identify the formation of autophagosomes. The apoptotic cells were quantified with annexin V-FITC/PI staining and flow cytometry, and observed using Hoechst 33258 staining and fluorescence microscope. Western blot analysis was used to analyze the expression levels of proteins. Cell cycle status was determined by measuring DNA content after staining with PI. DNA repair in the cells was assessed using a comet assay. RESULTS Treatment of SU-2 cells with NVP-BEZ235 (10-320 nmol/L) alone suppressed the cell growth in a concentration-dependent manner. A low concentration of NVP-BEZ235 (10 nmol/L) significantly increased the radiation sensitivity of SU-2 cells, which could be blocked by co-treatment with 3-MA (50 μmol/L). In NVP-BEZ235-treated SU-2 cells, more punctate patterns of microtubule-associated protein LC3 immunoreactivity was observed, and the level of membrane-bound LC3-II was significantly increased. A combination of IR with NVP-BEZ235 significantly increased the apoptosis of SU-2 cells, as shown in the increased levels of BID, Bax, and active caspase-3, and decreased level of Bcl-2. Furthermore, the combination of IR with NVP-BEZ235 led to G1 cell cycle arrest. Moreover, NVP-BEZ235 significantly attenuated the repair of IR-induced DNA damage as reflected by the tail length of the comet. CONCLUSION NVP-BEZ235 increases the radiosensitivity of GSCs in vitro by activating autophagy that is associated with synergistic increase of apoptosis and cell-cycle arrest and decrease of DNA repair capacity.
Collapse
|
6
|
Li SC, Vu LT, Ho HW, Yin HZ, Keschrumrus V, Lu Q, Wang J, Zhang H, Ma Z, Stover A, Weiss JH, Schwartz PH, Loudon WG. Cancer stem cells from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. Cancer Cell Int 2012; 12:41. [PMID: 22995409 PMCID: PMC3546918 DOI: 10.1186/1475-2867-12-41] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/10/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The cancer stem cell (CSC) hypothesis posits that deregulated neural stem cells (NSCs) form the basis of brain tumors such as glioblastoma multiforme (GBM). GBM, however, usually forms in the cerebral white matter while normal NSCs reside in subventricular and hippocampal regions. We attempted to characterize CSCs from a rare form of glioblastoma multiforme involving the neurogenic ventricular wall. METHODS We described isolating CSCs from a GBM involving the lateral ventricles and characterized these cells with in vitro molecular biomarker profiling, cellular behavior, ex vivo and in vivo techniques. RESULTS The patient's MRI revealed a heterogeneous mass with associated edema, involving the left subventricular zone. Histological examination of the tumor established it as being a high-grade glial neoplasm, characterized by polygonal and fusiform cells with marked nuclear atypia, amphophilic cytoplasm, prominent nucleoli, frequent mitotic figures, irregular zones of necrosis and vascular hyperplasia. Recurrence of the tumor occurred shortly after the surgical resection. CD133-positive cells, isolated from the tumor, expressed stem cell markers including nestin, CD133, Ki67, Sox2, EFNB1, EFNB2, EFNB3, Cav-1, Musashi, Nucleostemin, Notch 2, Notch 4, and Pax6. Biomarkers expressed in differentiated cells included Cathepsin L, Cathepsin B, Mucin18, Mucin24, c-Myc, NSE, and TIMP1. Expression of unique cancer-related transcripts in these CD133-positive cells, such as caveolin-1 and -2, do not appear to have been previously reported in the literature. Ex vivo organotypic brain slice co-culture showed that the CD133+ cells behaved like tumor cells. The CD133-positive cells also induced tumor formation when they were stereotactically transplanted into the brains of the immune-deficient NOD/SCID mice. CONCLUSIONS This brain tumor involving the neurogenic lateral ventricular wall was comprised of tumor-forming, CD133-positive cancer stem cells, which are likely the driving force for the rapid recurrence of the tumor in the patient.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology Research Laboratory, Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County (CHOC) Research Institute, 455 South Main Street, Orange, CA 92868, USA
- Department of Neurology, University of California Irvine, Orange, CA 92862, USA
- Department of Biological Science, California State University, Fullerton, CA, 92834, USA
| | - Long T Vu
- Neuro-Oncology Research Laboratory, Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County (CHOC) Research Institute, 455 South Main Street, Orange, CA 92868, USA
- Department of Biological Science, California State University, Fullerton, CA, 92834, USA
| | - Hector W Ho
- Department of Neurological Surgery, Saint Joseph Hospital, Orange, CA, 92868, USA
- Department of Neurological Surgery, University of California Irvine, Orange, CA, 92862, USA
| | - Hong Zhen Yin
- Department of Neurology, University of California Irvine, Orange, CA 92862, USA
| | - Vic Keschrumrus
- Neuro-Oncology Research Laboratory, Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County (CHOC) Research Institute, 455 South Main Street, Orange, CA 92868, USA
| | - Qiang Lu
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Jun Wang
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Heying Zhang
- Department of Neurosciences, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Zhiwei Ma
- Department of Pathology and Laboratory Medicine, Good Samaritan Hospital Medical Center, 1000 Montauk Highway, West Islip, NY, 11795, USA
| | - Alexander Stover
- National Human Neural Stem Cell Resource, Center for Neuroscience and Stem Cell Research, CHOC Children's Hospital Research Institute, 455 South Main Street, Orange, CA, 92868, USA
| | - John H Weiss
- Department of Neurology, University of California Irvine, Orange, CA 92862, USA
| | - Philip H Schwartz
- National Human Neural Stem Cell Resource, Center for Neuroscience and Stem Cell Research, CHOC Children's Hospital Research Institute, 455 South Main Street, Orange, CA, 92868, USA
- Developmental Biology Center, University of California Irvine, Irvine, CA, 92612, USA
| | - William G Loudon
- Neuro-Oncology Research Laboratory, Center for Neuroscience and Stem Cell Research, Children's Hospital of Orange County (CHOC) Research Institute, 455 South Main Street, Orange, CA 92868, USA
- Department of Neurological Surgery, Saint Joseph Hospital, Orange, CA, 92868, USA
- Department of Neurological Surgery, University of California Irvine, Orange, CA, 92862, USA
| |
Collapse
|
7
|
Qiu B, Zhang D, Tao J, Wu A, Wang Y. A simplified and modified procedure to culture brain glioma stem cells from clinical specimens. Oncol Lett 2011; 3:50-54. [PMID: 22740855 DOI: 10.3892/ol.2011.433] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/26/2011] [Indexed: 01/05/2023] Open
Abstract
In recent years, the theory of brain glioma stem cells (BGSCs) has facilitated the study of gliomas. BGSCs have been accepted as the origin of gliomas and determine their biological features. Numerous efforts have been made to probe into the biological characteristics and behaviors of BGSCs. However, the culturing of target cells remains the essential first step for research on BGSCs. In this study, we established a simplified procedure to culture and isolate BGSCs from samples of clinical glioma patients. Samples of 17 glioma patients were included in the study, and the processed glioma cells were grown in serum-free stem cell media. After the tumor spheres appeared, a proliferation assay, a single-cell-derived colonies formation assay and an induced differentiation assay were carried out, followed by an immunocytochemistry assay. Serial passage was used to purify the target cells, whereas neither animal experiments nor sorting techniques were included. As a result, CD133(+) BGSCs from 8 out of 17 patients were grown and maintained in a serum-free condition combined with EGF, FGF and B-27 supplements. The tumor sphere cells were serially passaged and showed pluripotency in an induced differentiation assay. Immunocytochemistry identified the committed markers (CD133, GFAP and TU-20) and confirmed the cells were BGSCs and their progeny. The results proved that CD133(+) BGSCs from resected glioma tissue may be cultured in serum-free stem cell media, and may also be purified by conditioned culture combining serial passage, which is time-saving and cost-effective, and allows the cells to be used for subsequent research. The cell sorting techniques and animal experiments of tumorigenecity are optional. Thus, this modified procedure is more practical and feasible than other available procedures.
Collapse
Affiliation(s)
- Bo Qiu
- Department of Neurosurgery, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | | | | | | | | |
Collapse
|
8
|
Santra M, Zheng X, Roberts C, Santra S, Lu M, Panda S, Jiang F, Chopp M. Single doublecortin gene therapy significantly reduces glioma tumor volume. J Neurosci Res 2010; 88:304-14. [PMID: 19681167 PMCID: PMC2795007 DOI: 10.1002/jnr.22207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We employed lentivirus-based doublecortin (DCX), as a glioma suppressor gene therapy in an intracranial glioma tumor xenograft model in nude rats. Single DCX-expressing lentivirus was directly administered into the tumor on day 8 after U87 tumor cell implantation. DCX treatment significantly reduced U87 glioma tumor volume (approximately 60%) on day 14 after DCX lentivirus injection and significantly improved median survival of tumor-bearing nude rats. DCX synthesis induced neuronal markers MAP2, TUJ1, and PSA-NCAM and the glial marker glial fibrillary acidic protein (GFAP) in the implanted U87 glioma tumors. DCX synthesis induced GFAP that colocalized with tubulin in the mitotic stage, inhibited cleavage furrow during cytokinesis, and blocked mitosis in glioma cells. DCX lentivirus infection did not induce apoptosis but significantly inhibited expression of the proliferation marker Ki-67 and the blood vessel marker von-Willebrand factor (vWF). U87 and other glioma cells except for brain tumor stem cells (BTSCs) do not express neuronal markers or both neuronal and glial markers. DCX-synthesizing glioma cells express a phenotype of antiangiogenic BTSC-like cells with terminal differentiation that causes remission of glioma cells by blocking mitosis via a novel DCX/GFAP pathway. Direct local delivery of lentivirus-based DCX gene therapy is a potential differentiation-based therapeutic approach for the treatment of glioma.
Collapse
Affiliation(s)
- Manoranjan Santra
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Xuguang Zheng
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Cindi Roberts
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sutapa Santra
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Mei Lu
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Swayamprava Panda
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Feng Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI 48202, USA
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
9
|
Johannessen TA, Wang J, Skaftnesmo K, Sakariassen PØ, Enger PØ, Petersen K, Øyan AM, Kalland K, Bjerkvig R, Tysnes BB. Highly infiltrative brain tumours show reduced chemosensitivity associated with a stem cell‐like phenotype. Neuropathol Appl Neurobiol 2009. [DOI: 10.1111/j.1365-2990.2009.01008.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
| | - J. Wang
- NorLux Neuro Oncology, Department of Biomedicine,
| | | | | | - P. Ø. Enger
- NorLux Neuro Oncology, Department of Biomedicine,
- Neurosurgery and
| | - K. Petersen
- Bergen Center for Computational Science, Unifob A/S,
| | - A. M. Øyan
- The Gade Institute, University of Bergen, Departments of
- Microbiology and Immunology, Haukeland University Hospital, Bergen, Norway, and
| | - K.‐H. Kalland
- The Gade Institute, University of Bergen, Departments of
- Microbiology and Immunology, Haukeland University Hospital, Bergen, Norway, and
| | - R. Bjerkvig
- NorLux Neuro Oncology, Department of Biomedicine,
- NorLux Neuro‐Oncology, Centre Recherché de Public Santé, Luxembourg
| | - B. B. Tysnes
- NorLux Neuro Oncology, Department of Biomedicine,
| |
Collapse
|
10
|
Greenfield JP, Ayuso-Sacido A, Schwartz TH, Pannullo S, Souweidane M, Stieg PE, Boockvar JA. Use of human neural tissue for the generation of progenitors. Neurosurgery 2008; 62:21-37; discussion 27-30. [PMID: 18300889 DOI: 10.1227/01.neu.0000311059.87873.46] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Accumulating evidence suggests that a better understanding of normal human brain stem cells and tumor stem cells (TSCs) will have profound implications for treating central nervous system disease during the next decade. Neurosurgeons routinely resect excess surgical tissue containing either normal brain stem cells or TSCs. These cells are immediately available for expansion and use in basic biological assays, animal implantation, and comparative analysis studies. Although normal stem cells have much slower kinetics of expansion than TSCs, they are easily expandable and can be frozen for future use in stem cell banks. This nearly limitless resource holds promise for understanding the basic biology of normal brain stem cells and TSCs, which will likely direct the next major shift in therapeutics for brain tumors, brain and spinal cord injury, and neurodegenerative disease. This report reviews the progress that has been made in harvesting and expanding both normal and tumor-derived stem cells and emphasizes the integral role neurosurgeons will play in moving the neural stem cell field forward.
Collapse
Affiliation(s)
- Jeffrey P Greenfield
- Laboratory for Translational Stem Cell Research, Weill Cornell Brain Tumor Center, Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Lu C, Shervington A. Chemoresistance in gliomas. Mol Cell Biochem 2008; 312:71-80. [PMID: 18259841 DOI: 10.1007/s11010-008-9722-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/29/2008] [Indexed: 01/07/2023]
Abstract
Despite improved knowledge and advanced treatments of gliomas, the overall survival rate for glioma patients remains low. Gliomas comprise of significant cell heterogeneity that contains a large number of multidrug resistant (MDR) phenotypes and cancer stem cells (CSCs), a combination that may contribute to the resistance to treatment. This article reviews the MDR related genes, major-vault protein (MVP), anti-apoptotic protein (Bcl-2) and the molecular mechanisms that may contribute to chemoresistance, in addition to the upregulated MDR phenotypes present in CSCs that has recently been identified in gliomas. Moreover, future potential therapies that modulate MDR phenotypes and CSCs are also reviewed. An improved understanding of MDR may lead to a combined treatment, targeting both CSCs and their protective MDR phenotypes leading eventually to attractive strategies for the treatment of gliomas.
Collapse
Affiliation(s)
- Chen Lu
- Brain Tumour North West, Faculty of Science, University of Central Lancashire, Preston, UK
| | | |
Collapse
|
12
|
Beckner ME, Jane EP, Jankowitz B, Agostino NR, Walter KA, Hamilton RL, Pollack IF. Tumor cells from ultrasonic aspirations of glioblastomas migrate and form spheres with radial outgrowth. Cancer Lett 2007; 255:135-44. [PMID: 17543444 PMCID: PMC2000342 DOI: 10.1016/j.canlet.2007.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 03/21/2007] [Accepted: 04/10/2007] [Indexed: 01/22/2023]
Abstract
Studies of primary cells from malignant brain tumors such as glioblastomas are limited by the small size of surgically resected specimens. However, glioblastomas are also frequently debulked via ultrasonic aspiration. In this study, we examined the functional competence and growth of their aspirated cells. Cells from minced tissue and aspirations were comparable in migration, formation of pseudopodia, development of cellular spheres with radial outgrowth, and neuroectodermal features. Cultures were maintained for more than six weeks without fibroblastic overgrowth. Our observations show that ultrasonically aspirated specimens contain cells useful for studies of tumor migration and growth of tumorspheres.
Collapse
Affiliation(s)
- Marie E Beckner
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Schulenburg A, Ulrich-Pur H, Thurnher D, Erovic B, Florian S, Sperr WR, Kalhs P, Marian B, Wrba F, Zielinski CC, Valent P. Neoplastic stem cells: A novel therapeutic target in clinical oncology. Cancer 2006; 107:2512-20. [PMID: 17039500 DOI: 10.1002/cncr.22277] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer is among the leading causes of morbidity and mortality in the Western world. Despite recent advances, most therapeutic approaches fail to eradicate the entire neoplastic clone. The remaining cells often develop metastasis and/or recurrences and therefore may represent attractive targets of therapy. A new exciting concept in this regard suggests that each neoplasm represents a heterogeneous population of cells that pertain to long-term tumor growth both in vivo in the natural host and in experimental animals. This concept postulates the existence of small fractions of 'tumor stem cells' that exhibit a capacity for self-renewal and unlimited growth and therefore are distinct from their progeny. Based on these hypotheses, the targeting of neoplastic stem cells is considered indispensable for eradication of the entire clone and for the development of curative treatment approaches. However, tumor stem cells often may be quiescent cells and may express a different profile of targets compared with 'more mature' tumor cells. Therefore, current efforts have attempted to characterize target expression profiles in cancer stem cells in various malignancies. In the this review, the authors have provided a brief summary of the current knowledge of neoplastic stem cells and the application of respective concepts in translational oncology with the ultimate objective of improving anticancer therapy.
Collapse
Affiliation(s)
- Axel Schulenburg
- Bone Marrow Transplantation Unit, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|