1
|
Ghosh S, Huda P, Fletcher NL, Howard CB, Walsh B, Campbell D, Pinkham MB, Thurecht KJ. Antibody-Based Formats to Target Glioblastoma: Overcoming Barriers to Protein Drug Delivery. Mol Pharm 2022; 19:1233-1247. [PMID: 35438509 DOI: 10.1021/acs.molpharmaceut.1c00996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glioblastoma (GB) is recognized as the most aggressive form of primary brain cancer. Despite advances in treatment strategies that include surgery, radiation, and chemotherapy, the median survival time (∼15 months) of patients with GB has not significantly improved. The poor prognosis of GB is also associated with a very high chance of tumor recurrence (∼90%), and current treatment measures have failed to address the complications associated with this disease. However, targeted therapies enabled through antibody engineering have shown promise in countering GB when used in combination with conventional approaches. Here, we discuss the challenges in conventional as well as future GB therapeutics and highlight some of the known advantages of using targeted biologics to overcome these impediments. We also review a broad range of potential alternative routes that could be used clinically to administer anti-GB biologics to the brain through evasion of its natural barriers.
Collapse
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Bradley Walsh
- GlyTherix, Ltd., Sydney, New South Wales 2113, Australia
| | | | - Mark B Pinkham
- Department of Radiation Oncology, Princess Alexandra Hospital, Woolloongabba, Queensland 4102, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN) and ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Loya J, Zhang C, Cox E, Achrol AS, Kesari S. Biological intratumoral therapy for the high-grade glioma part II: vector- and cell-based therapies and radioimmunotherapy. CNS Oncol 2019; 8:CNS40. [PMID: 31747784 PMCID: PMC6880300 DOI: 10.2217/cns-2019-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Management of high-grade gliomas (HGGs) remains a complex challenge with an overall poor prognosis despite aggressive multimodal treatment. New translational research has focused on maximizing tumor cell eradication through improved tumor cell targeting while minimizing collateral systemic side effects. In particular, biological intratumoral therapies have been the focus of novel translational research efforts due to their inherent potential to be both dynamically adaptive and target specific. This two part review will provide an overview of biological intratumoral therapies that have been evaluated in human clinical trials in HGGs, and summarize key advances and remaining challenges in the development of these therapies as a potential new paradigm in the management of HGGs. Part II discusses vector-based therapies, cell-based therapies and radioimmunotherapy.
Collapse
Affiliation(s)
- Joshua Loya
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Charlie Zhang
- Buffalo School of Medicine, State University of New York, Buffalo, NY 14202, USA
| | - Emily Cox
- Providence Medical Research Center, Spokane, WA 99204, USA
| | - Achal S Achrol
- John Wayne Cancer Institute, Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| | - Santosh Kesari
- John Wayne Cancer Institute, Pacific Neuroscience Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
3
|
Loya J, Zhang C, Cox E, Achrol AS, Kesari S. Biological intratumoral therapy for the high-grade glioma part I: intratumoral delivery and immunotoxins. CNS Oncol 2019; 8:CNS38. [PMID: 31747788 PMCID: PMC6880302 DOI: 10.2217/cns-2019-0001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Management of high-grade gliomas remains a complex challenge. Standard of care consists of microsurgical resection, chemotherapy and radiation, but despite these aggressive multimodality therapies the overall prognosis remains poor. A major focus of ongoing translational research studies is to develop novel therapeutic strategies that can maximize tumor cell eradication while minimizing collateral side effects. Particularly, biological intratumoral therapies have been the focus of new translational research efforts due to their inherent potential to be both dynamically adaptive and target specific. This two-part review will provide an overview of biological intratumoral therapies and summarize key advances and remaining challenges in intratumoral biological therapies for high-grade glioma. Part I focuses on discussion of the concepts of intratumoral delivery and immunotoxin therapies.
Collapse
Affiliation(s)
- Joshua Loya
- Wayne State University School of Medicine, Department of Neurosurgery, 42 W Warren Ave, Detroit, MI 48202, USA
| | - Charlie Zhang
- State University of New York at Buffalo School of Medicine, 1010 Main St, Buffalo, NY 14202, USA
| | - Emily Cox
- Providence Medical Research Center, 105 W 8th Ave #6050w, Spokane, WA 99204, USA
| | - Achal S Achrol
- John Wayne Cancer Institute & Pacific Neuroscience Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Santosh Kesari
- John Wayne Cancer Institute & Pacific Neuroscience Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| |
Collapse
|
4
|
Shi M, Sanche L. Convection-Enhanced Delivery in Malignant Gliomas: A Review of Toxicity and Efficacy. JOURNAL OF ONCOLOGY 2019; 2019:9342796. [PMID: 31428153 PMCID: PMC6679879 DOI: 10.1155/2019/9342796] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/06/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
Abstract
Malignant gliomas are undifferentiated or anaplastic gliomas. They remain incurable with a multitude of modalities, including surgery, radiation, chemotherapy, and alternating electric field therapy. Convection-enhanced delivery (CED) is a local treatment that can bypass the blood-brain barrier and increase the tumor uptake of therapeutic agents, while decreasing exposure to healthy tissues. Considering the multiple choices of drugs with different antitumor mechanisms, the supra-additive effect of concomitant radiation and chemotherapy, CED appears as a promising modality for the treatment of brain tumors. In this review, the CED-related toxicities are summarized and classified into immediate, early, and late side effects based on the time of onset, and local and systemic toxicities based on the location of toxicity. The efficacies of CED of various therapeutic agents including targeted antitumor agents, chemotherapeutic agents, radioisotopes, and immunomodulators are covered. The phase III trial PRECISE compares CED of IL13-PE38QQR, an interleukin-13 conjugated to Pseudomonas aeruginosa exotoxin A, to Gliadel® Wafer, a polymer loaded with carmustine. However, in this case, CED had no significant median survival improvement (11.3 months vs. 10 months) in patients with recurrent glioblastomas. In phase II studies, CED of recombinant poliovirus (PVSRIPO) had an overall survival of 21% vs. 14% for the control group at 24 months, and 21% vs. 4% at 36 months. CED of Tf-diphtheria toxin had a response rate of 35% in recurrent malignant gliomas patients. On the other hand, the TGF-β2 inhibitor Trabedersen, HSV-1-tk ganciclovir, and radioisotope 131I-chTNT-1/B mAb had a limited response rate. With this treatment, patients who received CED of the chemotherapeutic agent paclitaxel and immunomodulator, oligodeoxynucleotides containing CpG motifs (CpG-ODN), experienced intolerable toxicity. Toward the end of this article, an ideal CED treatment procedure is proposed and the methods for quality assurance of the CED procedure are discussed.
Collapse
Affiliation(s)
- Minghan Shi
- Department of Radiation Oncology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
5
|
Kumar NN, Pizzo ME, Nehra G, Wilken-Resman B, Boroumand S, Thorne RG. Passive Immunotherapies for Central Nervous System Disorders: Current Delivery Challenges and New Approaches. Bioconjug Chem 2018; 29:3937-3966. [PMID: 30265523 PMCID: PMC7234797 DOI: 10.1021/acs.bioconjchem.8b00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Passive immunotherapy, i.e., the administration of exogenous antibodies that recognize a specific target antigen, has gained significant momentum as a potential treatment strategy for several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and brain cancer, among others. Advances in antibody engineering to create therapeutic antibody fragments or antibody conjugates have introduced new strategies that may also be applied to treat CNS disorders. However, drug delivery to the CNS for antibodies and other macromolecules has thus far proven challenging, due in large part to the blood-brain barrier and blood-cerebrospinal fluid barriers that greatly restrict transport of peripherally administered molecules from the systemic circulation into the CNS. Here, we summarize the various passive immunotherapy approaches under study for the treatment of CNS disorders, with a primary focus on disease-specific and target site-specific challenges to drug delivery and new, cutting edge methods.
Collapse
Affiliation(s)
- Niyanta N. Kumar
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Michelle E. Pizzo
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Geetika Nehra
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Brynna Wilken-Resman
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Sam Boroumand
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
| | - Robert G. Thorne
- Pharmaceutical Sciences Division, University of
Wisconsin-Madison School of Pharmacy
- Clinical Neuroengineering Training Program, University of
Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Neuroscience Training Program & Center for
Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705, United
States
- Cellular and Molecular Pathology Graduate Training Program,
University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
6
|
Kalkowski L, Malysz-Cymborska I, Golubczyk D, Janowski M, Holak P, Milewska K, Kedziorek D, Adamiak Z, Maksymowicz W, Walczak P. MRI-guided intracerebral convection-enhanced injection of gliotoxins to induce focal demyelination in swine. PLoS One 2018; 13:e0204650. [PMID: 30273376 PMCID: PMC6166947 DOI: 10.1371/journal.pone.0204650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Demyelinating disorders such as multiple sclerosis (MS) or transverse myelitis are devastating neurological conditions with no effective cure. Prevention of myelin loss or restoration of myelin are key for successful therapy. To investigate the disease and develop cures animal models with good clinical relevance are essential. The goal of the current study was to establish a model of focal demyelination in the brain of domestic pig using MRI-guided gliotoxin delivery. The rationale for developing a new myelin disease model in the domestic pig was based on the fact that the brain in pigs is anatomically and histologically much more similar to that of humans compared to the rodent brain. For MRI-assisted gliotoxin injection, eight 30 kg pigs were subjected to treatment with lysolecithin (20, 30 mg/ml); or with ethidium bromide (0.0125, 0.05, 0.2 mg/ml). Animals were placed in an MRI scanner for intraparenchymal targeting of gliotoxin into the corona radiata (250 μl over 1h), with real-time monitoring of toxin distribution on T1 scans and monitoring of lesion evolution over seven days using both T1 and T2 scans. After the last MRI, animals were transcardially perfused and brains were processed for histological and immunofluorescent analysis. Gadolinium-enhanced T1 MRI during injection demonstrated biodistribution of the contrast (as a surrogate marker for toxin distribution) and its diffusion through the brain parenchyma. Lesion induction was confirmed on T2-weighted MRI and histopathology, thus enabling the establishment of optimal doses of gliotoxins. To conclude, MRI-guided focal demyelination in swine is accurate and provides real-time confirmation of gliotoxin, thus facilitating placement of focal lesions with high precision. This new model of focal demyelination can be used for further investigation and development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Lukasz Kalkowski
- Dept of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Izabela Malysz-Cymborska
- Dept of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Dominika Golubczyk
- Dept of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- NeuroRepair Dept, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Institute for Cell Engineering, Cellular Imaging Section, The Johns Hopkins University School of Medicine, Baltimore, United States of America
- Division Russell H. Morgan Dept. of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Piotr Holak
- Dept of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Kamila Milewska
- Dept of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Dorota Kedziorek
- Institute for Cell Engineering, Cellular Imaging Section, The Johns Hopkins University School of Medicine, Baltimore, United States of America
- Division Russell H. Morgan Dept. of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Zbigniew Adamiak
- Dept of Surgery and Radiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Wojciech Maksymowicz
- Dept of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Piotr Walczak
- Dept of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
- Institute for Cell Engineering, Cellular Imaging Section, The Johns Hopkins University School of Medicine, Baltimore, United States of America
- Division Russell H. Morgan Dept. of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
7
|
Systems engineers’ role in biomedical research. Convection-enhanced drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-63964-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
8
|
Zhou Z, Singh R, Souweidane MM. Convection-Enhanced Delivery for Diffuse Intrinsic Pontine Glioma Treatment. Curr Neuropharmacol 2017; 15:116-128. [PMID: 27306036 PMCID: PMC5327456 DOI: 10.2174/1570159x14666160614093615] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 01/29/2015] [Accepted: 02/08/2016] [Indexed: 12/28/2022] Open
Abstract
Convection-enhanced delivery (CED) is a technique designed to deliver drugs directly into the brain or tumors. Its ability to bypass the blood-brain barrier (BBB), one of the major hurdles in delivering drugs to the brain, has made it a promising drug delivery method for the treatment of primary brain tumors. A number of clinical trials utilizing CED of various therapeutic agents have been conducted to treat patients with supratentorial high-grade gliomas. Significant responses have been observed in certain patients in all of these trials. However, the insufficient ability to monitor drug distribution and pharmacokinetics hampers CED from achieving its potentials on a larger scale. Brainstem CED for diffuse intrinsic pontine glioma (DIPG) treatment is appealing because this tumor is compact and has no definitive treatment. The safety of brainstem CED has been established in small and large animals, and recently in early stage clinical trials. There are a few current clinical trials of brainstem CED in treating DIPG patients using targeted macromolecules such as antibodies and immunotoxins. Future advances for CED in DIPG treatment will come from several directions including: choosing the right agents for infusion; developing better agents and regimen for DIPG infusion; improving instruments and technique for easier and accurate surgical targeting and for allowing multisession or prolonged infusion to implement optimal time sequence; and better understanding and control of drug distribution, clearance and time sequence. CED-based therapies for DIPG will continue to evolve with new understanding of the technique and the disease.
Collapse
|
9
|
Zeltsman M, Mayor M, Jones DR, Adusumilli PS. Surgical immune interventions for solid malignancies. Am J Surg 2016; 212:682-690.e5. [PMID: 27659157 DOI: 10.1016/j.amjsurg.2016.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The purpose of this study was to systematically review clinically translatable immunotherapeutic agents that are delivered regionally for solid malignancies. DATA SOURCES PubMed and ClinicalTrials.gov were searched for published and registered clinical trials, respectively. The search yielded 334 relevant publications, of which 116 articles were included for review after exclusion criteria were applied. CONCLUSIONS There has been an increase in the regional administration of cell-based and viral vector-based clinical trials over the last 5 years. Surgical interventions have been developed for intrapleural, intracranial, intraperitoneal, and intratumoral routes of access to enhance the local delivery of these therapies. Multimodality therapies that combine regional immunotherapy with other local and systemic therapies are demonstrating continued growth as the field of immunotherapy continues to expand.
Collapse
Affiliation(s)
- Masha Zeltsman
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA
| | - Marissa Mayor
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY, USA.
| |
Collapse
|
10
|
Abstract
This chapter will review the challenges in pharmacotherapy in primary brain tumors that include the presence of the blood-brain barrier, a blood-tumor barrier, active drug efflux pumps, and high plasma protein binding of agents. The approaches to improve the delivery of drugs to the brain will be discussed. Often the management of brain tumors involves the use of corticosteroids and enzyme-inducing antiseizure medications that can have significant drug interactions that may impact the efficacy or toxicity of drugs used to treat these patients. Various techniques used to assess drug distribution to the brain will be reviewed.
Collapse
|
11
|
Azad TD, Pan J, Connolly ID, Remington A, Wilson CM, Grant GA. Therapeutic strategies to improve drug delivery across the blood-brain barrier. Neurosurg Focus 2015; 38:E9. [PMID: 25727231 DOI: 10.3171/2014.12.focus14758] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Resection of brain tumors is followed by chemotherapy and radiation to ablate remaining malignant cell populations. Targeting these populations stands to reduce tumor recurrence and offer the promise of more complete therapy. Thus, improving access to the tumor, while leaving normal brain tissue unscathed, is a critical pursuit. A central challenge in this endeavor lies in the limited delivery of therapeutics to the tumor itself. The blood-brain barrier (BBB) is responsible for much of this difficulty but also provides an essential separation from systemic circulation. Due to the BBB's physical and chemical constraints, many current therapies, from cytotoxic drugs to antibody-based proteins, cannot gain access to the tumor. This review describes the characteristics of the BBB and associated changes wrought by the presence of a tumor. Current strategies for enhancing the delivery of therapies across the BBB to the tumor will be discussed, with a distinction made between strategies that seek to disrupt the BBB and those that aim to circumvent it.
Collapse
Affiliation(s)
- Tej D Azad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | | | | | | | | | | |
Collapse
|
12
|
Hendricks BK, Cohen-Gadol AA, Miller JC. Novel delivery methods bypassing the blood-brain and blood-tumor barriers. Neurosurg Focus 2015; 38:E10. [PMID: 25727219 DOI: 10.3171/2015.1.focus14767] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor and carries a grave prognosis. Despite years of research investigating potentially new therapies for GBM, the median survival rate of individuals with this disease has remained fairly stagnant. Delivery of drugs to the tumor site is hampered by various barriers posed by the GBM pathological process and by the complex physiology of the blood-brain and blood-cerebrospinal fluid barriers. These anatomical and physiological barriers serve as a natural protection for the brain and preserve brain homeostasis, but they also have significantly limited the reach of intraparenchymal treatments in patients with GBM. In this article, the authors review the functional capabilities of the physical and physiological barriers that impede chemotherapy for GBM, with a specific focus on the pathological alterations of the blood-brain barrier (BBB) in this disease. They also provide an overview of current and future methods for circumventing these barriers in therapeutic interventions. Although ongoing research has yielded some potential options for future GBM therapies, delivery of chemotherapy medications across the BBB remains elusive and has limited the efficacy of these medications.
Collapse
Affiliation(s)
- Benjamin K Hendricks
- Goodman Campbell Brain and Spine, Indiana University Department of Neurological Surgery; and
| | | | | |
Collapse
|
13
|
He X, Xiao Y, Zhang X, Du P, Zhang X, Li J, An Y, Le Pivert P. Percutaneous Tumor Ablation: Cryoablation Facilitates Targeting of Free Epirubicin-Ethanol-Ioversol Solution Interstitially Coinjected in a Rabbit VX2 Tumor Model. Technol Cancer Res Treat 2015. [PMID: 26206769 DOI: 10.1177/1533034615593855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This acute study was aimed at exploring the ability of a cryoablative lesion to drive the distribution of a concomitant in situ injection of a free epirubicin-ethanol-ethiodol-methylene blue mixture. We report the feasibility and safety of this new percutaneous computed tomography-guided combinatorial ablative procedure on VX2 tumors. Eight New Zealand white rabbits bearing 16 tumors on both side of the back muscle were randomly selected and treated on the same day with the following procedures: (1) 8 concomitant cryoablation and interstitial chemotherapy and (2) 8 intratumor marginal chemotherapy. For the latter, an injection needle was positioned at the inner distal margin of a first selected tumor side, where the chemotherapy was delivered during 5 serial sequences. For the concomitant therapy, a single cryoneedle maintained the ice front at the tumor margin, where a needle delivered the drug dose during 5 freeze-injection-thaw sequences. Enhanced computed tomography scans on days 3, 7, and 10 assessed the tumor contours and the tracer localization. Two rabbits were killed on days 0, 3, 7, and 10 for gross and histopathological analyses. During the concomitant therapy, ioversol was distributed at the tumor and iceball margins along with the methylene blue. Enhanced computed tomography on days 3, 7, and 10 showed a focal enlarging defect of the tumor marginal enhancing rim. The rim coincided with focal necrosis at histopathology. During the intratumor chemotherapy procedure, computed tomography showed that the tracers distributed mostly over the tumor mass. No marginal necrosis was detected at histopathology. On day 10, the tumor size for the intratumor chemotherapy group was twice that of the concomitant therapy group. No adverse events were observed. In this VX2 tumor model, our image-guided concomitant therapy is feasible and may enhance the effectiveness of a free epirubicin tracer mixture at the tumor margin.
Collapse
Affiliation(s)
- Xiaofeng He
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Yueyong Xiao
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xiao Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Peng Du
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xin Zhang
- Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Jie Li
- Interventional Drug Delivery Systems & Strategies(ID2S2), Jupiter, FL, USA
| | - Yunxia An
- Department of Pathology, PLA General Hospital, Beijing, China
| | - Patrick Le Pivert
- Interventional Drug Delivery Systems & Strategies(ID2S2), Jupiter, FL, USA
| |
Collapse
|
14
|
Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas. Ther Deliv 2015; 6:353-69. [PMID: 25853310 DOI: 10.4155/tde.14.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malignant gliomas, including glioblastoma and anaplastic astrocytomas, are characterized by their propensity to invade surrounding brain parenchyma, making curative resection difficult. These tumors typically recur within two centimeters of the resection cavity even after gross total removal. As a result, there has been an emphasis on developing therapeutics aimed at achieving local disease control. In this review, we will summarize the current developments in the delivery of local therapeutics, namely direct injection, convection-enhanced delivery and implantation of drug-loaded polymers, as well as the application of these therapeutics in future methods including microchip drug delivery and local gene therapy.
Collapse
|
15
|
Combined local blood-brain barrier opening and systemic methotrexate for the treatment of brain tumors. J Cereb Blood Flow Metab 2015; 35:967-76. [PMID: 25669901 PMCID: PMC4640261 DOI: 10.1038/jcbfm.2015.6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 01/04/2015] [Accepted: 01/06/2015] [Indexed: 01/09/2023]
Abstract
Despite aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme patients, in part due to poor penetration of most drugs across the blood-brain barrier (BBB). We propose a minimal-invasive combined treatment approach consisting of local BBB disruption in the tumor in parallel to systemic drug administration. Local BBB disruption is obtained by convection-enhanced delivery of a novel BBB disruption agent, enabling efficient/targeted delivery of the systemically administered drug by the tumors own vasculature. Various human serum albumin (HSA) analogs were synthesized and screened for BBB disruption efficacy in custom in vitro systems. The candidate analogs were then delivered into naïve rat brains by convection-enhanced delivery and screened for maximal BBB disruption and minimal brain toxicity. These studies found a noncationized/neutralized analog, ethylamine (EA)-HSA, to be the optimal BBB-opening agent. Immunocytochemical studies suggested that BBB disruption by EA-HSA may be explained by alterations in occludin expression. Finally, an efficacy study in rats bearing intracranial gliomas was performed. The rats were treated by convection-enhanced delivery of EA-HSA in parallel to systemic administration of Methotrexate, showing significant antineoplastic effects of the combined approached reflected in suppressed tumor growth and significantly (~x3) prolonged survival.
Collapse
|
16
|
Combined local blood-brain barrier opening and systemic methotrexate for the treatment of brain tumors. J Cereb Blood Flow Metab 2015. [PMID: 25669901 DOI: 10.1038/jcbfm/jcbfm.2015.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite aggressive therapy, existing treatments offer poor prognosis for glioblastoma multiforme patients, in part due to poor penetration of most drugs across the blood-brain barrier (BBB). We propose a minimal-invasive combined treatment approach consisting of local BBB disruption in the tumor in parallel to systemic drug administration. Local BBB disruption is obtained by convection-enhanced delivery of a novel BBB disruption agent, enabling efficient/targeted delivery of the systemically administered drug by the tumors own vasculature. Various human serum albumin (HSA) analogs were synthesized and screened for BBB disruption efficacy in custom in vitro systems. The candidate analogs were then delivered into naïve rat brains by convection-enhanced delivery and screened for maximal BBB disruption and minimal brain toxicity. These studies found a noncationized/neutralized analog, ethylamine (EA)-HSA, to be the optimal BBB-opening agent. Immunocytochemical studies suggested that BBB disruption by EA-HSA may be explained by alterations in occludin expression. Finally, an efficacy study in rats bearing intracranial gliomas was performed. The rats were treated by convection-enhanced delivery of EA-HSA in parallel to systemic administration of Methotrexate, showing significant antineoplastic effects of the combined approached reflected in suppressed tumor growth and significantly (~x3) prolonged survival.
Collapse
|
17
|
Hong H, Chen F, Zhang Y, Cai W. New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 2014; 76:2-20. [PMID: 25086372 DOI: 10.1016/j.addr.2014.07.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 01/03/2023]
Abstract
Tremendous advances over the last several decades in positron emission tomography (PET) and single photon emission computed tomography (SPECT) allow for targeted imaging of molecular and cellular events in the living systems. Angiogenesis, a multistep process regulated by the network of different angiogenic factors, has attracted world-wide interests, due to its pivotal role in the formation and progression of different diseases including cancer, cardiovascular diseases (CVD), and inflammation. In this review article, we will summarize the recent progress in PET or SPECT imaging of a wide variety of vascular targets in three major angiogenesis-related diseases: cancer, cardiovascular diseases, and inflammation. Faster drug development and patient stratification for a specific therapy will become possible with the facilitation of PET or SPECT imaging and it will be critical for the maximum benefit of patients.
Collapse
|
18
|
Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles. Adv Drug Deliv Rev 2014; 76:39-59. [PMID: 25016083 DOI: 10.1016/j.addr.2014.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 12/18/2022]
Abstract
One of the major limitations of current cancer therapy is the inability to deliver tumoricidal agents throughout the entire tumor mass using traditional intravenous administration. Nanoparticles carrying beta-emitting therapeutic radionuclides that are delivered using advanced image-guidance have significant potential to improve solid tumor therapy. The use of image-guidance in combination with nanoparticle carriers can improve the delivery of localized radiation to tumors. Nanoparticles labeled with certain beta-emitting radionuclides are intrinsically theranostic agents that can provide information regarding distribution and regional dosimetry within the tumor and the body. Image-guided thermal therapy results in increased uptake of intravenous nanoparticles within tumors, improving therapy. In addition, nanoparticles are ideal carriers for direct intratumoral infusion of beta-emitting radionuclides by convection enhanced delivery, permitting the delivery of localized therapeutic radiation without the requirement of the radionuclide exiting from the nanoparticle. With this approach, very high doses of radiation can be delivered to solid tumors while sparing normal organs. Recent technological developments in image-guidance, convection enhanced delivery and newly developed nanoparticles carrying beta-emitting radionuclides will be reviewed. Examples will be shown describing how this new approach has promise for the treatment of brain, head and neck, and other types of solid tumors.
Collapse
|
19
|
Batich KA, Sampson JH. Standard of care and future pharmacological treatment options for malignant glioma: an urgent need for screening and identification of novel tumor-specific antigens. Expert Opin Pharmacother 2014; 15:2047-61. [PMID: 25139628 DOI: 10.1517/14656566.2014.947266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Malignant gliomas (MGs) represent the most common primary brain tumors in adults, the most deadly of which is grade IV glioblastoma. Patients with glioblastoma undergoing current standard-of-care therapy have a median survival of 12 - 15 months. AREAS COVERED Over the past 25 years, there have been modest advancements in the treatment of MGs. Assessment of therapeutic responses has continued to evolve to account for the increasing number of agents being tested in the clinic. Currently approved therapies for primary tumors have been extended for use in the setting of recurrent disease with modest efficacy. Agents initially approved for recurrent gliomas have begun to demonstrate efficacy against de novo tumors but will ultimately need to be evaluated in future studies for scheduling, timing and dosing relative to chemotherapy. EXPERT OPINION Screening and identification of tumor-specific mutations is critical for the advancement of effective therapy that is both safe and precise for the patient. Two unique antigens found in glioblastoma are currently being employed as targets for immunotherapeutic vaccines, one of which has advanced to Phase III testing. Whole genome sequencing of MGs has yielded two other novel mutations that offer great promise for the development of molecular inhibitors.
Collapse
Affiliation(s)
- Kristen A Batich
- Duke University Medical Center, Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery , DUMC Box 3050, 303 Research Drive, 220 Sands Building, Durham, NC 27710 , USA +1 919 684 9041 ; +1 919 684 9045 ;
| | | |
Collapse
|
20
|
Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Mol Ther 2014; 22:1056-62. [PMID: 24553100 DOI: 10.1038/mt.2014.21] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 02/05/2014] [Indexed: 12/20/2022] Open
Abstract
Reovirus, an oncolytic RNA virus exhibiting antiglioma activity, was shown in a previous single institution phase 1 study found that the inoculation of the virus to be well tolerated in patients with recurrent malignant glioma (MG). The goals of multicenter study reported herein were to determine the dose-limiting toxicity, maximum tolerated dose, and target lesion response rate when reovirus was administered in a novel fashion via intratumoral infusion for 72 hours in patients with recurrent malignant glioma. Fifteen adult patients were treated in a dose escalation study ranging from 1 × 10(8) to 1 × 10(10) tissue culture infectious dose 50, tentimes the dose achieved in the previous trial. Neurological, functional examinations, and imaging studies were completed pre- and postinfusion. There was one grade 3 adverse event (convulsions) felt to be possibly related to treatment, but no grade 4 adverse events considered probably or definitely related to treatment. Dose-limiting toxicity were not identified and a maximum tolerated dose was not reached. Evidence of antiglioma activity was seen in some patients. This first report of intratumoral infusion of reovirus in patients with recurrent malignant glioma demonstrated the approach to be safe and well tolerated, warranting further studies.
Collapse
|
21
|
Barua NU, Gill SS, Love S. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations. Brain Pathol 2013; 24:117-27. [PMID: 23944716 DOI: 10.1111/bpa.12082] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/08/2013] [Indexed: 12/16/2022] Open
Abstract
Convection-enhanced delivery (CED) describes a direct method of drug delivery to the brain through intraparenchymal microcatheters. By establishing a pressure gradient at the tip of the infusion catheter in order to exploit bulk flow through the interstitial spaces of the brain, CED offers a number of advantages over conventional drug delivery methods-bypass of the blood-brain barrier, targeted distribution through large brain volumes and minimization of systemic side effects. Despite showing early promise, CED is yet to fulfill its potential as a mainstream strategy for the treatment of neurological disease. Substantial research effort has been dedicated to optimize the technology for CED and identify the parameters, which govern successful drug distribution. It seems likely that successful clinical translation of CED will depend on suitable catheter technology being used in combination with drugs with optimal physicochemical characteristics, and on neuropathological analysis in appropriate preclinical models. In this review, we consider the factors most likely to influence the success or failure of CED, and review its application to the treatment of high-grade glioma, Parkinson's disease (PD) and Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Neil U Barua
- Department of Neurosurgery, Institute of Clinical Neurosciences, School of Clinical Sciences, University of Bristol, Frenchay Hospital, Bristol, UK
| | | | | |
Collapse
|
22
|
Chen W, Wu Q, Mo L, Nassi M. Intra-Arterial Chemotherapy Is Not Superior to Intravenous Chemotherapy for Malignant Gliomas: A Systematic Review and Meta-Analysis. Eur Neurol 2013; 70:124-32. [DOI: 10.1159/000346580] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022]
|
23
|
Current status of local therapy in malignant gliomas--a clinical review of three selected approaches. Pharmacol Ther 2013; 139:341-58. [PMID: 23694764 DOI: 10.1016/j.pharmthera.2013.05.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 05/12/2013] [Indexed: 12/21/2022]
Abstract
Malignant gliomas are the most frequently occurring, devastating primary brain tumors, and are coupled with a poor survival rate. Despite the fact that complete neurosurgical resection of these tumors is impossible in consideration of their infiltrating nature, surgical resection followed by adjuvant therapeutics, including radiation therapy and chemotherapy, is still the current standard therapy. Systemic chemotherapy is restricted by the blood-brain barrier, while methods of local delivery, such as with drug-impregnated wafers, convection-enhanced drug delivery, or direct perilesional injections, present attractive ways to circumvent these barriers. These methods are promising ways for direct delivery of either standard chemotherapeutic or new anti-cancer agents. Several clinical trials showed controversial results relating to the influence of a local delivery of chemotherapy on the survival of patients with both recurrent and newly diagnosed malignant gliomas. Our article will review the development of the drug-impregnated release, as well as convection-enhanced delivery and the direct injection into brain tissue, which has been used predominantly in gene-therapy trials. Further, it will focus on the use of convection-enhanced delivery in the treatment of patients with malignant gliomas, placing special emphasis on potential shortcomings in past clinical trials. Although there is a strong need for new or additional therapeutic strategies in the treatment of malignant gliomas, and although local delivery of chemotherapy in those tumors might be a powerful tool, local therapy is used only sporadically nowadays. Thus, we have to learn from our mistakes in the past and we strongly encourage future developments in this field.
Collapse
|
24
|
Platt S, Nduom E, Kent M, Freeman C, Machaidze R, Kaluzova M, Wang L, Mao H, Hadjipanayis CG. Canine model of convection-enhanced delivery of cetuximab-conjugated iron-oxide nanoparticles monitored with magnetic resonance imaging. Neurosurgery 2012; 59:107-13. [PMID: 22960522 DOI: 10.1227/neu.0b013e31826989ef] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
25
|
Abstract
Image-guided drug delivery provides a means for treating a variety of diseases with minimal systemic involvement while concurrently monitoring treatment efficacy. These therapies are particularly useful to the field of interventional oncology, where elevation of tumor drug levels, reduction of systemic side effects and post-therapy assessment are essential. This review highlights three such image-guided procedures: transarterial chemoembolization, drug-eluting implants and convection-enhanced delivery. Advancements in medical imaging technology have resulted in a growing number of new applications, including image-guided drug delivery. This minimally invasive approach provides a comprehensive answer to many challenges with local drug delivery. Future evolution of imaging devices, image-acquisition techniques and multifunctional delivery agents will lead to a paradigm shift in patient care.
Collapse
|
26
|
Masi BC, Tyler BM, Bow H, Wicks RT, Xue Y, Brem H, Langer R, Cima MJ. Intracranial MEMS based temozolomide delivery in a 9L rat gliosarcoma model. Biomaterials 2012; 33:5768-75. [PMID: 22591609 DOI: 10.1016/j.biomaterials.2012.04.048] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
Primary malignant brain tumors (BT) are the most common and aggressive malignant brain tumor. Treatment of BTs is a daunting task with median survival just at 21 months. Methods of localized delivery have achieved success in treating BT by circumventing the blood brain barrier and achieving high concentrations of therapeutic within the tumor. The capabilities of localized delivery can be enhanced by utilizing mirco-electro-mechanical systems (MEMS) technology to deliver drugs with precise temporal control over release kinetics. An intracranial MEMS based device was developed to deliver the clinically utilized chemotherapeutic temozolomide (TMZ) in a rodent glioma model. The device is a liquid crystalline polymer reservoir, capped by a MEMS microchip. The microchip contains three nitride membranes that can be independently ruptured at any point during or after implantation. The kinetics of TMZ release were validated and quantified in vitro. The safety of implanting the device intracranially was confirmed with preliminary in vivo studies. The impact of TMZ release kinetics was investigated by conducting in vivo studies that compared the effects of drug release rates and timing on animal survival. TMZ delivered from the device was effective at prolonging animal survival in a 9L rodent glioma model. Immunohistological analysis confirmed that TMZ was released in a viable, cytotoxic form. The results from the in vivo efficacy studies indicate that early, rapid delivery of TMZ from the device results in the most prolonged animal survival. The ability to actively control the rate and timing of drug(s) release holds tremendous potential for the treatment of BTs and related diseases.
Collapse
Affiliation(s)
- Byron C Masi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Marta Penas-Prado
- Department of Neuro-oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
28
|
Monoclonal antibody therapy for malignant glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:121-41. [PMID: 22639164 DOI: 10.1007/978-1-4614-3146-6_10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Monoclonal antibody (mAb) therapy is a rapidly evolving treatment immunotherapy modality for malignant gliomas. Many studies have provided evidence that the blood brain barrier-both at baseline and in the context of malignancy-is permissive for mAbs, thus providing a rationale for their use in treating intracranial malignancy. Furthermore, techniques such as convection enhanced delivery (CED) are being implemented to maximize exposure of tumor cells to mAb therapy. The mechanisms and designs of mAbs are widely varying, including unarmed immunoglobulins as well as immunoglobulins conjugated to radioisotopes, biological toxins, boronated dendrimers and immunoliposomes. The very structure of the immunoglobulin molecule has also been manipulated to generate a diverse armamentarium including single-chain Fv, bispecific T-cell engagers and chimeric antigen receptors. The targeted neutralization capacity of mAbs has been employed to modulate the immunologic milieu in hopes of optimizing other immunotherapy platforms. Many clinical trials have evaluated these mAb strategies to treat malignant gliomas, and the implementation of mAb therapy seems imminent and optimistic.
Collapse
|
29
|
Sampson JH, Brady M, Raghavan R, Mehta AI, Friedman AH, Reardon DA, Petry NA, Barboriak DP, Wong TZ, Zalutsky MR, Lally-Goss D, Bigner DD. Colocalization of gadolinium-diethylene triamine pentaacetic acid with high-molecular-weight molecules after intracerebral convection-enhanced delivery in humans. Neurosurgery 2011; 69:668-76. [PMID: 21430586 PMCID: PMC3154565 DOI: 10.1227/neu.0b013e3182181ba8] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Convection-enhanced delivery (CED) permits site-specific therapeutic drug delivery within interstitial spaces at increased dosages through circumvention of the blood-brain barrier. CED is currently limited by suboptimal methodologies for monitoring the delivery of therapeutic agents that would permit technical optimization and enhanced therapeutic efficacy. OBJECTIVE To determine whether a readily available small-molecule MRI contrast agent, gadolinium-diethylene triamine pentaacetic acid (Gd-DTPA), could effectively track the distribution of larger therapeutic agents. METHODS Gd-DTPA was coinfused with the larger molecular tracer, I-labeled human serum albumin (I-HSA), during CED of an EGFRvIII-specific immunotoxin as part of treatment for a patient with glioblastoma. RESULTS Infusion of both tracers was safe in this patient. Analysis of both Gd-DTPA and I-HSA during and after infusion revealed a high degree of anatomical and volumetric overlap. CONCLUSION Gd-DTPA may be able to accurately demonstrate the anatomic and volumetric distribution of large molecules used for antitumor therapy with high resolution and in combination with fluid-attenuated inversion recovery (FLAIR) imaging, and provide additional information about leaks into cerebrospinal fluid spaces and resection cavities. Similar studies should be performed in additional patients to validate our findings and help refine the methodologies we used.
Collapse
Affiliation(s)
- John H Sampson
- Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Strategies for enhancing antibody delivery to the brain. Biochim Biophys Acta Rev Cancer 2011; 1816:191-8. [PMID: 21767610 DOI: 10.1016/j.bbcan.2011.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/29/2011] [Accepted: 07/03/2011] [Indexed: 12/22/2022]
Abstract
Antibodies and antibody conjugates have emerged as important tools for cancer therapy. However, a major therapeutic challenge for the use of antibodies is their inability to cross the blood-brain barrier (BBB) to reach tumors localized in the central nervous system (CNS). Multiple methods have been developed to enhance antibody delivery to the CNS, including direct injection, mechanical or biochemical disruption of the BBB, conjugation to a 'molecular Trojan horse', cationization, encapsulation in nanoparticles and liposomes, and more recently, stem cell-mediated antibody delivery. In this review, we discuss each of these approaches, highlighting their successes and the obstacles that remain to be overcome.
Collapse
|
31
|
Yin D, Richardson RM, Fiandaca MS, Bringas J, Forsayeth J, Berger MS, Bankiewicz KS. Cannula placement for effective convection-enhanced delivery in the nonhuman primate thalamus and brainstem: implications for clinical delivery of therapeutics. J Neurosurg 2010; 113:240-8. [PMID: 20367078 DOI: 10.3171/2010.2.jns091744] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this study was to optimize stereotactic coordinates for delivery of therapeutic agents into the thalamus and brainstem, using convection-enhanced delivery (CED) to avoid leakage into surrounding anatomical structures while maximizing CED of therapeutics within the target volume. METHODS The authors recently published targeting data for the nonhuman primate putamen in which they defined infusion parameters, referred to as "red," "blue," and "green" zones, that describe cannula placements resulting in poor, suboptimal, and optimal volumes of distribution, respectively. In the present study, the authors retrospectively analyzed 22 MR images with gadoteridol as a contrast reagent, which were obtained during CED infusions into the thalamus (14 cases) and brainstem (8 cases) of nonhuman primates. RESULTS Excellent distribution of gadoteridol within the thalamus was obtained in 8 cases and these were used to define an optimal target locus (or green zone). Good distribution in the thalamus, with variable leakage into adjacent anatomical structures, was noted in 6 cases, defining a blue zone. Quantitative containment (99.7 +/- 0.2%) of gadoteridol within the thalamus was obtained when the cannula was placed in the green zone, and less containment (85.4 +/- 3.8%) was achieved with cannula placement in the blue zone. Similarly, a green zone was also defined in the brainstem, and quantitative containment of infused gadoteridol within the brainstem was 99.4 +/- 0.6% when the cannula was placed in the green zone. These results were used to determine a set of 3D stereotactic coordinates that define an optimal site for infusions intended to cover the thalamus and brainstem of nonhuman primates. CONCLUSIONS The present study provides quantitative analysis of cannula placement and infusate distribution using real-time MR imaging and defines an optimal zone for infusion in the nonhuman primate thalamus and brainstem. Cannula placement recommendations developed from such translational nonhuman primate studies have significant implications for the design of anticipated clinical trials featuring CED therapy into the thalamus and brainstem for CNS diseases.
Collapse
Affiliation(s)
- Dali Yin
- Department of Neurosurgery, University of California, San Francisco, California 94103, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Hadjipanayis CG, Machaidze R, Kaluzova M, Wang L, Schuette AJ, Chen H, Wu X, Mao H. EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Res 2010; 70:6303-12. [PMID: 20647323 PMCID: PMC2912981 DOI: 10.1158/0008-5472.can-10-1022] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The magnetic nanoparticle has emerged as a potential multifunctional clinical tool that can provide cancer cell detection by magnetic resonance imaging (MRI) contrast enhancement as well as targeted cancer cell therapy. A major barrier in the use of nanotechnology for brain tumor applications is the difficulty in delivering nanoparticles to intracranial tumors. Iron oxide nanoparticles (IONP; 10 nm in core size) conjugated to a purified antibody that selectively binds to the epidermal growth factor receptor (EGFR) deletion mutant (EGFRvIII) present on human glioblastoma multiforme (GBM) cells were used for therapeutic targeting and MRI contrast enhancement of experimental glioblastoma, both in vitro and in vivo, after convection-enhanced delivery (CED). A significant decrease in glioblastoma cell survival was observed after nanoparticle treatment and no toxicity was observed with treatment of human astrocytes (P < 0.001). Lower EGFR phosphorylation was found in glioblastoma cells after EGFRvIIIAb-IONP treatment. Apoptosis was determined to be the mode of cell death after treatment of GBM cells and glioblastoma stem cell-containing neurospheres with EGFRvIIIAb-IONPs. MRI-guided CED of EGFRvIIIAb-IONPs allowed for the initial distribution of magnetic nanoparticles within or adjacent to intracranial human xenograft tumors and continued dispersion days later. A significant increase in animal survival was found after CED of magnetic nanoparticles (P < 0.01) in mice implanted with highly tumorigenic glioblastoma xenografts (U87DeltaEGFRvIII). IONPs conjugated to an antibody specific to the EGFRvIII deletion mutant constitutively expressed by human glioblastoma tumors can provide selective MRI contrast enhancement of tumor cells and targeted therapy of infiltrative glioblastoma cells after CED.
Collapse
Affiliation(s)
- Costas G Hadjipanayis
- Brain Tumor Nanotechnology Laboratory, Department of Neurosurgery, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Yang W, Huo T, Barth RF, Gupta N, Weldon M, Grecula JC, Ross BD, Hoff BA, Chou TC, Rousseau J, Elleaume H. Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors. J Neurooncol 2010; 101:379-90. [PMID: 20577779 DOI: 10.1007/s11060-010-0272-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/14/2010] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to further evaluate the therapeutic efficacy of convection enhanced delivery (CED) of carboplatin in combination with radiotherapy for treatment of the F98 rat glioma. Tumor cells were implanted stereotactically into the brains of syngeneic Fischer rats, and 13 or 17 d. later carboplatin (20 μg/10 μl) was administered by either CED over 30 min or by Alzet osmotic pumps (0.5 μg/μl/h for 168 h.) beginning at 7 d after tumor implantation. Rats were irradiated with a 15 Gy fractionated dose (5 Gy × 3) of 6 MV photons to the whole brain beginning on the day after drug administration. Other groups of rats received either carboplatin or X-irradiation alone. The tumor carboplatin concentration following CED of 20 μg in 10 μl was 10.4 μg/g, which was equal to that observed following i.v. administration of 100 mg/kg b.w. Rats bearing small tumors, treated with carboplatin and X-irradiation, had a mean survival time (MST) of 83.4 d following CED and 111.8 d following pump delivery with 40% of the latter surviving >180 d (i.e. cured) compared to 55.2 d for CED and 77.2 d. for pump delivery of carboplatin alone and 31.8 d and 24.2 d, respectively, for X-irradiated and untreated controls. There was no microscopic evidence of residual tumor in the brains of all long-term survivors. Not surprisingly, rats with large tumors had much shorter MSTs. Only modest increases in MSTs were observed in animals that received either oral administration or CED of temozolomide plus X-irradiation (23.2 d and 29.3 d) compared to X-irradiation alone. The present survival data, and those previously reported by us, are among the best ever obtained with the F98 glioma model. Initially, they could provide a platform for a Phase I clinical trial to evaluate the safety and potential therapeutic efficacy of CED of carboplatin in patients with recurrent glioblastomas, and ultimately a Phase II trial of carboplatin in combination with radiation therapy.
Collapse
Affiliation(s)
- Weilian Yang
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yin D, Valles FE, Fiandaca MS, Bringas J, Gimenez F, Berger MS, Forsayeth J, Bankiewicz KS. Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage 2009; 54 Suppl 1:S196-203. [PMID: 19761848 DOI: 10.1016/j.neuroimage.2009.08.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 07/21/2009] [Accepted: 08/05/2009] [Indexed: 11/30/2022] Open
Abstract
Optimal results in the direct brain delivery of brain therapeutics such as growth factors or viral vector into primate brain depend on reproducible distribution throughout the target region. In the present study, we retrospectively analyzed MRI of 25 convection-enhanced delivery (CED) infusions with MRI contrast into the putamen of non-human primates (NHP). Infused volume (V(i)) was compared to total volume of distribution (V(d)) versus V(d) within the target putamen. Excellent distribution of contrast agent within the putamen was obtained in eight cases that were used to define an optimal target volume or "green" zone. Partial or poor distribution with leakage into adjacent anatomical structures was noted in 17 cases, defining "blue" and "red" zones, respectively. Quantitative containment (99±1%) of infused gadoteridol within the putamen was obtained when the cannula was placed in the green zone, 87±3% in the blue zone and 49±0.05% in the red zone. These results were used to determine a set of 3D stereotactic coordinates that define an optimal site for putaminal infusions in NHP and human putamen. We conclude that cannula placement and definition of optimal (green zone) stereotactic coordinates have important implications in ensuring effective delivery of therapeutics into the putamen utilizing routine stereotactic MRI localization procedures and should be considered when local therapies such as gene transfer or protein administration are being translated into clinical therapy.
Collapse
Affiliation(s)
- Dali Yin
- Department of Neurosurgery, University of California San Francisco, 1855 Folsom Street, MCB 226, San Francisco, CA 94103, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, Bigner DD. Glioblastoma multiforme: a review of where we have been and where we are going. Expert Opin Investig Drugs 2009; 18:1061-83. [DOI: 10.1517/13543780903052764] [Citation(s) in RCA: 381] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cory Adamson
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
- Neurosurgery Section, Durham VA Medical Center, Durham, NC, USA
| | | | - Ankit I Mehta
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
| | - Chunhui Di
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
| | - Ningjing Lin
- Peking University School of Oncology, Beijing Cancer Hospital, Department of Oncology, Beijing, China
| | - Austin K Mattox
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
| | - Darell D Bigner
- Duke Medical Center, MSRB 1 Box 2624, Durham, NC 27712, USA ;
| |
Collapse
|
36
|
Baklaushev VP, Pavlov KA, Chekhonin VP. Monoclonal antibodies in diagnostics of high-grade gliomas. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2009; 3:105-115. [DOI: 10.1134/s1990750809020012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
37
|
Kells AP, Hadaczek P, Yin D, Bringas J, Varenika V, Forsayeth J, Bankiewicz KS. Efficient gene therapy-based method for the delivery of therapeutics to primate cortex. Proc Natl Acad Sci U S A 2009; 106:2407-11. [PMID: 19193857 PMCID: PMC2650169 DOI: 10.1073/pnas.0810682106] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Indexed: 11/18/2022] Open
Abstract
Transduction of the primate cortex with adeno-associated virus (AAV)-based gene therapy vectors has been challenging, because of the large size of the cortex. We report that a single infusion of AAV2 vector into thalamus results in widespread expression of transgene in the cortex through transduction of widely dispersed thalamocortical projections. This finding has important implications for the treatment of certain genetic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Adrian P. Kells
- Department of Neurological Surgery, University of California, 1855 Folsom Street, San Francisco, CA 94103
| | - Piotr Hadaczek
- Department of Neurological Surgery, University of California, 1855 Folsom Street, San Francisco, CA 94103
| | - Dali Yin
- Department of Neurological Surgery, University of California, 1855 Folsom Street, San Francisco, CA 94103
| | - John Bringas
- Department of Neurological Surgery, University of California, 1855 Folsom Street, San Francisco, CA 94103
| | - Vanja Varenika
- Department of Neurological Surgery, University of California, 1855 Folsom Street, San Francisco, CA 94103
| | - John Forsayeth
- Department of Neurological Surgery, University of California, 1855 Folsom Street, San Francisco, CA 94103
| | - Krystof S. Bankiewicz
- Department of Neurological Surgery, University of California, 1855 Folsom Street, San Francisco, CA 94103
| |
Collapse
|
38
|
Luther N, Cheung NKV, Dunkel IJ, Fraser JF, Edgar MA, Gutin PH, Souweidane MM. INTRAPARENCHYMAL AND INTRATUMORAL INTERSTITIAL INFUSION OF ANTI-GLIOMA MONOCLONAL ANTIBODY 8H9. Neurosurgery 2008; 63:1166-74; discussion 1174. [DOI: 10.1227/01.neu.0000334052.60634.84] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Neal Luther
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Nai-Kong V. Cheung
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Ira J. Dunkel
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Justin F. Fraser
- Department of Neurological Surgery, Weill Cornell Medical College, New York, New York
| | - Mark A. Edgar
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Philip H. Gutin
- Department of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Mark M. Souweidane
- Department of Neurological Surgery, Weill Cornell Medical College, and Department of Neurological Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
39
|
Abstract
BACKGROUND Drug-eluting polymer implants present a compelling parenteral route of administration for cancer chemotherapy. With potential for minimally invasive, image-guided placement and highly localized drug release, these delivery systems are playing an increasingly important role in cancer management. This is particularly true as the use of labile proteins and other bioactive molecules is likely to increase in the upcoming years. OBJECTIVE In this review, we present the current trends in the application of Pre-formed and in situ-forming systems as drug-eluting implants for cancer chemotherapy. METHODS We outline the clinically available options as well as up-and-coming technologies and their advantages and challenges. We also describe ongoing related innovations with image-guided drug delivery, mathematical modeling of implanted delivery systems and implanted drug delivery in combination with other therapies. RESULTS/CONCLUSION Whether used alone or combined with other minimally invasive procedures, drug-eluting polymeric implants will play a significant role in the future of cancer management.
Collapse
Affiliation(s)
- Agata A Exner
- Case Western Reserve University, Department of Radiology, 11100 Euclid Avenue, Cleveland, OH 44106-5056, USA.
| | | |
Collapse
|
40
|
Abstract
Direct perfusion of specific regions of the central nervous system by convection-enhanced delivery is becoming more widely used for the delivery of compounds in the research and treatment of various neural disorders. In contrast to other currently available central nervous system delivery techniques, convection-enhanced delivery relies on bulk flow for distribution of solute. This allows for safe, targeted, reliable, and homogeneous delivery of small-molecular-weight and large-molecular-weight substances over clinically relevant volumes in a manner that bypasses the blood-central nervous system barrier. Recent studies have also shown that coinfused imaging surrogate tracers can be used to monitor and control the convective distribution of therapeutic agents in vivo. The unique features of convection-enhanced delivery, including the ability to monitor distribution in realtime, provide an opportunity to develop new research and treatment paradigms for pediatric patients with a variety of intrinsic central nervous system disorders.
Collapse
Affiliation(s)
- Debbie K. Song
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland,Department of Neurological Surgery, University of Michigan, Ann Arbor, Michigan
| | - Russell R. Lonser
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Sharkey RM, Goldenberg DM. Use of antibodies and immunoconjugates for the therapy of more accessible cancers. Adv Drug Deliv Rev 2008; 60:1407-20. [PMID: 18508155 PMCID: PMC2575231 DOI: 10.1016/j.addr.2008.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 04/16/2008] [Indexed: 02/06/2023]
Abstract
There are currently 6 unconjugated antibodies and 3 immunoconjugates approved for use in the United States in a variety of cancers, with a considerable number of new agents in clinical testing and preclinical development. Unconjugated antibodies alone can be effective, but more often, antibodies need to be combined with chemotherapy, which enhances the efficacy of the standard treatment. Immunoconjugates tend to be more effective than their unconjugated counterparts, but their increased toxicity often restricts when and how they are used. In order to improve efficacy, a number of immunoconjugates are being examined in settings where the disease is more easily accessible, such as leukemias, or within compartments that allow easier and more direct access to the tumor, such as in the peritoneal cavity or brain, or both locally and systemically, in adjuvant situations, where the disease burden has been reduced by some other means, and with the main goal of these treatments being to kill residual disease.
Collapse
Affiliation(s)
- Robert M Sharkey
- Garden State Cancer Center, Center for Molecular Medicine and Immunology, Belleville, NJ 07109, USA.
| | | |
Collapse
|
42
|
Weinberg BD, Blanco E, Gao J. Polymer Implants for Intratumoral Drug Delivery and Cancer Therapy. J Pharm Sci 2008; 97:1681-702. [PMID: 17847077 DOI: 10.1002/jps.21038] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To address the need for minimally invasive treatment of unresectable tumors, intratumoral polymer implants have been developed to release a variety of chemotherapeutic agents for the locoregional therapy of cancer. These implants, also termed "polymer millirods," were designed to provide optimal drug release kinetics to improve drug delivery efficiency and antitumor efficacy when treating unresectable tumors. Modeling of drug transport properties in different tissue environments has provided theoretical insights on rational implant design, and several imaging techniques have been established to monitor the local drug concentrations surrounding these implants both ex vivo and in vivo. Preliminary antitumor efficacy and drug distribution studies in a rabbit liver tumor model have shown that these implants can restrict tumor growth in small animal tumors (diameter < 1 cm). In the future, new approaches, such as three-dimensional (3-D) drug distribution modeling and the use of multiple drug-releasing implants, will be used to extend the efficacy of these implants in treating larger tumors more similar to intractable human tumors.
Collapse
Affiliation(s)
- Brent D Weinberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
43
|
Abstract
Despite aggressive multi-modality therapy including surgery, radiation, and chemotherapy, the prognosis for patients with malignant primary brain tumors remains very poor. Moreover, the non-specific nature of conventional therapy for brain tumors often results in incapacitating damage to surrounding normal brain and systemic tissues. Thus, there is an urgent need for the development of therapeutic strategies that precisely target tumor cells while minimizing collateral damage to neighboring eloquent cerebral cortex. The rationale for using the immune system to target brain tumors is based on the premise that the inherent specificity of immunologic reactivity could meet the clear need for more specific and precise therapy. The success of this modality is dependent on our ability to understand the mechanisms of immune regulation within the central nervous system (CNS), as well as counter the broad defects in host cell-mediated immunity that malignant gliomas are known to elicit. Recent advances in our understanding of tumor-induced and host-mediated immunosuppressive mechanisms, the development of effective strategies to combat these suppressive effects, and a better understanding of how to deliver immunologic effector molecules more efficiently to CNS tumors have all facilitated significant progress toward the realization of true clinical benefit from immunotherapeutic treatment of malignant gliomas.
Collapse
Affiliation(s)
- Duane A Mitchell
- Division of Neurosurgery, Department of Surgery, The Preston Robert Tisch Brain Tumor Center, Duke, NC 27710, USA.
| | | | | |
Collapse
|
44
|
Lonser RR, Warren KE, Butman JA, Quezado Z, Robison RA, Walbridge S, Schiffman R, Merrill M, Walker ML, Park DM, Croteau D, Brady RO, Oldfield EH. Real-time image-guided direct convective perfusion of intrinsic brainstem lesions. Technical note. J Neurosurg 2007; 107:190-7. [PMID: 17639894 DOI: 10.3171/jns-07/07/0190] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent preclinical studies have demonstrated that convection-enhanced delivery (CED) can be used to perfuse the brain and brainstem with therapeutic agents while simultaneously tracking their distribution using coinfusion of a surrogate magnetic resonance (MR) imaging tracer. The authors describe a technique for the successful clinical application of this drug delivery and monitoring paradigm to the brainstem. Two patients with progressive intrinsic brainstem lesions (one with Type 2 Gaucher disease and one with a diffuse pontine glioma) were treated with CED of putative therapeutic agents mixed with Gd-diethylenetriamene pentaacetic acid (DTPA). Both patients underwent frameless stereotactic placement of MR imaging-compatible outer guide-inner infusion cannulae. Using intraoperative MR imaging, accurate cannula placement was confirmed and real-time imaging during infusion clearly demonstrated progressive filling of the targeted region with the drug and Gd-DTPA infusate. Neither patient had clinical or imaging evidence of short- or long-term infusate-related toxicity. Using this technique, CED can be used to safely perfuse targeted regions of diseased brainstem with therapeutic agents. Coinfused imaging surrogate tracers can be used to monitor and control the distribution of therapeutic agents in vivo. Patients with a variety of intrinsic brainstem and other central nervous system disorders may benefit from a similar treatment paradigm.
Collapse
Affiliation(s)
- Russell R Lonser
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1414, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|