1
|
Jussen D, Saeed S, Jablonski T, Krenzlin H, Lucia K, Kraemer T, Kempski O, Czabanka M, Ringel F, Alessandri B. Influence of Blood Components on Neuroinflammation, Blood-Brain Barrier Breakdown, and Functional Damage After Acute Subdural Hematoma in Rats. Neurotrauma Rep 2024; 5:215-225. [PMID: 38463418 PMCID: PMC10924060 DOI: 10.1089/neur.2023.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
A central component of injury development after acute subdural hematoma (ASDH) is the increased intracranial pressure and consecutive mechanical reduction of cerebral blood flow (CBF). However, the role of different blood constituents in ASDH as additional lesioning factors remains unclear. This study examines the influence of blood components on neuroinflammation, blood-brain barrier (BBB) breakdown, and functional deficits in a rat model of ASDH. We infused corpuscular (whole blood, whole blood lysate, and red cell blood) and plasmatic (blood plasma, anticoagulated blood plasma, and aqueous isotonic solution) blood components into the subdural space while CBF was monitored. Rats then underwent behavioral testing. Lesion analysis and immunohistochemistry were performed 2 days after ASDH. Inflammatory reaction was assessed using staining for ionized calcium-binding adaptor molecule 1 and glial fibrillary acidic protein, interleukin-1ß, tumor necrosis factor-alpha, and membrane attack complex. Integrity of the BBB was evaluated with albumin and matrix metalloproteinase 9 (MMP9) staining. We observed a significant drop in CBF in the corpuscular group (75% ± 7.5% of baseline) with distinct post-operative deficits and larger lesion volume compared to the plasmatic group (13.6 ± 5.4 vs. 1.3 ± 0.4 mm3). Further, inflammation was significantly increased in the corpuscular group with stronger immunoreaction. After whole blood infusion, albumin and MMP9 immunoreaction were significantly increased, pointing toward a disrupted BBB. The interaction between corpuscular and plasmatic blood components seems to be a key factor in the detrimental impact of ASDH. This interaction results in neuroinflammation and BBB leakage. These findings underscore the importance of performing surgery as early as possible and also provide indications for potential pharmacological targets.
Collapse
Affiliation(s)
- Daniel Jussen
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Syamend Saeed
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Tatjana Jablonski
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Harald Krenzlin
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Kristin Lucia
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Tobias Kraemer
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Oliver Kempski
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, Goethe University, Frankfurt am Main, Germany
| | - Florian Ringel
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| | - Beat Alessandri
- Johannes Gutenberg University, Institute for Neurosurgical Pathophysiology, Mainz, Germany
- Department of Neurosurgery, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
2
|
Chihi M, Darkwah Oppong M, Pierscianek D, Dinger TF, Ahmadipour Y, Gembruch O, Deuschl C, Li Y, Schmidt B, Wrede KH, Sure U, Jabbarli R. Analysis of Brain Natriuretic Peptide Levels after Traumatic Acute Subdural Hematoma and the Risk of Post-Operative Cerebral Infarction. J Neurotrauma 2021; 38:3068-3076. [PMID: 34477001 DOI: 10.1089/neu.2021.0169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic acute subdural hematoma (aSDH) is associated with a high mortality rate caused by post-operative cerebral infarction. Recently, brain natriuretic peptide (BNP) was considered a reliable biomarker in the acute phase of traumatic brain injuries. We therefore aimed in this study to analyze BNP levels on admission, identify the predictors of their elevation, and assess the relationship between BNP and the risk of post-operative cerebral infarction. Patients with isolated, unilateral, traumatic aSDH who were admitted to our department between July 2017 and May 2020 were enrolled in this study. On admission, cranial computer tomography (CCT) and BNP sampling were simultaneously performed. Additionally, the time between head trauma and BNP sampling (TTS) was assessed. Admission radiographic variables included hematoma volumes, midline shift, and degree of brain edema. Cerebral infarction was detected on postoperative CCT. In total, 130 patients were included in this study. Surgical treatment was performed in 82.3% (n = 107) of cases. The multiple regression analysis showed that larger hematoma volumes (p = 0.032) and advanced age (p = 0.005) were independent predictors of elevated BNP when TTS <24 h. The binomial logistical regression analysis identified BNP with a cutoff value of <29.4 pg/mL (TTS = 3-12 h, adjusted odds ratio [aOR] = 16.5, p = 0.023) as an independent predictor of post-operative cerebral infarction. Elevated BNP levels in the first 24 h post-trauma were related to larger hematoma volumes and advanced age. Further, an increased risk of post-operative cerebral infarction was identified in patients with lower BNP levels in the post-traumatic period 3-12 h.
Collapse
Affiliation(s)
- Mehdi Chihi
- Department of Neurosurgery and Spine Surgery, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery and Spine Surgery, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thiemo Florin Dinger
- Department of Neurosurgery and Spine Surgery, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Oliver Gembruch
- Department of Neurosurgery and Spine Surgery, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Yan Li
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Börge Schmidt
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery and Spine Surgery, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Xian L, Wang C, Wang W, Wei L, Zhang Y, Chen W, Wang S. The construction of an improved model of acute subdural hematoma in rats. J Neurosci Methods 2021; 351:109075. [PMID: 33450332 DOI: 10.1016/j.jneumeth.2021.109075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND To construct a new and improved model of acute subdural hematoma in rats. NEW METHOD 30 male adult Sprague-Dawley rats(SD rats) were selected and randomly divided into two groups. The traditional model group was based on Miller's model construction method, and the improved model group was based on improved needle, injection site and operation method. The improved model was evaluated by comparing the physiological indicators, behavioral scores, magnetic resonance performance and HE staining results of the two groups of rats. RESULTS The physical signs of the rats in the two groups were similar. The survival rate of the improved group was higher than that of the traditional group. The hematoma in the improved model was thicker and concentrated in the ipsilateral side, as revealed by HE staining and MRI. The improved method has less intrusions on the cortex around the injection site and is more stable than the traditional model. COMPARISON WITH EXISTING METHOD(S) The operation difficulty of the improved model is reduced and easier. The survival rate of the improved group was higher than that of the traditional group. And the improved model will have more research possibilities. CONCLUSION The improved model is based on the traditional model. Although it has some shortcomings, it can also be used in different research fields of the traditional model. The operation for the improved model is easier to perform. And the improved model has more applications in research.
Collapse
Affiliation(s)
- Liang Xian
- Bengbu Medical College, Bengbu 233030, PR China
| | - Cheng Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Wei Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Liangfeng Wei
- Department of Neurosurgery, 900 Hospital of the Joint Logistics Team, Fuzhou 350025, PR China
| | | | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital, Shantou University Medical College, Shantou 515041, PR China
| | - Shousen Wang
- Bengbu Medical College, Bengbu 233030, PR China; Department of Neurosurgery, 900 Hospital of the Joint Logistics Team, Fuzhou 350025, PR China.
| |
Collapse
|
4
|
Wang HC, Tsai JC, Lee JE, Huang SJ, Po-Hao Huang A, Lin WC, Hsieh ST, Wang KC. Direct visualization of microcirculation impairment after acute subdural hemorrhage in a novel animal model. J Neurosurg 2017; 129:997-1007. [PMID: 29219760 DOI: 10.3171/2017.5.jns162579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Direct brain compression and secondary injury due to increased intracranial pressure are believed to be the pathognomic causes of a grave outcome in acute subdural hemorrhage (aSDH). However, ischemic damage from aSDH has received limited attention. The authors hypothesized that cerebral microcirculation is altered after aSDH. Direct visualization of microcirculation was conducted in a novel rat model. METHODS A craniectomy was performed on each of the 18 experimental adult Wistar rats, followed by superfusion of autologous arterial blood onto the cortical surface. Changes in microcirculation were recorded by capillary videoscopy. Blood flow and the partial pressure of oxygen in the brain tissue (PbtO2) were measured at various depths from the cortex. The brain was then sectioned for pathological examination. The effects of aspirin pretreatment were also examined. RESULTS Instantaneous vasospasm of small cortical arteries after aSDH was observed; thrombosis also developed 120 minutes after aSDH. Reductions in blood flow and PbtO2 were found at depths of 2-4 mm. Blood-brain barrier disruption and thrombi formation were confirmed using immunohistochemical staining, while aspirin pretreatment reduced thrombosis and the impairment of microcirculation. CONCLUSIONS Microcirculation impairment was demonstrated in this aSDH model. Aspirin pretreatment prevented the diffuse thrombosis of cortical and subcortical vessels after aSDH.
Collapse
Affiliation(s)
- Huan-Chih Wang
- 1Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsinchu Branch, Hsinchu.,2Division of Neurosurgery, Department of Surgery
| | | | - Jing-Er Lee
- 3Department of Neurology, Taipei Medical University-Wan Fang Hospital, Taipei; and
| | | | | | | | - Sung-Tsang Hsieh
- 5Department of Neurology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei.,6Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
5
|
Venous or arterial blood components trigger more brain swelling, tissue death after acute subdural hematoma compared to elderly atrophic brain with subdural effusion (SDE) model rats. Brain Res 2017. [DOI: 10.1016/j.brainres.2017.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Jussen D, Krenzlin H, Papaioannou C, Ens S, Kempski O, Alessandri B. Blood Aggravates Histological and Functional Damage after Acute Subdural Hematoma in Rats. J Neurotrauma 2017; 34:906-913. [DOI: 10.1089/neu.2016.4464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Daniel Jussen
- Department Of Neurosurgery, HELIOS Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
- Institute for Neurosurgical Pathophysiology, University Medical Centre Mainz, Germany
| | - Harald Krenzlin
- Department Of Neurosurgery, HELIOS Dr. Horst Schmidt Kliniken, Wiesbaden, Germany
- Institute for Neurosurgical Pathophysiology, University Medical Centre Mainz, Germany
| | | | - Swetlana Ens
- Institute for Neurosurgical Pathophysiology, University Medical Centre Mainz, Germany
| | - Oliver Kempski
- Institute for Neurosurgical Pathophysiology, University Medical Centre Mainz, Germany
| | - Beat Alessandri
- Institute for Neurosurgical Pathophysiology, University Medical Centre Mainz, Germany
| |
Collapse
|
7
|
Subdural hematoma decompression model: A model of traumatic brain injury with ischemic-reperfusional pathophysiology: A review of the literature. Behav Brain Res 2016; 340:23-28. [PMID: 27235716 DOI: 10.1016/j.bbr.2016.05.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022]
Abstract
The prognosis for patients with traumatic brain injury (TBI) with subdural hematoma (SDH) remains poor. In accordance with an increasing elderly population, the incidence of geriatric TBI with SDH is rising. An important contributor to the neurological injury associated with SDH is the ischemic damage which is caused by raised intracranial pressure (ICP) producing impaired cerebral perfusion. To control intracranial hypertension, the current management consists of hematoma evacuation with or without decompressive craniotomy. This removal of the SDH results in the immediate reversal of global ischemia accompanied by an abrupt reduction of mass lesion and an ensuing reperfusion injury. Experimental models can play a critical role in improving our understanding of the underlying pathophysiology and in exploring potential treatments for patients with SDH. In this review, we describe the epidemiology, pathophysiology and clinical background of SDH.
Collapse
|
8
|
Miller JD, Nader R. Acute subdural hematoma from bridging vein rupture: a potential mechanism for growth. J Neurosurg 2014; 120:1378-84. [DOI: 10.3171/2013.10.jns13272] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Most acute subdural hematomas (ASDHs) develop after rupture of a bridging vein or veins. The anatomy of the bridging vein predisposes to its tearing within the border cell layer of the dura mater. Thus, the subdural hematoma actually forms within the dura. The hematoma grows by continued bleeding into the border cell layer. However, the venous pressure would not be expected to cause a large hematoma. Therefore, some type of mechanism must account for the hematoma's expansion.
Cerebral venous pressure (CVP) has been demonstrated in animal models to be slightly higher than intracranial pressure (ICP), and CVP tracks the ICP as pressure variations occur. The elevation of CVP as the ICP increases is thought to result from an increase in outflow resistance of the terminal portion of the bridging veins. This probably results from a Starling resistor model or, less likely, from a muscular sphincter.
A hypothesis is derived to explain the mechanism of ASDH enlargement. Tearing of one or more bridging veins causes these vessels to bleed into the dural border cell layer. Subsequent ICP elevation from the ASDH, cerebral swelling, or other cause results in elevation of the CVP by increased outflow resistance in the intact bridging veins. The increased ICP causes further bleeding into the hematoma cavity via the torn bridging veins. Thus, the ASDH enlarges via a positive feedback mechanism.
Enlargement of an ASDH would cease as blood within the hematoma cavity coagulates. This would stop the dissection of the dural border cell layer, and pressure within the hematoma cavity would equalize with that in the torn bridging vein or veins.
Collapse
Affiliation(s)
- Jimmy D. Miller
- 1Division of Neurosurgery, Greenwood Leflore Hospital, Greenwood, Mississippi
| | - Remi Nader
- 2Division of Neurosurgery, University of Texas Medical Branch, Galveston; and
- 3Texas Center for Neurosciences, Beaumont, Texas
| |
Collapse
|
9
|
Rahimi Nedjat M, Wähmann M, Bächli H, Güresir E, Vatter H, Raabe A, Heimann A, Kempski O, Alessandri B. Erythropoietin neuroprotection is enhanced by direct cortical application following subdural blood evacuation in a rat model of acute subdural hematoma. Neuroscience 2013; 238:125-34. [DOI: 10.1016/j.neuroscience.2013.01.067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 01/29/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
|
10
|
Wang D, Jiang R, Liu L, Dong JF, Zhang JN. Membrane Neovascularization and Drainage of Subdural Hematoma in a Rat Model. J Neurotrauma 2010; 27:1489-98. [PMID: 20486809 DOI: 10.1089/neu.2009.1057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dong Wang
- Department of Neurosurgery, Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Rongcai Jiang
- Department of Neurosurgery, Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Li Liu
- Department of Neurosurgery, Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Jing-Fei Dong
- Thrombosis Research Section, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jian-Ning Zhang
- Department of Neurosurgery, Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Baechli H, Behzad M, Schreckenberger M, Buchholz HG, Heimann A, Kempski O, Alessandri B. Blood constituents trigger brain swelling, tissue death, and reduction of glucose metabolism early after acute subdural hematoma in rats. J Cereb Blood Flow Metab 2010; 30:576-85. [PMID: 19888286 PMCID: PMC2949142 DOI: 10.1038/jcbfm.2009.230] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Outcome from acute subdural hematoma is often worse than would be expected from the pure increase of intracranial volume by bleeding. The aim was to test whether volume-independent pathomechanisms aggravate damage by comparing the effects of blood infusion with those of an inert fluid, paraffin oil, on intracranial pressure (ICP), cerebral perfusion pressure (CPP), local cerebral blood flow (CBF), edema formation, glucose metabolism ([18F]-deoxyglucose, MicroPET ), and histological outcome. Rats were injured by subdural infusion of 300 muL venous blood or paraffin. ICP, CPP, and CBF changes, assessed during the first 30 mins after injury, were not different between the injury groups at most time points (n=8 per group). Already at 2 h after injury, blood caused a significantly more pronounced decrease in glucose metabolism in the injured cortex when compared with paraffin (P<0.001, n=5 per group). Ipsilateral brain edema did not differ between groups at 2 h, but was significantly more pronounced in the blood-treated groups at 24 and 48 h after injury (n=8 per group). These changes caused a 56.2% larger lesion after blood when compared with paraffin (48.1+/-23.0 versus 21.1+/-11.8 mm(3); P<0.02). Blood constituent-triggered pathomechanisms aggravate the immediate effects due to ICP, CPP, and CBF during hemorrhage and lead to early reduction of glucose metabolism followed by more severe edema and histological damage.
Collapse
Affiliation(s)
- Heidi Baechli
- Institute for Neurosurgical Pathophysiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz D-55131, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Marklund N, Sihver S, Hovda DA, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. Increased Cerebral Uptake of [18F]Fluoro-Deoxyglucose but not [1-14C]Glucose Early following Traumatic Brain Injury in Rats. J Neurotrauma 2009; 26:1281-93. [DOI: 10.1089/neu.2008.0827] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Niklas Marklund
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Sven Sihver
- Department of Neuroscience, Unit of Pharmacology, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - David A. Hovda
- UCLA Brain Injury Research Center, Departments of Neurosurgery and Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California–Los Angeles, Los Angeles, California
| | - Bengt Långström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Yasuyoshi Watanabe
- Department of Neuroscience, Osaka Bioscience Institute, Osaka, Japan
- Department of Physiology, Osaka City University, Osaka, Japan
| | - Gunnar Ronquist
- Department of Medical Sciences, Biochemical Structure And Function, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Mats Bergström
- Department of Biochemistry and Organic Chemistry, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, Unit of Neurosurgery, Uppsala University CSO, Imanet, and Uppsala Applied Science Laboratory, Uppsala, Sweden
| |
Collapse
|
13
|
Chieregato A, Noto A, Tanfani A, Bini G, Martino C, Fainardi E. Hyperemia beneath evacuated acute subdural hematoma is frequent and prolonged in patients with an unfavorable outcome: a xe-computed tomographic study. Neurosurgery 2009; 64:705-17; discussion 717-8. [PMID: 19349828 DOI: 10.1227/01.neu.0000341872.17024.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To verify the values and the time course of regional cerebral blood flow (rCBF) in the cortex located beneath an evacuated acute subdural hematoma (SDH) and their relationship with neurological outcome. METHODS rCBF levels were measured in multiple regions of interest, by means of a Xe-computed tomographic technique, in the cortex underlying an evacuated SDH and contralaterally in 20 patients with moderate or severe traumatic brain injury and an evacuated acute SDH. Twenty-three patients with moderate or severe traumatic brain injury and an evacuated extradural hematoma or diffuse injury served as the control group. Outcome was evaluated by means of the Glasgow Outcome Scale at 12 months. RESULTS Values for the maximum (rCBFmax) and the mean of all rCBF levels in the cortex beneath the evacuated SDH were more frequently consistent with hyperemia. The side-to-side differences in the mean of all rCBF and rCBFmax levels between lesioned and nonlesioned hemispheres were greater in patients with evacuated SDH than in controls (P = 0.0013 and P = 0.0018, respectively). The side-to-side difference in the maximum rCBF value was higher in SDH patients with unfavorable outcomes than in controls at 24 to 96 hours and at 4 to 7 days and higher than in patients with favorable outcomes at 4 to 7 days. The widest side-to-side difference in rCBFmax value was more elevated in patients with an evacuated SDH with unfavorable outcome than in patients with a favorable outcome (P = 0.047), whereas no differences were found in controls. The SDH thickness and the associated midline shift were greater in patients with unfavorable outcomes than in those with favorable outcomes. CONCLUSION On average, hyperemic long-lasting rCBF values frequently occur in the cortex located beneath an evacuated SDH and seem to be associated with unfavorable outcome.
Collapse
Affiliation(s)
- Arturo Chieregato
- Neurosurgical and Trauma Intensive Care Unit, Maurizio Bufalini Hospital, Cesena, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Marklund N, Sihver S, Hovda D, Långström B, Watanabe Y, Ronquist G, Bergström M, Hillered L. INCREASED CEREBRAL UPTAKE OF [18F]FLUORO-DEOXYGLUCOSE BUT NOT [1-14C]GLUCOSE EARLY FOLLOWING TRAUMATIC BRAIN INJURY IN RATS. J Neurotrauma 2009. [DOI: 10.1089/neu.2008-0827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Randomized controlled trial of magnesium sulphate in severe closed traumatic brain injury. INDIAN JOURNAL OF NEUROTRAUMA 2008. [DOI: 10.1016/s0973-0508(08)80025-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Hillary FG, Liu WC, Genova HM, Maniker AH, Kepler K, Greenwald BD, Cortese BM, Homnick A, Deluca J. Examining lactate in severe TBI using proton magnetic resonance spectroscopy. Brain Inj 2008; 21:981-91. [PMID: 17729050 DOI: 10.1080/02699050701426964] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PRIMARY OBJECTIVE Clinical management of acute traumatic brain injury (TBI) has emphasized identification of secondary mechanisms of pathophysiology. An important objective in this study is to use proton magnetic resonance spectroscopy (pMRS) to examine early metabolic disturbance due to TBI. RESEARCH DESIGN The current design is a case study with repeated measures. METHOD AND PROCEDURE Proton magnetic resonance imaging was used to examine neurometabolism in this case of very severe brain trauma at 9 and 23 days post-injury. MRI was performed on a clinical 1.5 Tesla scanner. MAIN OUTCOMES AND RESULTS These data also reveal that pMRS methods can detect lactate elevations in an adult surviving severe head trauma and are sensitive to changes in basic neurometabolism during the first month of recovery. CONCLUSIONS The current case study demonstrates the sensitivity of pMRS in detecting metabolic alterations during the acute recovery period. The case study reveals that lactate elevations may be apparent for weeks after severe neurotrauma. Further work in this area should endeavour to determine the ideal time periods for pMRS examination in severe TBI as well as the ideal locations of data acquisition (e.g. adjacent or distal to lesion sites).
Collapse
Affiliation(s)
- F G Hillary
- Psychology Department, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dhandapani SS, Gupta A, Vivekanandhan S, Mahapatra AK, Mehta VS. Serum ionic magnesium in traumatic brain injury. INDIAN JOURNAL OF NEUROTRAUMA 2005. [DOI: 10.1016/s0973-0508(05)80023-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Karabiyikoglu M, Keep R, Hua Y, Xi G. Acute Subdural Hematoma: New Model Delineation and Effects of Coagulation Inhibitors. Neurosurgery 2005; 57:565-72; discussion 565-72. [PMID: 16145537 DOI: 10.1227/01.neu.0000170435.47739.ae] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To develop a highly reproducible rat model and behavioral tests for acute subdural hematoma (ASDH) and to investigate the role of intravascular coagulation and thrombin in the pathogenesis of brain injury in this model. METHODS A new method was implemented to inject 200 microl of autologous blood subdurally in rats. Immunohistochemistry was used to investigate intravascular fibrin deposition and thrombin levels in the cortex underlying the ASDH. Effectiveness of systemic heparin, argatroban, or ginkgolide B treatment was determined by histological lesion volume, number of occluded microvessels, and neurological deficits. Neurological deficits were monitored for 7 days after ASDH by use of forelimb placing, forelimb use asymmetry, and corner turn tests. RESULTS Consistent brain damage and sensorimotor deficits were observed in all animals with ASDH. Histological analysis demonstrated occluded microvessels and enlarged perivascular spaces in the underlying cortex starting 1 hour after hematoma induction. Fibrin and thrombin immunoreactivity were increased in the lesioned cortical parenchyma at 4 and 24 hours. However, no intravascular fibrin deposition was detected. Heparin induced hemorrhagic transformation in the cortical lesion and did not attenuate microvessel occlusion. Argatroban and ginkgolide B did not induce hemorrhage but failed to improve microvessel occlusion, lesion volume, and neurological deficits. CONCLUSION Intravascular coagulation and thrombin are not the major mediators of brain damage after ASDH. The model and behavioral tests presented in this study can be used to investigate other putative mechanisms of injury and to test future therapeutic interventions in ASDH.
Collapse
Affiliation(s)
- Murat Karabiyikoglu
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan 48109-0532, USA.
| | | | | | | |
Collapse
|
19
|
Povlishock JT, Katz DI. Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 2005; 20:76-94. [PMID: 15668572 DOI: 10.1097/00001199-200501000-00008] [Citation(s) in RCA: 460] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This review focuses on the potential for traumatic brain injury to evoke both focal and diffuse changes within the brain parenchyma, while considering the cellular constituents involved and the subcellular perturbations that contribute to their dysfunction. New insight is provided on the pathobiology of traumatically induced cell body injury and diffuse axonal damage. The consequences of axonal damage in terms of subsequent deafferentation and any potential retrograde cell death and atrophy are addressed. The regional and global metabolic sequelae are also considered. This detailed presentation of the neuropathological consequences of traumatic brain injury is used to set the stage for better appreciating the neurological recovery occurring after traumatic injury. Although the pathological and clinical effects of focal and diffuse damage are usually intermingled, the different clinical manifestations of recovery patterns associated with focal versus diffuse injuries are presented. The recognizable patterns of recovery, involving unconsciousness, posttraumatic confusion/amnesia, and postconfusional restoration, that typically occur across the full spectrum of diffuse injury are described, recognizing that the patient's long-term recovery may involve more idiosyncratic combinations of dysfunction. The review highlights the relationship of focal lesions to localizing syndromes that may be embedded in the evolving natural history of diffuse pathology. It is noted that injuries with primarily focal pathology do not necessarily follow a comparable pattern of recovery with distinct phases. Potential linkages of these recovery patterns to the known neuropathological sequelae of injury and various reparative mechanisms are considered and it is proposed that potential biological markers and newer imaging technologies will better define these linkages.
Collapse
Affiliation(s)
- John T Povlishock
- Department of Anatomy and Neurobiology, Medical College of Virginia Campus of Virginia Commonwealth University, 1101 East Marshall St, PO Box 980709, Richmond, VA 23298, USA.
| | | |
Collapse
|
20
|
Levy ML, Ozgur BM, Berry C, Aryan HE, Apuzzo MLJ. Analysis and Evolution of Head Injury in Football. Neurosurgery 2004; 55:649-55. [PMID: 15335432 DOI: 10.1227/01.neu.0000134598.06114.89] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2003] [Accepted: 02/23/2004] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To review head injury in football through historical, anatomic, and physiological analysis. METHODS We obtained data from a thorough review of the literature. RESULTS The reported incidence of concussion among high school football players dropped from 19% in 1983 to 4% in 1999. During the 1997 Canadian Football League season, players with a previous loss of consciousness in football were 6.15 times more likely to experience a concussion than players without a previous loss of consciousness (P < 0.05). Players with a previous concussion in football were 5.10 times more likely to experience a concussion than players without a previous concussion (P = 0.0001). With the implementation of National Operating Committee on Standards for Athletic Equipment standards, fatalities decreased by 74% and serious head injuries decreased from 4.25 per 100,000 to 0.68 per 100,000. CONCLUSION Significant declines in both the incidence and severity of head injury have been observed. The enhanced safety records in football can be attributed to the application of more stringent tackling regulations as well as the evolving football helmet. The role of a neurosurgeon is critical in further head injury prevention and guidelines in sport.
Collapse
Affiliation(s)
- Michael L Levy
- Division of Neurosurgery, University of California at San Diego School of Medicine, San Diego, California, USA.
| | | | | | | | | |
Collapse
|
21
|
Türeci E, Dashti R, Tanriverdi T, Sanus GZ, Oz B, Uzan M. Acute ethanol intoxication in a model of traumatic brain injury: the protective role of moderate doses demonstrated by immunoreactivity of synaptophysin in hippocampal neurons. Neurol Res 2004; 26:108-12. [PMID: 14977068 DOI: 10.1179/016164104773026633] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Although ethanol intoxication is reported to be a complicating factor in traumatic brain injury, some recent studies are indicating its possible protective role especially at lower doses. Ethanol inhibition of NMDA-mediated excitotoxicity which predominates at lower doses is believed to be responsible for this protection. The aim of this study was to demonstrate this neuroprotective role of alcohol using immunoreactivity for synaptophysin as an indirect marker for severity of injury. Acute ethanol intoxication at moderate doses was performed 2 h prior to trauma. Severe traumatic brain injury was administrated using an impact acceleration model in Sprague-Dawley rats. At post-traumatic 48th hour, immunorectivity for synapthophysin in the rat hippocampi was evaluated under light microscopy. According to our results there were slight increases in immunoreactivity for synaptophysin in the stratum oriens and striatum radiatum of CA1 subfield of hippocampus when ethanol was administered prior to trauma comparing to moderate increase in the trauma-only group. On the other hand vacuolar degeneration and red neuron formation was more prominent in the pyramidal cell layer of CA1 and CA3 when ethanol was not administered. Ethanol may have a neuroprotective role when administered at moderate doses prior to traumatic brain injury. This effect of ethanol may primarily be due to inhibition of NMDA receptors.
Collapse
Affiliation(s)
- Ercan Türeci
- Department of Anesthesiology, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
22
|
Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, Hovda DA, Bergsneider M, Hillered L, Martin NA. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab 2003; 23:1239-50. [PMID: 14526234 DOI: 10.1097/01.wcb.0000089833.23606.7f] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED The purpose of this study was to determine if the relationship between abnormalities in glucose, lactate, and oxygen metabolism were predictive of neurologic outcome after moderate or severe head injury, relative to other known prognostic factors. Serial assessments of the cerebral metabolic rates for glucose, lactate, and oxygen were performed using a modified Kety-Schmidt method. In total, 31 normal control subjects were studied once, and 49 TBI patients (mean age 36+/-16 years, median GCS 7) were studied five times median per patient from postinjury days 0 to 9. Univariate and multivariate analyses were performed. Univariate analysis showed that the 6-month postinjury Glasgow Outcome Scale (GOS) was most strongly associated with the mean cerebral metabolic rate of oxygen (CMRO2) (P = 0.0001), mean arterial lactate level (P = 0.0001), mean arterial glucose (P = 0.0008), mean cerebral blood flow (CBF), (P = 0.002), postresuscitation GCS (P = 0.003), and pupillary status (P = 0.004). Brain lactate uptake was observed in 44% of all metabolic studies, and 76% of patients had at least one episode of brain lactate uptake. By dichotomized GOS, patients achieving a favorable outcome (GOS 4-5) were distinguished from those with an unfavorable outcome (GOS1-3) by having a higher CMRO2 (P = 0.003), a higher rate of abnormal brain lactate uptake relative to arterial lactate levels (P = 0.04), and lesser degrees of blood-brain barrier damage based on CT findings (P = 0.03). CONCLUSIONS During the first 6 days after moderate or severe TBI, CMRO2 and arterial lactate levels are the strongest predictors of neurologic outcome. However, the frequent occurrence of abnormal brain lactate uptake despite only moderate elevations in arterial lactate levels in the favorable outcome patients suggests the brain's ability to use lactate as a fuel may be another key outcome predictor. Future studies are needed to determine to what degree nonglycolytic energy production from alternative fuels such as lactate occurs after TBI and whether alternative fuel administration is a viable therapy for TBI patients.
Collapse
|
23
|
Maioriello AV, Chaljub G, Nauta HJW, Lacroix M. Chemical shift imaging of mannitol in acute cerebral ischemia. Case report. J Neurosurg 2002; 97:687-91. [PMID: 12296655 DOI: 10.3171/jns.2002.97.3.0687] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effectiveness of mannitol for the treatment of cerebral edema after stroke has long been debated, and the diffusion of mannitol through a disrupted blood-brain barrier has been the focus of many contradictory studies. The authors present a unique case in which chemical shift imaging was used to demonstrate the accumulation of mannitol in an area of stroke underlying a subdural hematoma in a patient with end-stage renal disease being treated with hemodialysis. A metabolite map for the xenobiotic mannitol was created from the data and demonstrated the accumulation of mannitol when hemodialysis was interrupted prematurely. Metabolite maps were also used to show removal of the mannitol with the reestablishment of hemodialysis. It is concluded that mannitol can accumulate in an area of infarction, and that chemical shift imaging can be used to illustrate this process.
Collapse
Affiliation(s)
- Anthony V Maioriello
- Division of Neurosurgery, University of Texas Medical Branch, Galveston 77555-0517, USA
| | | | | | | |
Collapse
|
24
|
Zauner A, Clausen T, Alves OL, Rice A, Levasseur J, Young HF, Bullock R. Cerebral metabolism after fluid-percussion injury and hypoxia in a feline model. J Neurosurg 2002; 97:643-9. [PMID: 12296649 DOI: 10.3171/jns.2002.97.3.0643] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object. Currently, there are no good clinical tools to identify the onset of secondary brain injury and/or hypoxia after traumatic brain injury (TBI). The aim of this study was to evaluate simultaneously early changes of cerebral metabolism, acid—base homeostasis, and oxygenation, as well as their interrelationship after TBI and arterial hypoxia.
Methods. Cerebral biochemistry and O2 supply were measured simultaneously in a feline model of fluid-percussion injury (FPI) and secondary hypoxic injury. After FPI, brain tissue PO2 decreased from 33 ± 5 mm Hg to 10 ± 4 mm Hg and brain tissue PCO2 increased from 55 ± 2 mm Hg to 81 ± 9 mm Hg, whereas cerebral pH fell from 7.1 ± 0.06 to 6.84 ± 0.14 (p < 0.05 for all three measures). After 40 minutes of hypoxia, brain tissue PO2 and pH decreased further to 0 mm Hg and 6.48 ± 0.28, respectively (p < 0.05), whereas brain tissue PCO2 remained high at 83 ± 13 mm Hg. Secondary hypoxic injury caused a drastic increase in cerebral lactate from 513 ± 69 µM/L to 3219 ± 490 µM/L (p < 0.05). The lactate/glucose ratio increased from 0.7 ± 0.1 to 9.1 ± 2 after hypoxia was introduced. The O2 consumption decreased significantly from 18.5 ± 1.1 µl/mg/hr to 13.2 ± 2.1 µl/mg/hr after hypoxia was induced.
Conclusions. Cerebral metabolism, O2 supply, and acid—base balance were severely compromised ultra-early after TBI, and they declined further if arterial hypoxia was present. The complexity of pathophysiological changes and their interactions after TBI might explain why specific therapeutic attempts that are aimed at the normalization of only one component have failed to improve outcome in severely head injured patients.
Collapse
Affiliation(s)
- Alois Zauner
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ibáñez J. Comentario al trabajo: Resolución espontánea de un hematoma subdural agudo de J.J. Rivas y cols. Neurocirugia (Astur) 2002. [DOI: 10.1016/s1130-1473(02)70579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Hyperventilation. J Neurosurg 2002. [DOI: 10.3171/jns.2002.96.1.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Abstract
The availability of genetically modified mice has allowed the study of genetic influences on acute brain injury. An animal model of acute subdural hematoma (ASDH) has been previously described in the rat but not the mouse. We describe a method for producing ASDH in the mouse. Subdural injections of 50 and 30 microL of nonheparinized autologous blood were associated with excessive mortality. Injections of 10 and 20 microL were associated with mean percentage volumes of damage of 1.804% and 4.019%, respectively. Sham subdural injections of saline were associated with minimal hemisphere damage (0.152%). This mouse model provides a means of investigating the effects of genotype on the brain's response to ASDH.
Collapse
Affiliation(s)
- M Sasaki
- Department of Neurosurgery, Nippon Medical School 2nd Hospital, Kawasaki, Japan
| | | |
Collapse
|
28
|
Kawai N, Nakamura T, Okauchi M, Nagao S. Effects of hypothermia on intracranial hemodynamics and ischemic brain damage-studies in the rat acute subdural hematoma model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2001; 76:529-33. [PMID: 11450084 DOI: 10.1007/978-3-7091-6346-7_111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Brain ischemia is the leading pathophysiological mechanism in the development of secondary brain damage after subdural hematoma (SDH). Hypothermia has been used as the effective neuroprotective treatment in clinical and laboratory studies of ischemic brain injury. In this study, we have examined the rat acute SDH model to assess the effect of hypothermia upon intracranial hemodynamics and also upon ischemic brain injury 4 hours after the induction of hematoma. Moderate hypothermia (32 degrees C) did not affect the intracranial pressure nor cerebral perfusion pressure, and it significantly reduced cortical brain edema formation underneath the hematoma (80.88 +/- 0.17%; p < 0.01) compared with the normothermic control group (81.65 +/- 0.52%). This reduction in brain edema formation was comparable to the result of MK-801 (2 mg/kg) treatment (80.95 +/- 0.35%; p < 0.01). Ischemic brain damage detected by H-E staining was also significantly reduced in the hypothermia and MK-801 treated groups (59.1 +/- 12.3 mm3 and 66.4 +/- 13.8 mm3; p < 0.01 and p < 0.05) compared with the normothermic control group (86.6 +/- 20.7 mm3). In conclusion, the present study demonstrates that hypothermia is a potent neuroprotective method and an inhibition of the glutamate excitotoxic process may contribute the protective mechanisms of hypothermia in this rat acute SDH model.
Collapse
Affiliation(s)
- N Kawai
- Department of Neurological Surgery, Kagawa Medical University, Kagawa, Japan
| | | | | | | |
Collapse
|
29
|
Dizocilpine but not ketamine reduces the volume of ischaemic damage after acute subdural haematoma in the rat. Eur J Anaesthesiol 2001. [DOI: 10.1097/00003643-200105000-00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Bergsneider M, Hovda DA, McArthur DL, Etchepare M, Huang SC, Sehati N, Satz P, Phelps ME, Becker DP. Metabolic recovery following human traumatic brain injury based on FDG-PET: time course and relationship to neurological disability. J Head Trauma Rehabil 2001; 16:135-48. [PMID: 11275575 DOI: 10.1097/00001199-200104000-00004] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Utilizing [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET), we assessed the temporal pattern and the correlation of functional and metabolic recovery following human traumatic brain injury. DESIGN AND SUBJECTS Fifty-four patients with injury severity ranging from mild to severe were studied. Thirteen of these patients underwent both an acute and delayed FDG-PET study. RESULTS Analysis of the pooled global cerebral metabolic rate of glucose (CMRglc) values revealed that the intermediate metabolic reduction phase begins to resolve approximately one month following injury, regardless of injury severity. The correlation, in the 13 patients studied twice, between the extent of change in neurologic disability, assessed by the Disability Rating Scale (DRS), and the change in CMRglc from the early to late period was modest (r = -0.42). Potential explanations for this rather poor correlation are discussed. A review of the pertinent literature regarding the use of PET and related imaging modalities, including single photon emission tomography (SPECT) for the assessment of patients following traumatic brain injury is given. CONCLUSION The dynamic profile of CMRglc that changes following traumatic brain injury is seemingly stereotypic across a broad range and severity of injury types. Quantitative FDG-PET cannot be used as a surrogate technique for estimating degree of global functional recovery following traumatic brain injury.
Collapse
Affiliation(s)
- M Bergsneider
- Department of Surgery, Division of Neurosurgery, UCLA Brain Research Institute, Harbor-University of California at Los Angeles Medical Center, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Borsody MK, Coco ML. A hypothesis accounting for the inconsistent benefit of glucocorticoid therapy in closed head trauma. Med Hypotheses 2001; 56:65-72. [PMID: 11133257 DOI: 10.1054/mehy.2000.1113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Because of disagreement between clinical studies, the American College of Neurological Surgeons (ACNS) most recent recommendation (1996) is that glucocorticoids should not be used in the treatment of closed head trauma (CHT). The current paper reviews clinical studies of glucocorticoids and CHT in order to examine what factors might have accounted for the inconsistent results leading to the ACNS's recommendation. A careful analysIs of these studies reveals that, contrary to the ACNS's sweeping conclusion, the available data support the use of glucocorticoids for patients with CHT, but only in specific cases. Glucocorticoids may be beneficial in the treatment of CHT uncomplicated by intracranial hemorrhage; in situations where intracranial hemorrhage accompanies CHT, glucocorticoid treatment appears detrimental. The second part of this paper examines possible mechanisms accounting for the differential effectiveness of glucocorticoids in CHT patients with and without intracranial hemorrhage. These mechanisms include vasospasm, free radical damage, blood-borne factors, and glutamate neurotoxicity.
Collapse
Affiliation(s)
- M K Borsody
- The Ohio State University College of Medicine, Columbus, Ohio, USA
| | | |
Collapse
|
33
|
Abstract
Traumatic injury of the brain in man is normally followed by little or no recovery of function by the lesioned tissue. Neuroprotective strategies employed in the acute period after traumatic CNS injury attempt to use pharmacological tools to reduce the progressive secondary injury processes that follow after the initial lesion occurs to limit overall tissue damage. Results from experimental animal studies using a variety of drugs that modulate neurotransmitter function, scavenge free radicals, or interfere with cell death cascades point toward many new opportunities for pharmacological intervention in the acute and subacute period after traumatic brain injury.
Collapse
Affiliation(s)
- A Verma
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
34
|
Bergsneider M, Hovda DA, Lee SM, Kelly DF, McArthur DL, Vespa PM, Lee JH, Huang SC, Martin NA, Phelps ME, Becker DP. Dissociation of cerebral glucose metabolism and level of consciousness during the period of metabolic depression following human traumatic brain injury. J Neurotrauma 2000; 17:389-401. [PMID: 10833058 DOI: 10.1089/neu.2000.17.389] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Utilizing [18F]fluorodeoxyglucose positron emission tomography (FDG-PET), we studied the correlation between CMRglc and the level of consciousness within the first month following human traumatic brain injury. Forty-three FDG-PET scans obtained on 42 mild to severely head-injured patients were quantitatively analyzed for the determination of regional cerebral metabolic rate of glucose (CMRglc). Reduction of cerebral glucose utilization, defined as a CMRglc of < or =4.9 mg/100 g/min, was present regionally in 88% of the studies. The prevalence of global cortical CMRglc reduction was higher in severely head-injured patients (86% versus 67% mild-moderate), although the absolute magnitude was similar across the injury severity spectrum (mean CMRglc 3.9 +/- 0.6 mg/100 g/min). The level of consciousness, as measured by the Glasgow Coma Scale, correlated poorly with the global cortical CMRglc value (r = 0.08; p = 0.63). With regards to severity of head injury, this correlation was worst for the severely injured (r = -0.11; p = 0.58) and better for the mildly injured patients (r = 0.50; p = 0.07). In most cases, intraparenchymal hemorrhagic lesions were associated with either focal CMRglc reduction or elevation. It is concluded that the etiologies of CMRglc reduction are likely multifactorial given the complex nature of traumatic brain injury and that the reduction of CMRglc represents a fundamental pathobiologic state following head injury that is not tightly coupled to level of consciousness.
Collapse
Affiliation(s)
- M Bergsneider
- UCLA Division of Neurosurgery, Harbor-UCLA Medical Center, UCLA Brain Research Institute, Los Angeles, California 90095-7039, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kawai N, Nakamura T, Okauchi M, Nagao S. Effects of hypothermia on intracranial pressure and brain edema formation: studies in a rat acute subdural hematoma model. J Neurotrauma 2000; 17:193-202. [PMID: 10757325 DOI: 10.1089/neu.2000.17.193] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acute subdural hematoma (SDH) is the most common mass lesion in severe head injury, and brain ischemia is the leading pathophysiological mechanism in the development of secondary brain damage following SDH. Hypothermia has been employed as an effective neuroprotective procedure in clinical and laboratory studies on cerebral ischemic and contusional injuries. In the present study, we used a rat acute SDH model to assess the effect of hypothermia on the intracranial pressure (ICP) and also on the brain edema formation at 4 h after hematoma induction. Mild (34 degrees C) and moderate (32 degrees C) hypothermia did not significantly affect the ICP or cerebral perfusion pressure, but they were associated with a significant lower cortical brain edema formation beneath the hematoma (81.09 +/- 0.49%, p<0.05; and 80.88 +/- 0.17%, p<0.01) when compared with the normothermic control group (81.65 +/- 0.52%). This reduction in brain edema formation was comparable to the results of MK-801 treatment (80.95 +/- 0.35%, p<0.01). The present findings indicate that hypothermia represents a potent neuroprotective strategy. The possible protective mechanisms of hypothermic protection afforded in this rat acute SDH model are discussed.
Collapse
Affiliation(s)
- N Kawai
- Department of Neurological Surgery, Kagawa Medical University, Japan
| | | | | | | |
Collapse
|
36
|
Jiang ZW, Gong QZ, Di X, Zhu J, Lyeth BG. Dicyclomine, an M1 muscarinic antagonist, reduces infarct volume in a rat subdural hematoma model. Brain Res 2000; 852:37-44. [PMID: 10661493 DOI: 10.1016/s0006-8993(99)02230-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The rat subdural hematoma (SDH) model produces a zone of ischemic brain damage within the hemisphere beneath the SDH. Previous studies have measured large increases in extracellular acetylcholine during cerebral ischemia in the rat. We examined infarct volume after selectively blocking muscarinic M1 receptors with dicyclomine during SDH. Rats were anesthetized with isoflurane (2%), intubated, and femoral artery and vein cannulated. Autologous blood (0.375 ml) was injected (0.05 ml/min) under the dura of the right parietal cortex. Dicyclomine (5 mg/kg, i.v.) was injected at 5 min after and again at 2 h after completion of the subdural blood infusion. Blood pressure and intracranial pressure (ICP) were continuously measured. At 4 h after SDH rats were euthanized, brains sectioned, and immunoreacted with glia fibrillary acidic protein. Cortical infarct volume was quantified in coronal brain sections at 0.7-mm intervals from +1.0 mm to -3.9 mm relative to bregma. Infarct volume in drug-treated rats (n = 10) 22.1 +/- 6.99 mm3 was significantly smaller (p < 0.02) than vehicle treated rats (n = 10) 56.7 +/- 9.59 mm3. ICP, blood pressure and cerebral perfusion pressure were not significantly different between groups. These data suggest that activation of M1 muscarinic receptors during an ischemic event may contribute to the development of subsequent pathology.
Collapse
Affiliation(s)
- Z W Jiang
- Division of Neurosurgery, Medical College of Virginia Campus, Virginia Commonwealth University Richmond, USA
| | | | | | | | | |
Collapse
|
37
|
Alessandri B, Tsuchida E, Bullock RM. The neuroprotective effect of a new serotonin receptor agonist, BAY X3702, upon focal ischemic brain damage caused by acute subdural hematoma in the rat. Brain Res 1999; 845:232-5. [PMID: 10536203 DOI: 10.1016/s0006-8993(99)01948-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We tested the neuroprotective effect of a novel, high affinity serotonin (5-HT1A) agonist, BAY X3702, in a rat model of acute subdural hematoma (ASDH). Animals were treated with 0.01 mg/kg (n=8), 0.003 mg/kg (n=8) BAY X3702 or vehicle (n=4) 15 min before (i.v.) and after (continuous infusion) injection of 400 microl of autologous blood into the subdural space. The ischemic brain damage at 4 h after ASDH was 59.01+/-39 and 60.8+/-49 mm(3) for the low- and high-dose BAY X3702 group, respectively, which was significantly smaller compared to the vehicle-treated ASDH group (106.2+/-33 mm(3)). The result indicates that this novel, high affinity 5-HT(1A) agonist, BAY X3702, is neuroprotective in this model.
Collapse
Affiliation(s)
- B Alessandri
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, P.O. Box 980631, Richmond, VA 23298-0631, USA
| | | | | |
Collapse
|
38
|
Alessandri B, Bullock R. Glutamate and its receptors in the pathophysiology of brain and spinal cord injuries. PROGRESS IN BRAIN RESEARCH 1999; 116:303-30. [PMID: 9932385 DOI: 10.1016/s0079-6123(08)60445-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- B Alessandri
- Medical College of Virginia, Department of Neurosurgery, Richmond 23298, USA.
| | | |
Collapse
|
39
|
Abstract
The vulnerability of spinal cord neurons to hemoglobin was quantitatively assessed in primary cultures derived from fetal mice. Exposure to hemoglobin for 28 h in a serum-free medium resulted in concentration-dependent neuronal death, with an EC50 of 0.9 microM; glia were not injured. Neuronal death was decreased by the ferric iron chelator deferoxamine, the alpha-tocopherol analogue Trolox C, ascorbate, and exogenous catalase, but was potentiated by superoxide dismutase. Neuronal death was also increased by depletion of cellular glutathione with the gamma-glutamylcysteine synthetase inhibitor buthionine sulfoxamine; inhibition of endogenous catalase with 3-amino-1,2,4-triazole had no significant effect. These results suggest that hemoglobin is toxic to spinal neurons via an iron-dependent, oxidative mechanism involving a hydrogen peroxide intermediate, and support the hypothesis that hemoglobin release may contribute to neuronal loss after spinal cord trauma.
Collapse
Affiliation(s)
- R F Regan
- Division of Emergency Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
40
|
Obrenovitch TP, Urenjak J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma 1997; 14:677-98. [PMID: 9383088 DOI: 10.1089/neu.1997.14.677] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) increases extracellular levels of the excitatory amino acid glutamate and aspartate, and N-methyl-D aspartate (NMDA)-receptor antagonists protect against experimental TBI. These two findings have led to the prevalent hypothesis that excitatory amino acid efflux is a major contributor to the development of neuronal damage subsequent to traumatic injury. However, as with stroke, the hypothesis that high extracellular glutamate is the key to excitotoxicity in TBI conflicts with important data. For example, the initial increase in extracellular glutamate is cleared within 5 min after moderate TBI, whereas antagonists of glutamate receptors and the so- called presynaptic glutamate release inhibitors remain effective when administered 30 min after insult. In this article, we argue that the current concept of excitotoxicity in TBI, centered on high extracellular glutamate, does not withstand scientific scrutiny. As alternatives to explain the beneficial actions of glutamate antagonists in experimental TBI, we propose abnormalities of glutamatergic neurotransmission, such as deficient Mg2+ block of NMDA-receptor ionophore complexes, and phenomena such as spreading depression, which requires activation of glutamate receptors and is detrimental to neurons in damaged/vulnerable brain regions. Finally, we introduce the notion that beneficial effects of glutamate receptor antagonists in experimental models of neurological disorders do not necessarily imply the occurrence of excitotoxic processes. Indeed, glutamate-receptor blockade may be protective by reducing the energy demand required to counterbalance Na+ influx associated with glutamatergic synaptic transmission. In other words, glutamate receptor antagonists (and blockers of voltage-gated Na+-channels) may help nervous tissue to cope with increased permeability of the cellular membrane to ions and reduced efficacy of Na+ extrusion, and thus prevent the decay of transmembrane ionic concentrations gradients.
Collapse
Affiliation(s)
- T P Obrenovitch
- Department of Neurochemistry, Institute of Neurology, London, United Kingdom
| | | |
Collapse
|
41
|
Abstract
Use of therapeutic hypothermia to treat patients with severe traumatic brain injury was described more than 50 years ago. Unexpected improvement in some of these patients was attributed to hypothermia, but none of the early studies systematically evaluated the efficacy of hypothermia, and many patients were thought to have been harmed by the treatment, particularly when cooled below 30°C or when cooled for longer than 48 hours. Recent investigations have found that therapeutic moderate hypothermia (32–34°C) for relatively brief durations can improve histological and behavioral outcome following experimental brain injury. Cooling to this degree and duration has not been implicated as a cause for the cardiac arrhythmias, coagulation abnormalities, or infections attributed to hypothermia in the earlier studies. These laboratory investigations also defined several neurochemical mechanisms through which hypothermia may limit secondary brain injury and brain swelling. Four clinical trials of therapeutic moderate hypothermia were completed during the past three years; each detected a beneficial effect from cooling patients with severe traumatic brain injury to 32 to 34°C for up to 48 hours. In the largest of these studies, therapeutic moderate hypothermia was shown to cause a significant improvement in neurological outcomes 3, 6, and 12 months after injury for those patients with an initial Glasgow Coma Scale score of 5 to 7. The improvement in outcome for these patients was associated with a hypothermia-induced reduction of intracranial pressure and cerebrospinal fluid levels of interleukln-1β and glutamate.
Collapse
|
42
|
Tsuchida E, Rice M, Bullock R. The neuroprotective effect of the forebrain-selective NMDA antagonist CP101,606 upon focal ischemic brain damage caused by acute subdural hematoma in the rat. J Neurotrauma 1997; 14:409-17. [PMID: 9219855 DOI: 10.1089/neu.1997.14.409] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The neuroprotective effects of drugs that act against excitotoxic damage, caused by glutamate, are well described in focal ischemia, but behavioral effects, and apparent failure in clinical trials of "first-generation" competitive N-methyl D-aspartate (NMDA) antagonists, such as Selfotel (CGS19755), has led to interest in evaluating newer NMDA antagonists with fewer behavioral effects. We have therefore evaluated the neuroprotective effect of a new forebrain-selective polyamine site NMDA antagonist, CP101,606 in a rat subdural hematoma (SDH) model. An SDH was produced by slow injection of 0.4 ml autologous blood into the parietal subdural space. Brain damage was assessed histologically at eight coronal planes, in animals sacrificed 4 h after induction of hematoma. The drug was infused 30 min after induction of SDH. The reductions of ischemic brain damage achieved by CP101,606, was 29% for the low dose and 37% for the high dose. This novel glutamate antagonist has shown a magnitude of neuroprotection which is comparable with that seen with "first-generation" NMDA antagonists such as MK801, D-CPP-ene and CGS19755, in this same model. This new agent is claimed to have fewer psychomotor and behavioral effects than MK801, D-CPP-ene, and CGS19755.
Collapse
Affiliation(s)
- E Tsuchida
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0631, USA
| | | | | |
Collapse
|
43
|
Kelly DF, Lee SM, Pinanong PA, Hovda DA. Paradoxical effects of acute ethanolism in experimental brain injury. J Neurosurg 1997; 86:876-82. [PMID: 9126906 DOI: 10.3171/jns.1997.86.5.0876] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Acute ethanol intoxication is a frequent complicating factor in human head injury, yet its impact on neurological outcome remains poorly defined. This study was undertaken to assess the effect of varying levels of preinjury ethanol on early postinjury mortality, recovery of motor function, and degree of neural degeneration after cortical contusion injury in the rat. Adult rats were pretrained on a beam-walking task, then randomized to one of five groups: low-dose ethanol and injury (1 g/kg, 16 animals); moderate-dose ethanol and injury (2.5 g/kg, 11 animals); high-dose ethanol and injury (3 g/kg, 17 animals); no ethanol and injury (nine animals); or ethanol and sham injury (seven animals). Forty minutes after intraperitoneal injection of ethanol or saline, the rats received a pneumatic piston-induced contusion injury of the left primary motor cortex. Their beam-walking ability was assessed daily for the next 7 days. At 4 weeks postinjury, the brains were sectioned and the dimensions of the cortical lesions were determined. Preinjury ethanol administration was associated with an acute postinjury mortality rate of 29.5% (p < 0.05); the highest mortality rate (47.1%) occurred in the high-dose ethanol group, whereas no deaths occurred in the animals in the no ethanol or sham-injured groups (p < 0.01). However, injured animals receiving low- and moderate-dose ethanol had significantly less severe beam-walking impairment initially, and a more rapid return to normal beam-walking ability, compared to the no and high-dose ethanol groups (p < 0.05). Additionally, the mean lesion volumes were significantly smaller in the low- and moderate-dose ethanol treatment groups compared to the no and high-dose ethanol groups (23.2 +/- 8 mm3 and 29 +/- 6.7 mm3 vs. 52 +/- 8.8 mm3 and 53.7 +/- 10.9 mm3, respectively, p < 0.01). In this cortical contusion model, the presence of ethanol before injury appears to exert a potent neuroprotective effect when administered in low or moderate doses. This action is postulated to result from ethanol-induced inhibition of N-methyl-D-aspartate receptor-mediated excitotoxicity. The loss of neuroprotection and increased mortality rates observed with high-dose ethanol may be related to ethanol-induced hemodynamic and respiratory depression.
Collapse
Affiliation(s)
- D F Kelly
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles School of Medicine, USA
| | | | | | | |
Collapse
|
44
|
Kelly DF, Martin NA, Kordestani R, Counelis G, Hovda DA, Bergsneider M, McBride DQ, Shalmon E, Herman D, Becker DP. Cerebral blood flow as a predictor of outcome following traumatic brain injury. J Neurosurg 1997; 86:633-41. [PMID: 9120627 DOI: 10.3171/jns.1997.86.4.0633] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As part of a prospective study of the cerebrovascular effects of head injury, 54 moderate and severely injured patients underwent 184 133Xe-cerebral blood flow (CBF) studies to determine the relationship between the period of maximum blood flow and outcome. The lowest blood flows were observed on the day of injury (Day 0) and the highest CBFs were documented on postinjury Days 1 to 5. Patients were divided into three groups based on CBF values obtained during this period of maximum flow: Group 1 (seven patients), CBF less than 33 ml/100 g/minute on all determinations; Group 2 (13 patients), CBF both less than and greater than or equal to 33 ml/100 g/minute; and Group 3 (34 patients), CBF greater than or equal to 33 ml/100 g/minute on all measurements. For Groups 1, 2, and 3, mean CBF during Days 1 to 5 postinjury was 25.7 +/- 4, 36.5 +/- 4.2, and 49.4 +/- 9.3 ml/100 g/minute, respectively, and PaCO2 at the time of the CBF study was 31.4 +/- 6, 32.7 +/- 2.9, and 33.4 +/- 4.7 mm Hg, respectively. There were significant differences across Groups 1, 2, and 3 regarding mean age, percentage of individuals younger than 35 years of age (42.9%, 23.1%, and 76.5%, respectively), incidence of patients requiring evacuation of intradural hematomas (57.1%, 38.5%, and 17.6%, respectively) and incidence of abnormal pupils (57.1%, 61.5%, and 32.4%, respectively). Favorable neurological outcome at 6 months postinjury in Groups 1, 2, and 3 was 0%, 46.2%, and 58.8%, respectively (p < 0.05). Further analysis of patients in Group 3 revealed that of 14 with poor outcomes, six had one or more episodes of hyperemia-associated intracranial hypertension (simultaneous CBF > 55 ml/100 g/minute and ICP > 20 mm Hg). These six patients were unique in having the highest CBFs for postinjury Days 1 to 5 (mean 59.8 ml/100 g/minute) and the most severe degree of intracranial hypertension and reduced cerebral perfusion pressure (p < 0.0001). These results indicate that a phasic elevation in CBF acutely after head injury is a necessary condition for achieving functional recovery. It is postulated that for the majority of patients, this rise in blood flow results from an increase in metabolic demands in the setting of intact vasoreactivity. In a minority of individuals, however, the constellation of supranormal CBF, severe intracranial hypertension, and poor outcome indicates a state of grossly impaired vasoreactivity with uncoupling between blood flow and metabolism.
Collapse
Affiliation(s)
- D F Kelly
- Division of Neurosurgery, University of California, Los Angeles, School of Medicine, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kelly DF, Martin NA, Kordestani R, Counelis G, Hovda DA, Bergsneider M, Shalmon E, McBride DQ, Herman D, Becker DP. Cerebral blood flow as a predictor of outcome following traumatic brain injury. Neurosurg Focus 1997. [DOI: 10.3171/foc.1997.2.2.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As part of a prospective study of the cerebrovascular effects of head injury, 54 moderate and severely injured patients underwent 184 133Xe-cerebral blood flow (CBF) studies to determine the relationship between the period of maximum blood flow and outcome. The lowest blood flows were observed on the day of injury (Day 0) and the highest CBFs were documented on postinjury Days 1 to 5. Patients were divided into three groups based on CBF values obtained during this period of maximum flow: Group 1 (seven patients), CBF less than 33 ml/100 g/minute on all determinations; Group 2 (13 patients), CBF both less than and greater than or equal to 33 ml/100 g/minute; and Group 3 (34 patients), CBF greater than or equal to 33 ml/100 g/minute on all measurements. For Groups 1, 2, and 3, mean CBF during Days 1 to 5 postinjury was 25.7 ± 4, 36.5 ± 4.2, and 49.4 ± 9.3 ml/100 g/minute, respectively, and PaCO2 at the time of the CBF study was 31.4 ± 6, 32.7 ± 2.9, and 33.4 ± 4.7 mm Hg, respectively.
There were significant differences across Groups 1, 2, and 3 regarding mean age, percentage of individuals younger than 35 years of age (42.9%, 23.1%, and 76.5%, respectively), incidence of patients requiring evacuation of intradural hematomas (57.1%, 38.5%, and 17.6%, respectively) and incidence of abnormal pupils (57.1%, 61.5%, and 32.4%, respectively). Favorable neurological outcome at 6 months postinjury in Groups 1, 2, and 3 was 0%, 46.2%, and 58.8%, respectively (p < 0.05). Further analysis of patients in Group 3 revealed that of 14 with poor outcomes, six had one or more episodes of hyperemia-associated intracranial hypertension (simultaneous CBF > 55 ml/100 g/minute and ICP > 20 mm Hg). These six patients were unique in having the highest CBFs for postinjury Days 1 to 5 (mean 59.8 ml/100 g/minute) and the most severe degree of intracranial hypertension and reduced cerebral perfusion pressure (p < 0.0001).
These results indicate that a phasic elevation in CBF acutely after head injury is a necessary condition for achieving functional recovery. It is postulated that for the majority of patients, this rise in blood flow results from an increase in metabolic demands in the setting of intact vasoreactivity. In a minority of individuals, however, the constellation of supranormal CBF, severe intracranial hypertension, and poor outcome indicates a state of grossly impaired vasoreactivity with uncoupling between blood flow and metabolism.
Collapse
|
46
|
Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J Neurosurg 1997; 86:272-8. [PMID: 9010429 DOI: 10.3171/jns.1997.86.2.0272] [Citation(s) in RCA: 273] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Recently, the authors showed that thrombin contributes to the formation of brain edema following intracerebral hemorrhage. The current study examines whether the action of thrombin is due to an effect on cerebral blood flow (CBF), vasoreactivity, blood-brain barrier (BBB) function, or cell viability. In vivo solutions of thrombin were infused stereotactically into the right basal ganglia of rats. The animals were sacrificed 24 hours later; CBF and BBB permeability were measured. The actions of thrombin on vasoreactivity were examined in vitro by superfusing thrombin on cortical brain slices while monitoring microvessel diameter with videomicroscopy. In separate experiments C6 glioma cells were exposed to various concentrations of thrombin, and lactate dehydrogenase release, a marker of cell death, was measured. The results indicate that thrombin induces BBB disruption as well as death of parenchymal cells, whereas CBF and vasoreactivity are not altered. The authors conclude that cell toxicity and BBB disruption by thrombin are triggering mechanisms for the edema formation that follows intracerebral hemorrhage.
Collapse
Affiliation(s)
- K R Lee
- Department of Surgery (Neurosurgery), University of Michigan, Ann Arbor, USA
| | | | | | | | | |
Collapse
|
47
|
Obrenovitch TP, Urenjak J. Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 1997; 51:39-87. [PMID: 9044428 DOI: 10.1016/s0301-0082(96)00049-4] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review is a critical appraisal of the widespread assumption that high extracellular glutamate, resulting from enhanced pre-synaptic release superimposed on deficient uptake and/or cytosolic efflux, is the key to excessive glutamate-mediated excitation in neurological disorders. Indeed, high extracellular glutamate levels do not consistently correlate with, nor necessarily produce, neuronal dysfunction and death in vivo. Furthermore, we exemplify with spreading depression that the sensitivity of an experimental or pathological event to glutamate receptor antagonists does not imply involvement of high extracellular glutamate levels in the genesis of this event. We propose an extension to the current, oversimplified concept of excitotoxicity associated with neurological disorders, to include alternative abnormalities of glutamatergic transmission which may contribute to the pathology, and lead to excitotoxic injury. These may include the following: (i) increased density of glutamate receptors; (ii) altered ionic selectivity of ionotropic glutamate receptors; (iii) abnormalities in their sensitivity and modulation; (iv) enhancement of glutamate-mediated synaptic efficacy (i.e. a pathological form of long-term potentiation); (v) phenomena such as spreading depression which require activation of glutamate receptors and can be detrimental to the survival of neurons. Such an extension would take into account the diversity of glutamate-receptor-mediated processes, match the complexity of neurological disorders pathogenesis and pathophysiology, and ultimately provide a more elaborate scientific basis for the development of innovative treatments.
Collapse
Affiliation(s)
- T P Obrenovitch
- Department of Neurochemistry, Institute of Neurology, London.
| | | |
Collapse
|
48
|
Kelly DF, Kordestani RK, Martin NA, Nguyen T, Hovda DA, Bergsneider M, McArthur DL, Becker DP. Hyperemia following traumatic brain injury: relationship to intracranial hypertension and outcome. J Neurosurg 1996; 85:762-71. [PMID: 8893712 DOI: 10.3171/jns.1996.85.5.0762] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The role of posttraumatic hyperemia in the development of raised intracranial pressure (ICP) has important pathophysiological and therapeutic implications. To determine the relationship between hyperemia (cerebral blood flow (CBF) > 55 ml/100 g/minute), intracranial hypertension (ICP > 20 mm Hg), and neurological outcome, 193 simultaneous measurements of ICP and CBF (xenon-133 method) were obtained in 59 patients with moderate and severe head injury. Hyperemia was associated with an increased incidence of simultaneous intracranial hypertension compared to nonhyperemic CBF measurements (32.2% vs. 21.6%, respectively; p < 0.059). However, in 78% of blood flow studies in which ICP was greater than 20 mm Hg, CBF was less than or equal to 55 ml/100 g/minute. At least one episode of hyperemia was documented in 34% of patients, all of whom had a Glasgow Coma Scale (GCS) score of 9 or below. In 12 individuals with hyperemia without simultaneous intracranial hypertension, ICP was greater than 20 mm Hg for an average of 11 +/- 16 hours and favorable outcomes were seen in 75% of patients. In contrast, in eight individuals with hyperemia and at least one episode of hyperemia-associated intracranial hypertension, ICP was greater than 20 mm Hg for an average of 148 +/- 84 hours (p < 0.001), and a favorable outcome was seen in only one patient (p < 0.001). Compared to the remainder of the cohort, patients with hyperemia-associated intracranial hypertension were distinctive in being the youngest, exhibiting the lowest GCS scores (all < or = 6), and having the highest incidence of effaced basilar cisterns and intractable intracranial hypertension. In the majority of individuals with hyperemia-associated intracranial hypertension, their clinical profile suggests the occurrence of a severe initial insult with resultant gross impairment of metabolic vasoreactivity and pressure autoregulation. In a minority of these patients, however, high CBF may be coupled to a hypermetabolic state, given their responsiveness to metabolic suppressive therapy. In patients with hyperemia but without intracranial hypertension, elevated CBF is also likely to be a manifestation of appropriate coupling to increased metabolic demand consistent with a generally favorable outcome. This study supports the concept that there are multiple etiologies of both elevated blood flow and intracranial hypertension after head injury.
Collapse
Affiliation(s)
- D F Kelly
- Division of Neurosurgery, University of California at Los Angeles School of Medicine, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee KR, Kawai N, Kim S, Sagher O, Hoff JT. Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. Neurosurg Focus 1996. [DOI: 10.3171/foc.1996.1.4.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recently, the authors showed that thrombin contributes to the formation of brain edema following intracerebral hemorrhage. The current study examines whether the action of thrombin is due to an effect on cerebral blood flow (CBF), vasoreactivity, blood-brain barrier (BBB) function, or cell viability. In vivo solutions of thrombin were infused stereotactically into the right basal ganglia of rats. The animals were sacrificed 24 hours later; CBF and BBB permeability were measured. The actions of thrombin on vasoreactivity were examined in vitro by superfusing thrombin on cortical brain slices while monitoring microvessel diameter with videomicroscopy. In separate experiments C6 glioma cells were exposed to various concentrations of thrombin and lactate dehydrogenase release, a marker of cell death, was measured. The results indicate that thrombin induces BBB disruption as well as death of parenchymal cells, whereas CBF and vasoreactivity are not altered. The authors conclude that cell toxicity and BBB disruption by thrombin are triggering mechanisms for the edema formation that follows intracerebral hemorrhage.
Collapse
|
50
|
Di X, Bullock R. Effect of the novel high-affinity glycine-site N-methyl-D-aspartate antagonist ACEA-1021 on 125I-MK-801 binding after subdural hematoma in the rat: an in vivo autoradiographic study. J Neurosurg 1996; 85:655-61. [PMID: 8814170 DOI: 10.3171/jns.1996.85.4.0655] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acute subdural hematoma (SDH) complicates 20% of severe human head injuries and causes death or severe disability in 60% of these cases, due to brain swelling and high intracranial pressure. Although the mechanisms for these phenomena are unknown, previous studies have implicated excitatory amino acid-mediated mechanisms in both humans and animal models. The authors therefore performed in vivo autoradiography using 125I-MK-801, a high-affinity noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist, as a tracer to evaluate NMDA ion channel activation spatially and temporally as a factor causing cytotoxic swelling. Acute SDH was induced in 16 anesthetized rats using 0.4 ml autologous venous blood. Fifty microcuries of 125I-MK-801 was injected via an aortic arch cannula 30 minutes after onset of SDH. The effect of a new putatively neuroprotective drug, ACEA-1021, a glycine-specific binding site NMDA antagonist, on 125I-MK-801 binding was tested on five animals "Nonspecific" 125I-MK-801 binding in the rat brain was assessed by pretreatment with "cold" (nonradiolabeled) MK-801 in five more animals. Four hours later the animals were sacrificed and brain sections were apposed to radiation-detecting high-sensitivity photographic film with precalibrated plastic standards for 4 weeks. A striking and highly significant 1.7- to 4.8-fold increase in 125I-MK-801 binding was seen in the penumbra of viable tissue surrounding the ischemic zone beneath the acute SDH, when compared to contralateral hemisphere binding (p < 0.001). The MK-801 pretreatment markedly reduced 125I-MK-801 uptake in this penumbral zone (4.73 +/- 0.36 nCi/mg control vs. 2.85 +/- 0.08 nCi/mg cold MK-801; p < 0.0001), indicating that the increased binding in the penumbra of the lesion was due to NMDA ion channel activation. Pretreatment with ACEA-1021 reduced 125I-MK-801 uptake by 28% (3.41 +/- 0.26 nCi/mg vs. 4.73 +/- 0.36 nCi/mg; p < 0.05), indicating that this agent prevents opening of the NMDA ion channel and, thus, exposure of its receptor for MK-801 binding. These studies show intense foci of penumbral NMDA receptor-mediated ion channel activation after onset of SDH, which is markedly reduced by an NMDA antagonist. Such agents are thus likely to reduce cell swelling after SDH occurs.
Collapse
Affiliation(s)
- X Di
- Division of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|