1
|
Peter SB, Nandhan VR. 31-Phosphorus Magnetic Resonance Spectroscopy in Evaluation of Glioma and Metastases in 3T MRI. Indian J Radiol Imaging 2022; 31:873-881. [PMID: 35136499 PMCID: PMC8817830 DOI: 10.1055/s-0041-1741090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background:
31-Phosphorus magnetic resonance spectroscopy (31-P MRS) has excellent potential for clinical neurological practice because of its noninvasive in-vivo assessment of cellular energy metabolism and the indirect evaluation of the phospholipid composition of the cell membrane, intracellular pH, and intracellular Mg2+ concentration.
Purpose:
The aim of this study was to evaluate the metabolic characteristics of glioma and metastases using 31-P MRS and assess utility to differentiate both.
Study Type:
Prospective study.
Population:
Fifteen consecutive patients with brain tumor.
Field Strength/Sequence:
Three-tesla magnetic resonance imaging/three-dimensional MRS imaging sequence.
Statistical Tests:
Unpaired sample
t
-test, and one-way analysis of variance with Tukey's post-hoc test.
Results:
Significantly decreased values of phosphomonoesters/inorganic phosphate (PME/Pi) in the tumor group (1.22 ± 0.72) compared with controls (2.28 ± 1.44) with a
p
-value of 0.041 were observed. There is a significant decrease in phosphocreatine (PCr)/Pi values (energy demand) in the tumor group (2.76 ± 0.73) compared with controls (4.13 ± 1.75) with a
p
-value of 0.050. Significant increase in Pi/adenosine triphosphate (ATP) was noted in tumor group (0.28 ± 0.09) compared with controls (0.22 ± 0.08) with
p
-value 0.049. Among tumor group, PME/PCr values were significantly decreased in gliomas (0.35 ± 0.17) than metastasis (0.58 ± 0.23) compared with controls with a
p
-value of 0.047. A significant decrease in PME/ATP was noted in gliomas (0.25 ± 0.12) than metastasis (0.41 ± 0.14) compared with controls with a
p
-value of 0.034. The tumor group exhibits alkaline pH (7.12 ± 0.10) compared with the normal parenchyma (7.04 ± 0.06) with a significant
p
-value of 0.025. Glioma and metastasis could not be differentiated with pH. However, the perilesional edema of glioma shows alkaline pH (7.09 ± 0.06) and metastasis shows acidic pH (7.02 ± 0.05) with a significant
p
-value of 0.030.
Conclusion:
Our study provides new insight into the cellular constituents and pH of gliomas and metastases and results were significant in differentiation between these two. However, due to the additional high expense, it is available as a research tool in very few institutions in India.
Collapse
Affiliation(s)
- S. Babu Peter
- Department of Radiodiagnosis, Barnard Institute of Radiology, Madras Medical College, Chennai, Tamil Nadu, India
| | - V. Raghu Nandhan
- Department of Radiodiagnosis, Barnard Institute of Radiology, Madras Medical College, Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Bulakbasi N, Kocaoglu M, Sanal H, Tayfun C. Efficacy of in vivo31Phosphorus Magnetic Resonance Spectroscopy in Differentiation and Staging of Adult Human Brain Tumors. Neuroradiol J 2016; 20:646-55. [DOI: 10.1177/197140090702000608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Accepted: 07/09/2007] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to evaluate the efficacy of 31P magnetic resonance spectroscopy (31P-MRS) in the differentiation and staging of brain tumors. Fifteen volunteers and 44 patients with brain tumors (14 meningiomas, 13 low- and 17 high-grade gliomas) were prospectively evaluated by 31P-MRS. The pH (r=0.493, p<0.001), [Mg+2] (r=0.850, p<0.001) PME/α-ATP (r=0.776, p<0.001), PDE/α-ATP (r=-0.569, p<0.001) and (PCr+β-ATP)/Pi ratios were well correlated with tumor differentiation. High-grade gliomas had significantly higher pH (r=0.912, p<0.001) and [Mg+2] (r=0.855, p<0.001) and PME/α-ATP (r=0.894, p<0.001) ratio, and lower PCr/α-ATP (r= −0.959, p<0.001), Pi/α-ATP (r= −0.788, p<0.001) and PDE/α-ATP ratios (r=−0.968, p<0.001) than those of low-grade gliomas. Changes in 31P-MRS parameters by the degree of malignancy are good indicators of increased anaerobic metabolism and hypoxia of tumoral tissue to compensate intratumoral energy deficiency. 31P-MRS parameters are very useful for grading and differentiation of brain tumors.
Collapse
Affiliation(s)
- N. Bulakbasi
- Radiology Department, Gulhane Military Medical Academy; Ankara, Turkey
| | - M. Kocaoglu
- Radiology Department, Gulhane Military Medical Academy; Ankara, Turkey
| | - H.T. Sanal
- Radiology Department, Gulhane Military Medical Academy; Ankara, Turkey
| | - C. Tayfun
- Radiology Department, Gulhane Military Medical Academy; Ankara, Turkey
| |
Collapse
|
3
|
Kirschstein T, Köhling R. Animal models of tumour-associated epilepsy. J Neurosci Methods 2015; 260:109-17. [PMID: 26092434 DOI: 10.1016/j.jneumeth.2015.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 01/26/2023]
Abstract
Brain tumours cause a sizeable proportion of epilepsies in adulthood, and actually can be etiologically responsible also for childhood epilepsies. Conversely, seizures are often first clinical signs of a brain tumour. Nevertheless, several issues of brain-tumour associated seizures and epilepsies are far from understood, or clarified regarding clinical consensus. These include both the specific mechanisms of epileptogenesis related to different tumour types, the possible relationship between malignancy and seizure emergence, the interaction between tumour mass and surrounding neuronal networks, and - not least - the best treatment options depending on different tumour types. To investigate these issues, experimental models of tumour-induced epilepsies are necessary. This review concentrates on the description of currently used models, focusing on methodological aspects. It highlights advantages and shortcomings of these models, and identifies future experimental challenges.
Collapse
Affiliation(s)
- Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Gertrudenstrasse 9, 18057 Rostock, Germany.
| |
Collapse
|
4
|
Maegele M, Stuermer EK, Hoeffgen A, Uhlenkueken U, Mautes A, Schaefer N, Lippert-Gruener M, Schaefer U, Hoehn M. Multimodal MR imaging of acute and subacute experimental traumatic brain injury: Time course and correlation with cerebral energy metabolites. Acta Radiol Short Rep 2015; 4:2047981614555142. [PMID: 25610615 PMCID: PMC4299368 DOI: 10.1177/2047981614555142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/20/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is one of the leading causes of death and permanent disability world-wide. The predominant cause of death after TBI is brain edema which can be quantified by non-invasive diffusion-weighted magnetic resonance imaging (DWI). PURPOSE To provide a better understanding of the early onset, time course, spatial development, and type of brain edema after TBI and to correlate MRI data and the cerebral energy state reflected by the metabolite adenosine triphosphate (ATP). MATERIAL AND METHODS The spontaneous development of lateral fluid percussion-induced TBI was investigated in the acute (6 h), subacute (48 h), and chronic (7 days) phase in rats by MRI of quantitative T2 and apparent diffusion coefficient (ADC) mapping as well as perfusion was combined with ATP-specific bioluminescence imaging and histology. RESULTS An induced TBI led to moderate to mild brain damages, reflected by transient, pronounced development of vasogenic edema and perfusion reduction. Heterogeneous ADC patterns indicated a parallel, but mixed expression of vasogenic and cytotoxic edema. Cortical ATP levels were reduced in the acute and subacute phase by 13% and 27%, respectively, but were completely normalized at 7 days after injury. CONCLUSION The partial ATP reduction was interpreted to be partially caused by a loss of neurons in parallel with transient dilution of the regional ATP concentration by pronounced vasogenic edema. The normalization of energy metabolism after 7 days was likely due to infiltrating glia and not to recovery. The MRI combined with metabolite measurement further improves the understanding and evaluation of brain damages after TBI.
Collapse
Affiliation(s)
- Marc Maegele
- Department of Traumatology, Orthopedic Surgery and Sporttraumatology, Cologne-Merheim Medical Center (CMMC), University of Witten-Herdecke, Campus Cologne-Merheim, Germany
- Institute of Research in Operative Medicine, University of Witten-Herdecke, Campus Cologne-Merheim, Germany
| | - Ewa K Stuermer
- Institute of Research in Operative Medicine, University of Witten-Herdecke, Campus Cologne-Merheim, Germany
| | - Alexander Hoeffgen
- Department of Anaesthesiology and Intensive Care Medicine, Hospital Gummerbach, Gummersbach, Germany
| | - Ulla Uhlenkueken
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research, Cologne, Germany
| | - Angelika Mautes
- Institute for Neurosurgical Research, Department of Neurosurgery, University of Saarland, Homburg, Germany
| | - Nadine Schaefer
- Institute of Research in Operative Medicine, University of Witten-Herdecke, Campus Cologne-Merheim, Germany
| | | | - Ute Schaefer
- FE Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, Graz, Austria
| | - Mathias Hoehn
- In-vivo-NMR Laboratory, Max-Planck-Institute for Neurological Research, Cologne, Germany
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
5
|
Bimpis A, Papalois A, Tsakiris S, Kalafatakis K, Zarros A, Gkanti V, Skandali N, Al-Humadi H, Kouzelis C, Liapi C. Modulation of crucial adenosinetriphosphatase activities due to U-74389G administration in a porcine model of intracerebral hemorrhage. Metab Brain Dis 2013; 28:439-46. [PMID: 23344690 DOI: 10.1007/s11011-013-9380-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) represents a partially-understood cerebrovascular disease of high incidence, morbidity and mortality. We, herein, report the findings of our study concerning the role of two important adenosinetriphosphatases (ATPases) in a porcine model of spontaneous ICH that we have recently developed (by following recent references as well as previously-established models and techniques), with a focus on the first 4 and 24 h following the lesion's induction, in combination with a study of the effectiveness of the lazaroid antioxidant U-74389G administration. Our study demonstrates that the examined ICH model does not cause a decrease in Na(+),K(+)-ATPase activity (the levels of which are responsible for a very large part of neuronal energy expenditure) in the perihematomal basal ganglia territory, nor a change in the activity of Mg(2+)-ATPase. This is the first report focusing on these crucial ATPases in the experimental setting of ICH and differs from the majority of the findings concerning the behavior of these (crucial for central nervous system cell survival) enzymes under stroke-related ischemic conditions. The administration of U-74389G (an established antioxidant) in this ICH model revealed an injury specific type of behavior, that could be considered as neuroprotective provided that one considers that Na(+),K(+)- and Mg(2+)-ATPase inhibition might in this case diminish the local ATP consumption.
Collapse
Affiliation(s)
- Alexios Bimpis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ha DH, Choi S, Oh JY, Yoon SK, Kang MJ, Kim KU. Application of 31P MR spectroscopy to the brain tumors. Korean J Radiol 2013; 14:477-86. [PMID: 23690717 PMCID: PMC3655304 DOI: 10.3348/kjr.2013.14.3.477] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/04/2012] [Indexed: 12/01/2022] Open
Abstract
Objective To evaluate the clinical feasibility and obtain useful parameters of 31P magnetic resonance spectroscopy (MRS) study for making the differential diagnosis of brain tumors. Materials and Methods Twenty-eight patients with brain tumorous lesions (22 cases of brain tumor and 6 cases of abscess) and 11 normal volunteers were included. The patients were classified into the astrocytoma group, lymphoma group, metastasis group and the abscess group. We obtained the intracellular pH and the metabolite ratios of phosphomonoesters/phosophodiesters (PME/PDE), PME/inorganic phosphate (Pi), PDE/Pi, PME/adenosine triphosphate (ATP), PDE/ATP, PME/phosphocreatine (PCr), PDE/PCr, PCr/ATP, PCr/Pi, and ATP/Pi, and evaluated the statistical significances. Results The brain tumors had a tendency of alkalization (pH = 7.28 ± 0.27, p = 0.090), especially the pH of the lymphoma was significantly increased (pH = 7.45 ± 0.32, p = 0.013). The brain tumor group showed increased PME/PDE ratio compared with that in the normal control group (p = 0.012). The ratios of PME/PDE, PDE/Pi, PME/PCr and PDE/PCr showed statistically significant differences between each brain lesion groups (p < 0.05). The astrocytoma showed an increased PME/PDE and PME/PCr ratio. The ratios of PDE/Pi, PME/PCr, and PDE/PCr in lymphoma group were lower than those in the control group and astrocytoma group. The metastasis group showed an increased PME/PDE ratio, compared with that in the normal control group. Conclusion We have obtained the clinically applicable 31P MRS, and the pH, PME/PDE, PDE/Pi, PME/PCr, and PDE/PCr ratios are helpful for differentiating among the different types of brain tumors.
Collapse
Affiliation(s)
- Dong-Ho Ha
- Department of Radiology, College of Medicine, Dong-A University, Busan 602-715, Korea
| | | | | | | | | | | |
Collapse
|
7
|
Yang W, Wang L, Roehn G, Pearlstein RD, Ali-Osman F, Pan H, Goldbrunner R, Krantz M, Harms C, Paschen W. Small ubiquitin-like modifier 1-3 conjugation [corrected] is activated in human astrocytic brain tumors and is required for glioblastoma cell survival. Cancer Sci 2012; 104:70-7. [PMID: 23078246 DOI: 10.1111/cas.12047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/11/2012] [Accepted: 10/12/2012] [Indexed: 01/03/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO1-3) constitutes a group of proteins that conjugate to lysine residues of target proteins thereby modifying their activity, stability, and subcellular localization. A large number of SUMO target proteins are transcription factors and other nuclear proteins involved in gene expression. Furthermore, SUMO conjugation plays key roles in genome stability, quality control of newly synthesized proteins, proteasomal degradation of proteins, and DNA damage repair. Any marked increase in levels of SUMO-conjugated proteins is therefore expected to have a major impact on the fate of cells. We show here that SUMO conjugation is activated in human astrocytic brain tumors. Levels of both SUMO1- and SUMO2/3-conjugated proteins were markedly increased in tumor samples. The effect was least pronounced in low-grade astrocytoma (WHO Grade II) and most pronounced in glioblastoma multiforme (WHO Grade IV). We also found a marked rise in levels of Ubc9, the only SUMO conjugation enzyme identified so far. Blocking SUMO1-3 conjugation in glioblastoma cells by silencing their expression blocked DNA synthesis, cell growth, and clonogenic survival of cells. It also resulted in DNA-dependent protein kinase-induced phosphorylation of H2AX, indicative of DNA double-strand damage, and G(2) /M cell cycle arrest. Collectively, these findings highlight the pivotal role of SUMO conjugation in DNA damage repair processes and imply that the SUMO conjugation pathway could be a new target of therapeutic intervention aimed at increasing the sensitivity of glioblastomas to radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Wei Yang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Menuel C, Guillevin R, Costalat R, Perrin M, Sahli-Amor M, Martin-Duverneuil N, Chiras J. Spectroscopie du phosphore 31 par résonance magnétique : applications en pathologies cérébrales. J Neuroradiol 2010; 37:73-82. [DOI: 10.1016/j.neurad.2009.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 07/09/2009] [Accepted: 07/31/2009] [Indexed: 11/30/2022]
|
9
|
Maintz D, Heindel W, Kugel H, Jaeger R, Lackner KJ. Phosphorus-31 MR spectroscopy of normal adult human brain and brain tumours. NMR IN BIOMEDICINE 2002; 15:18-27. [PMID: 11840549 DOI: 10.1002/nbm.735] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Localized phosphorus-31 MR spectra were obtained in vivo in a large series of normal human brain tissue specimens of healthy volunteers (n=36) and various brain tumours (n=52). Tumour types examined included grade II and grade III gliomas (n=15 and n=1, respectively), glioblastomas (n=16) and meningeomas (n=12). An additional eight tumours were analysed during chemo- or radiotherapy. Spectra were acquired using a modified ISIS pulse sequence with a repetition time of 3 s. Voxel sizes ranged from 56 to 129 ml. The spectra were evaluated using a least-square variable projection (VARPRO) fitting procedure in the time domain, which allows semi-quantitative determination of relative metabolite concentrations. The measurements in normal cerebrum of healthy volunteers revealed the following results of metabolite signal intensity ratios: pH 7.04 (+/- 0.01), PCr/alpha-ATP 0.51 (+/- 0.03), P(i)/alpha-ATP 0.17 (+/-0.02), PCr/P(i) 2.09 (+/-0.12), PDE/alpha-ATP 3.65 (+/-0.13) and PME/alpha-ATP 0.41 (+/-0.04). Meningiomas showed the most obvious changes when compared with normal brain tissue. They are characterized by an alkaline environment (pH 7.16 +/- 0.03; p<0.005), a decrease in the phosphocreatine peak (p<0.0001) and significantly decreased phosphodiesters (p<0.0001). Glioblastomas also showed alkalization (pH 7.12 +/- 0.02; p<0.001) and a decrease in PDE/alpha-NTP (p<0.05), but no significant changes in PCr/alpha-NTP or PCr/Pi. In gliomas with low malignancy, less distinct changes could be detected with slight alkalization (pH 7.09 +/- 0.02; p<0.05) and more than a two-fold reduction in the PDE/alpha-NTP ratio (p<0.05). The spectra of brain tumours during chemo- and radiotherapy indicated clear but inconsistent influence of the therapy.
Collapse
Affiliation(s)
- David Maintz
- Department of Diagnostic Radiology, University of Cologne Medical School, Cologne, Germany.
| | | | | | | | | |
Collapse
|
10
|
Abstract
We studied the expression and distribution of Na/HCO(3) cotransporters in rat brain using polynucleotide probes and polyclonal antibodies derived from the electrogenic rat kidney Na/HCO(3) cotransporter (rkNBC). In whole brain, we observed a single mRNA ( approximately 7.5 kb) by Northern hybridization and a major approximately 130 kDa protein by immunoblotting with a polyclonal antiserum directed against the C terminus of rkNBC. NBC mRNA and protein were present in cortex, brainstem-diencephalon, and cerebellum. In situ hybridization revealed NBC mRNA expression throughout the CNS, with particularly high levels in olfactory bulb, hippocampal dentate gyrus, and cerebellum. NBC mRNA was present in glial cells (e.g., Bergmann glia of cerebellum and hippocampal astrocytes) and neurons (e.g., granule cells of dentate gyrus and neurons of cortex or striatum). Double hybridization of mRNA encoding NBC and glutamate transporter 1 (glial marker) confirmed that both glia and neurons express NBC. Indirect immunofluorescence microscopy demonstrated NBC protein throughout the CNS, particularly in hippocampus and cerebellum. Although NBC mRNA was restricted to cell bodies, NBC protein was distributed diffusely, compatible with a localization in cell processes and perhaps cell bodies. Double labeling with glial fibrillary acidic protein (astrocytic marker), microtubule-associated protein 2 (neuronal marker), or 2',3'-cyclic mononucleotide 3'-phosphodiesterase (oligodendrocytic marker) demonstrated expression of NBC protein in specific subpopulations of both glia and neurons. Moreover, NBC protein was present in both cultured hippocampal astrocytes and cortical neurons. NBC mRNA and protein were also present in epithelial cells of choroid plexus, ependyma, and meninges. Our results are thus consistent with multiple novel roles for Na/HCO(3) cotransport in CNS physiology.
Collapse
|
11
|
Carhuapoma JR, Wang PY, Beauchamp NJ, Keyl PM, Hanley DF, Barker PB. Diffusion-weighted MRI and proton MR spectroscopic imaging in the study of secondary neuronal injury after intracerebral hemorrhage. Stroke 2000; 31:726-32. [PMID: 10700511 DOI: 10.1161/01.str.31.3.726] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Cerebral ischemia has been proposed as contributing mechanism to secondary neuronal injury after intracerebral hemorrhage (ICH). Possible tools for investigating this hypothesis are diffusion-weighted (DWI) and proton magnetic resonance spectroscopic imaging ((1)H-MRSI). However, magnetic field inhomogeneity induced by paramagnetic blood products may prohibit the application of such techniques on perihematoma tissue. We report on the feasibility of DWI and (1)H-MRSI in the study of human ICH and present preliminary data on their contribution to understanding perihematoma tissue functional and metabolic profiles. METHODS Patients with acute supratentorial ICH were prospectively evaluated using DWI and (1)H-MRSI. Obscuration of perihematoma tissue with both sequences was assessed. Obtainable apparent diffusion coefficient (Dav) and lactate spectra in perihematoma brain tissue were recorded and analyzed. RESULTS Nine patients with mean age of 63.4 (36 to 87) years were enrolled. Mean time from symptom onset to initial MRI was 3.4 (1 to 9) days; mean hematoma volume was 35.4 (5 to 80) cm(3). Perihematoma diffusion values were attainable in 9 of 9 patients, and (1)H-MRSI measures were obtainable in 5 of 9 cases. Dav in perihematoma regions was 172.5 (120.0 to 302.5)x10(-5) mm(2)/s and 87.6 (76.5 to 102.1)x10(-5) mm(2)/s in contralateral corresponding regions of interest (P=0.002). One patient showed an additional area of reduced Dav with normal T(2) intensity, which suggests ischemia. (1)H-MRSI revealed lactate surrounding the hematoma in 2 patients. CONCLUSIONS DWI and (1)H-MRSI can be used in the study of ICH patients. Our preliminary data are inconsistent with ischemia as the primary mechanism for perihematoma tissue injury. Further investigation with advanced MRI techniques will give a clearer understanding of the role that ischemia plays in tissue injury after ICH.
Collapse
Affiliation(s)
- J R Carhuapoma
- Divisions of Neurosciences Critical Care, The Johns Hopkins Medical Institutions, Baltimore, MD 21287-7840, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Kong Q, Kleinschmidt-DeMasters BK, Lillehei KO. Intralesionally implanted cisplatin plus systemic carmustine for the treatment of brain tumor in rats. J Surg Oncol 1998; 69:76-82. [PMID: 9808509 DOI: 10.1002/(sici)1096-9098(199810)69:2<76::aid-jso6>3.0.co;2-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND AND OBJECTIVES The benefit of conventional chemotherapy for the treatment of malignant brain tumors, although limited, is real. A major obstacle in the treatment of these lesions is the ability to deliver drug across the blood-brain barrier (BBB). Local drug implantation, circumventing the BBB, has been a useful strategy for treatment of intracranial lesions, and may work synergistically with systemic chemotherapy. To test this hypothesis, either intraperitoneal (i.p.) carmustine or cisplatin was combined with the intracranial (i.c.) administration of polymer-delivered cisplatin in rats with intracranial tumors. METHODS AND RESULTS 9L gliosarcoma tumor cells (5 x 10(3)) were administered through a right frontal lobe cannula in rats 7 days prior to treatments. Cisplatin-loaded biodegradable polymer was then administered via the cannula, with free cisplatin or carmustine injected i.p. Animals were monitored for 60 days post-treatment. In experiment 1, i.c. cisplatin at a dose of 0.5, 1.0, 2.0, and 4.0 mg/m2 resulted in a mean survival time of 34 +/- 3, 39 +/- 14, 47 +/- 11, and 31 +/- 20 days (MST +/- SD), respectively, compared to 26 +/- 4 days in the control group and 30 +/- 7 days in the group treated with 50 mg/m2 i.p. free cisplatin. In experiment 2, i.p. free cisplatin at 25, 40, 50, and 100 mg/m2 resulted in a MST of 28 +/- 3, 30 +/- 4, 32 +/- 3, and 14 +/- 8 days, respectively, compared to 26 +/- 1 days in the control group. In experiment 3, the MST in the groups treated with 0.5 mg/m2 of i.c. cisplatin, 25 mg/m2 of i.p. cisplatin, 10 mg/kg of i.p. carmustine, i.c. cisplatin (0.5 mg/m2) plus i.p. cisplatin (25 mg/m2), and i.c. cisplatin (0.5 mg/m2) plus i.p. carmustine (10 mg/kg) was 30 +/- 4 days (P > 0.05), 28 +/- 2 (P > 0.05), 36 +/- 4 (P < 0.01), 32 +/- 3 (P < 0.01), and 50 +/- 11 days (P < 0.01), respectively, compared to the tumor control group (26 +/- 1 days). Long-term survivors (29%) were seen only in the i.c. cisplatin plus i.p. carmustine group. Additive toxicity was not observed. CONCLUSIONS Intralesional polymer-delivered (i.c.) cisplatin plus systemic (i.p.) carmustine is highly effective for the treatment of intracranial 9L gliosarcoma in tumors.
Collapse
Affiliation(s)
- Q Kong
- Department of Surgery, University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | |
Collapse
|
13
|
Wagner KR, Xi G, Hua Y, Kleinholz M, de Courten-Myers GM, Myers RE. Early metabolic alterations in edematous perihematomal brain regions following experimental intracerebral hemorrhage. J Neurosurg 1998; 88:1058-65. [PMID: 9609301 DOI: 10.3171/jns.1998.88.6.1058] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECT The authors previously demonstrated, in a large-animal intracerebral hemorrhage (ICH) model, that markedly edematous ("translucent") white matter regions (> 10% increases in water contents) containing high levels of clot-derived plasma proteins rapidly develop adjacent to hematomas. The goal of the present study was to determine the concentrations of high-energy phosphate, carbohydrate substrate, and lactate in these and other perihematomal white and gray matter regions during the early hours following experimental ICH. METHODS The authors infused autologous blood (1.7 ml) into frontal lobe white matter in a physiologically controlled model in pigs (weighing approximately 7 kg each) and froze their brains in situ at 1, 3, 5, or 8 hours postinfusion. Adenosine triphosphate (ATP), phosphocreatine (PCr), glycogen, glucose, lactate, and water contents were then measured in white and gray matter located ipsi- and contralateral to the hematomas, and metabolite concentrations in edematous brain regions were corrected for dilution. In markedly edematous white matter, glycogen and glucose concentrations increased two- to fivefold compared with control during 8 hours postinfusion. Similarly, PCr levels increased several-fold by 5 hours, whereas, except for a moderate decrease at 1 hour, ATP remained unchanged. Lactate was markedly increased (approximately 20 micromol/g) at all times. In gyral gray matter overlying the hematoma, water contents and glycogen levels were significantly increased at 5 and 8 hours, whereas lactate levels were increased two- to fourfold at all times. CONCLUSIONS These results, which demonstrate normal to increased high-energy phosphate and carbohydrate substrate concentrations in edematous perihematomal regions during the early hours following ICH, are qualitatively similar to findings in other brain injury models in which a reduction in metabolic rate develops. Because an energy deficit is not present, lactate accumulation in edematous white matter is not caused by stimulated anaerobic glycolysis. Instead, because glutamate concentrations in the blood entering the brain's extracellular space during ICH are several-fold higher than normal levels, the authors speculate, on the basis of work reported by Pellerin and Magistretti, that glutamate uptake by astrocytes leads to enhanced aerobic glycolysis and lactate is generated at a rate that exceeds utilization.
Collapse
Affiliation(s)
- K R Wagner
- Department of Neurology, University of Cincinnati College of Medicine, Department of Veterans Affairs Medical Center, Ohio 45220, USA
| | | | | | | | | | | |
Collapse
|
14
|
Zhao S, Jiang X, Xue D, Chen D. Glioma prostaglandin levels correlate with brain edema. Curr Med Sci 1998; 18:115-8. [PMID: 10806839 DOI: 10.1007/bf02888481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1997] [Indexed: 11/24/2022]
Abstract
The present study was designed to prospectively investigated the prostaglandin (PG) levels and extent of peritumoral edema in 30 cases of glioma by using methods of radioimmunoassay and imaging. Both TXB2 and 6-keto-PGF1 alpha levels in all glioma groups went up over that in the control group. TXB2 level and ratio of TXB2/6-keto-PGF1 alpha were markedly increased with the extent of tumor malignancy. Water concentration in anaplastic astrocytoma and glioblastoma were significantly elevated. Difference in TXB2 level and TXB2/6-keto-PGF1 alpha ratio among three edema grades were statistically significant. TXB2 level and ratio of TXB2/6-keto-PGF1 alpha were closely correlated with water concentration (r1 = 0.53, r2 = 0.72, P < 0.01). Our findings suggested that the metabolism of PG in glioma were in the state of disorder, and that the imbalance between PGI2 and TXA2 may be one of factors which affect the formation of peritumoral edema.
Collapse
Affiliation(s)
- S Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical University, Wuhan
| | | | | | | |
Collapse
|
15
|
Eis M, Els T, Hoehn-Berlage M. High resolution quantitative relaxation and diffusion MRI of three different experimental brain tumors in rat. Magn Reson Med 1995; 34:835-44. [PMID: 8598810 DOI: 10.1002/mrm.1910340608] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The potential of quantitative parameter images of the relaxation times T1 and T2, the proton density rho and the apparent diffusion coefficient (ADC) to characterize three different experimental rat brain tumors (F98 glioma, RN6 Schwannoma, and E376 neuroblastoma) was studied. All parameter values, as determined in histologically confirmed regions of interest (ROI), were higher in edema than in tumor, which in turn were elevated with respect to normal brain. ROI values of ADC and T2 delivered statistically significant (P < 0.01) differentiation between tumor and edema. Multidimensional parameter combinations improved differentiation between different tissues. However, the three tumor types could not be differentiated. All parameter maps allowed the identification of the whole tumor-edema area. On T2 images, edema could be identified best, whereas the tumor itself was hardly visualized. In many cases, tumor presentation using T1 maps corresponded best with histology, nevertheless suffering from a poor tumor-edema differentiation.
Collapse
Affiliation(s)
- M Eis
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Els T, Eis M, Hoehn-Berlage M, Hossmann KA. Diffusion-weighted MR imaging of experimental brain tumors in rats. MAGMA (NEW YORK, N.Y.) 1995; 3:13-20. [PMID: 7600172 DOI: 10.1007/bf02426396] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diffusion-weighted magnetic resonance imaging was used for the description of experimental brain tumors in rat. To validate this approach, diffusion-weighted images (DWI) were compared with native T1- and T2-weighted images, and with T1-weighted images following contrast enhancement with the tumor-specific contrast agent manganese (III) tetraphenylporphine sulfonate (MnTPPS). Three tumor types were studied: F98 glioma, RN6 Schwannoma, and E376 neuroblastoma. On heavily diffusion-weighted images, all three tumor types as well as the peritumoral edema were clearly hypointense with respect to the intact brain tissue. T2-weighted images presented mainly peritumoral edema as hyperintense region. A clear demarcation of the tumor was possible only on T1-weighted images after contrast enhancement with MnTPPS. The difference in signal intensity between tumor and homotopic regions in the contralateral hemisphere was comparable in DWIs and in contrast-enhanced T1-weighted images. Spatial comparison of depicted lesion areas in all three imaging modalities indicated that hypointense region on DWI represents both tumor and edema but does not permit their spatial differentiation.
Collapse
Affiliation(s)
- T Els
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| | | | | | | |
Collapse
|
17
|
Eis M, Els T, Hoehn-Berlage M, Hossmann KA. Quantitative diffusion MR imaging of cerebral tumor and edema. ACTA NEUROCHIRURGICA. SUPPLEMENTUM 1994; 60:344-6. [PMID: 7976585 DOI: 10.1007/978-3-7091-9334-1_92] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The detection of brain tumors using standard techniques of qualitative, relaxation-weighted magnetic resonance imaging (MRI) requires the application of contrast agents. We investigated whether or not it is possible to use diffusion-weighted MRI to localize tumors without contrast enhancement. Three different experimental rat brain tumors were studied: F98 glioma, RN6 Schwannoma and E376 neuroblastoma. We found a marked hypointensity in the region of the tumor and edema in heavily diffusion-weighted images, which corresponded well with the histological presentation. Quantitative maps of the apparent diffusion coefficient (ADC) allowed a better localization of the tumor than that obtained by regional presentation of T2 times, particularly under conditions in which peritumoral edema was absent. The ADC differences of the three tumor types were statistically not significant. Based upon regions-of-interest evaluations, tumor could be distinguished from peritumoral edema and normal brain tissue. However, a sharp demarcation between tumor and peritumoral edema was not possible, and this is attributed to a similar enlargement of interstitial space. It was concluded that diffusion-weighted MRI possesses a high potential for the detection of brain tumors but does not allow precise demarcation of the tumor border.
Collapse
Affiliation(s)
- M Eis
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, Cologne, Federal Republic of Germany
| | | | | | | |
Collapse
|