1
|
Tsai YC, Chang CH, Chong YB, Wu CH, Tsai HP, Cheng TL, Lin CL. MicroRNA-195-5p Attenuates Intracerebral-Hemorrhage-Induced Brain Damage by Inhibiting MMP-9/MMP-2 Expression. Biomedicines 2024; 12:1373. [PMID: 38927580 PMCID: PMC11201846 DOI: 10.3390/biomedicines12061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Intracerebral hemorrhage (ICH) remains a devastating disease with high mortality, and there is a lack of effective strategies to improve functional outcomes. The primary injury of ICH is mechanical damage to brain tissue caused by the hematoma. Secondary injury, resulting from inflammation, red cell lysis, and thrombin production, presents a potential target for therapeutic intervention. Inflammation, crucial in secondary brain injury, involves both cellular and molecular components. MicroRNAs (miRNAs) are vital regulators of cell growth, differentiation, and apoptosis. Their deregulation may lead to diseases, and modulating miRNA expression has shown therapeutic potential, especially in cancer. Recent studies have implicated miRNAs in the pathogenesis of stroke, affecting endothelial dysfunction, neurovascular integrity, edema, apoptosis, inflammation, and extracellular matrix remodeling. Preclinical and human studies support the use of miRNA-directed gene modulation as a therapeutic strategy for ICH. Our study focused on the effects of miR-195 in ICH models. Neurological tests, including the corner turn and grip tests, indicated that miR-195 treatment led to improvements in motor function impairments caused by ICH. Furthermore, miR-195-5p significantly reduced brain edema in the ipsilateral hemisphere and restored blood-brain barrier (BBB) integrity, as shown by reduced Evans blue dye extravasation. These results suggest miR-195-5p's potential in attenuating ICH-induced apoptosis, possibly related to its influence on MMP-9 and MMP-2 expression, enzymes associated with secondary brain injury. The anti-apoptotic effects of miR-195-5p, demonstrated through TUNEL assays, further underscore its therapeutic promise in addressing the secondary brain injury and apoptosis associated with ICH. In conclusion, miR-195-5p demonstrates a significant neuroprotective effect against ICH-induced neural damage, brain edema, and BBB disruption, primarily through the downregulation of MMP-9 and MMP-2. Our findings indicate that miR-195-5p holds therapeutic potential in managing cerebral cell death following ICH.
Collapse
Affiliation(s)
- Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chih-Hui Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Yoon Bin Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tian-Lu Cheng
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| |
Collapse
|
2
|
Lamperti M, Tufegdzic B, Byrappa V, Jain A, Manohara N. Brain edema. NEUROLOGICAL AND NEUROSURGICAL EMERGENCIES 2024:115-151. [DOI: 10.1016/b978-0-443-19132-9.00022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Wan Y, Holste KG, Hua Y, Keep RF, Xi G. Brain edema formation and therapy after intracerebral hemorrhage. Neurobiol Dis 2023; 176:105948. [PMID: 36481437 PMCID: PMC10013956 DOI: 10.1016/j.nbd.2022.105948] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Intracerebral hemorrhage (ICH) accounts for about 10% of all strokes in the United States of America causing a high degree of disability and mortality. There is initial (primary) brain injury due to the mechanical disruption caused by the hematoma. There is then secondary injury, triggered by the initial injury but also the release of various clot-derived factors (e.g., thrombin and hemoglobin). ICH alters brain fluid homeostasis. Apart from the initial hematoma mass, ICH causes blood-brain barrier disruption and parenchymal cell swelling, which result in brain edema and intracranial hypertension affecting patient prognosis. Reducing brain edema is a critical part of post-ICH care. However, there are limited effective treatment methods for reducing perihematomal cerebral edema and intracranial pressure in ICH. This review discusses the mechanisms underlying perihematomal brain edema formation, the effects of sex and age, as well as how edema is resolved. It examines progress in pharmacotherapy, particularly focusing on drugs which have been or are currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Yingfeng Wan
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Paiva WS, Zippo E, Miranda C, Brasil S, Godoy DA, De Andrade AF, Neville I, Patriota GC, Domingues R, Teixeira MJ. Animal models for the study of intracranial hematomas (Review). Exp Ther Med 2022; 25:20. [PMID: 36561628 PMCID: PMC9748783 DOI: 10.3892/etm.2022.11719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intracranial hematomas (ICH) are a frequent condition in neurosurgical and neurological practices, with several mechanisms of primary and secondary injury. Experimental research has been fundamental for the understanding of the pathophysiology implicated with ICH and the development of therapeutic interventions. To date, a variety of different animal approaches have been described that consider, for example, the ICH evolutive phase, molecular implications and hemodynamic changes. Therefore, choosing a test protocol should consider the scope of each particular study. The present review summarized investigational protocols in experimental research on the subject of ICH. With this subject, injection of autologous blood or bacterial collagenase, inflation of intracranial balloon and avulsion of cerebral vessels were the models identified. Rodents (mice) and swine were the most frequent species used. These different models allowed improvements on the understanding of intracranial hypertension establishment, neuroinflammation, immunology, brain hemodynamics and served to the development of therapeutic strategies.
Collapse
Affiliation(s)
- Wellingson Silva Paiva
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Emanuele Zippo
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Carolina Miranda
- Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil
| | - Sérgio Brasil
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Correspondence to: Dr Sérgio Brasil, Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 255 Enéas Aguiar Street, 05403 São Paulo, Brazil
| | - Daniel Augustin Godoy
- Department of Intensive Care, Neurointensive Care Unit, Pasteur Hospital, 4700 Catamarca, Argentina
| | - Almir Ferreira De Andrade
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | - Iuri Neville
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| | | | - Renan Domingues
- Neurology Center, Samaritan Hospital, 01232010 São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Department of Neurology, Division of Neurosurgery, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil,Medical Research Laboratory 62, Department of Neurology, School of Medicine, University of São Paulo, 05403000 São Paulo, Brazil
| |
Collapse
|
5
|
Central Nervous System Tissue Regeneration after Intracerebral Hemorrhage: The Next Frontier. Cells 2021; 10:cells10102513. [PMID: 34685493 PMCID: PMC8534252 DOI: 10.3390/cells10102513] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Despite marked advances in surgical techniques and understanding of secondary brain injury mechanisms, the prognosis of intracerebral hemorrhage (ICH) remains devastating. Harnessing and promoting the regenerative potential of the central nervous system may improve the outcomes of patients with hemorrhagic stroke, but approaches are still in their infancy. In this review, we discuss the regenerative phenomena occurring in animal models and human ICH, provide results related to cellular and molecular mechanisms of the repair process including by microglia, and review potential methods to promote tissue regeneration in ICH. We aim to stimulate research involving tissue restoration after ICH.
Collapse
|
6
|
Mei S, Shao Y, Fang Y, Lu J, Zheng J, Xu S, Wu H, Sun Z, Yu J, Chen S, Wang Z, Zhang J. The Changes of Leukocytes in Brain and Blood After Intracerebral Hemorrhage. Front Immunol 2021; 12:617163. [PMID: 33659003 PMCID: PMC7917117 DOI: 10.3389/fimmu.2021.617163] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Preclinical and clinical research has demonstrated that inflammation is a critical factor regulating intracerebral hemorrhage (ICH)-induced brain injury. Growing evidence suggests that myeloid cells and lymphocytes have an effect on the pathophysiological processes associated with ICH, such as inflammation, immune responses, perihematomal edema formation, blood-brain barrier (BBB) integrity, and cell death. However, the underlying mechanisms remain largely unknown. We aimed to explore the role immune cells played at different stages of the ICH. To achieve this, novel bioinformatics algorithms were employed to analyze the gene expression profiles and three different analytical tools were utilized to predict the abundances of cell types. In this study, we found that natural killer (NK) cells infiltrated into the brain parenchyma after ICH. Infiltrating NK cells may mediate brain injury through degranulation and recruitment of other cells. Besides, in the acute phase of ICH, monocytes in peripheral blood carried out phagocytosis and secretion of cytokines. On the other hand, in the subacute stage, non-classical monocytes were activated and showed a stronger ability to carry out heme metabolism, wound healing, and antigen processing and presentation. In conclusion, our findings emphasize the significance of intracerebral infiltrating immunocytes in ICH and demonstrate that ICH is a systemic disease affected by peripheral blood. The hub genes identified might be promising therapeutic targets. We also provide a reference on how to use bioinformatics approaches to explore non-neoplastic immune-related diseases.
Collapse
Affiliation(s)
- Shuhao Mei
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yijie Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia'nan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenbin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyu Sun
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Brain Research Institute, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Jeng BCP, de Andrade AF, Brasil S, Bor-Seng-Shu E, Belon AR, Robertis M, de-Lima-Oliveira M, Rubiano AM, Godoy DA, Teixeira MJ, Paiva WS. Estimation of intracranial pressure by ultrasound of the optic nerve sheath in an animal model of intracranial hypertension. J Clin Neurosci 2021; 86:174-179. [PMID: 33775322 DOI: 10.1016/j.jocn.2021.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Ultrasound of the optic nerve sheath diameter (ONSD) has been used as a non-invasive and cost-effective bedside alternative to invasive intracranial pressure (ICP) monitoring. However, ONSD time-lapse behavior in intracranial hypertension (ICH) and its relief by means of either saline infusion or surgery are still unknown. The objective of this study was to correlate intracranial pressure (ICP) and ultrasonography of the optic nerve sheath (ONS) in an experimental animal model of ICH and determine the interval needed for ONSD to return to baseline levels. METHODS An experimental study was conducted on 30 pigs. ONSD was evaluated by ultrasound at different ICPs generated by intracranial balloon inflation, saline infusion, and balloon deflation, and measured using an intraventricular catheter. RESULTS All variables obtained by ONS ultrasonography such as left, right, and average ONSD (AON) were statistically significant to estimate the ICP value. ONSD changed immediately after balloon inflation and returned to baseline after an average delay of 30 min after balloon deflation (p = 0.016). No statistical significance was observed in the ICP and ONSD values with hypertonic saline infusion. In this swine model, ICP and ONSD showed linear correlation and ICP could be estimated using the formula: -80.5 + 238.2 × AON. CONCLUSION In the present study, ultrasound to measure ONSD showed a linear correlation with ICP, although a short delay in returning to baseline levels was observed in the case of sudden ICH relief.
Collapse
Affiliation(s)
| | | | - Sérgio Brasil
- Division of Neurosurgery, University of São Paulo Medical School, São Paulo, Brazil.
| | - Edson Bor-Seng-Shu
- Division of Neurosurgery, University of São Paulo Medical School, São Paulo, Brazil
| | | | - Maira Robertis
- Laboratory of Experimental Surgery, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Daniel Agustín Godoy
- Neurointensive Care Unit, Sanatorio Pasteur. Intensive Care Unit, Hospital Carlos G. Malbran, Catamarca, Argentina
| | | | - Wellingson Silva Paiva
- Division of Neurosurgery, University of São Paulo Medical School, São Paulo, Brazil; Hospital Samaritano, Americas Serviços Médicos, São Paulo, Brazil
| |
Collapse
|
8
|
Bai Q, Sheng Z, Liu Y, Zhang R, Yong VW, Xue M. Intracerebral haemorrhage: from clinical settings to animal models. Stroke Vasc Neurol 2020; 5:388-395. [PMID: 33376200 PMCID: PMC7804065 DOI: 10.1136/svn-2020-000334] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Spontaneous intracerebral haemorrhage (ICH) is a devastating type of stroke with high mortality and morbidity and for which no effective treatments are available to date. Much experimental and clinical research have been performed to explore its mechanisms regard the subsequent inflammatory cascade and to seek the potential therapeutic strategies. The aim of this review is to discuss insights from clinical settings that have led to the development of numerous animal models of ICH. Some of the current and future challenges for clinicians to understand ICH are also surveyed.
Collapse
Affiliation(s)
- Qian Bai
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhaofu Sheng
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Liu
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruiyi Zhang
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Voon Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases; Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Melià-Sorolla M, Castaño C, DeGregorio-Rocasolano N, Rodríguez-Esparragoza L, Dávalos A, Martí-Sistac O, Gasull T. Relevance of Porcine Stroke Models to Bridge the Gap from Pre-Clinical Findings to Clinical Implementation. Int J Mol Sci 2020; 21:ijms21186568. [PMID: 32911769 PMCID: PMC7555414 DOI: 10.3390/ijms21186568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
In the search of animal stroke models providing translational advantages for biomedical research, pigs are large mammals with interesting brain characteristics and wide social acceptance. Compared to rodents, pigs have human-like highly gyrencephalic brains. In addition, increasingly through phylogeny, animals have more sophisticated white matter connectivity; thus, ratios of white-to-gray matter in humans and pigs are higher than in rodents. Swine models provide the opportunity to study the effect of stroke with emphasis on white matter damage and neuroanatomical changes in connectivity, and their pathophysiological correlate. In addition, the subarachnoid space surrounding the swine brain resembles that of humans. This allows the accumulation of blood and clots in subarachnoid hemorrhage models mimicking the clinical condition. The clot accumulation has been reported to mediate pathological mechanisms known to contribute to infarct progression and final damage in stroke patients. Importantly, swine allows trustworthy tracking of brain damage evolution using the same non-invasive multimodal imaging sequences used in the clinical practice. Moreover, several models of comorbidities and pathologies usually found in stroke patients have recently been established in swine. We review here ischemic and hemorrhagic stroke models reported so far in pigs. The advantages and limitations of each model are also discussed.
Collapse
Affiliation(s)
- Marc Melià-Sorolla
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Carlos Castaño
- Neurointerventional Radiology Unit, Department of Neurosciences, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain;
| | - Núria DeGregorio-Rocasolano
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
| | - Luis Rodríguez-Esparragoza
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Antoni Dávalos
- Stroke Unit, Department of Neurology, Hospital Germans Trias i Pujol, 08916 Badalona, Catalonia, Spain; (L.R.-E.); (A.D.)
| | - Octavi Martí-Sistac
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08916 Bellaterra, Catalonia, Spain
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| | - Teresa Gasull
- Cellular and Molecular Neurobiology Research Group, Department of Neurosciences, Germans Trias i Pujol Research Institute, 08916 Badalona, Catalonia, Spain; (M.M.-S.); (N.D.-R.)
- Fundació Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Carretera del Canyet, Camí de les Escoles s/n, Edifici Mar, 08916 Badalona, Catalonia, Spain
- Correspondence: (O.M.-S.); (T.G.); Tel.: +34-930330531 (O.M.-S.)
| |
Collapse
|
10
|
Liu Y, Yang S, Cai E, Lin L, Zeng P, Nie B, Xu F, Tian Q, Wang J. Functions of lactate in the brain of rat with intracerebral hemorrhage evaluated with MRI/MRS and in vitro approaches. CNS Neurosci Ther 2020; 26:1031-1044. [PMID: 32488963 PMCID: PMC7539841 DOI: 10.1111/cns.13399] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Lactate accumulation in the brain is caused by the anaerobic metabolism induced by ischemic damages, which always accompanies intracerebral hemorrhages (ICH). Our former findings showed that microglia's movement was always directly toward hemorrhagic center with the highest lactate concentration, and penumbra area has the largest density of compactly arrayed microglia. However, the relationship between microglia and lactate concentration has not been well documented. Methods Cerebral hemorrhage model was successfully achieved by injecting collagenase VII (causing stabile localized bleeding) in CPu (striatum) of SD rats. Emodin was used as a potential therapeutic for ICH. The function of the lactate was examined with in vitro culture studies. Then, the effect of lactate on the proliferation, cell survival, migration, and phagocytosis property of microglia was investigated by in vitro culture studies. Results Lactate accumulation was observed with in vivo MRS method, and its concentration was monitored during the recovery of ICH and treatment of emodin. Lactate concentration significantly increased in the core and penumbra regions of hemorrhagic foci, and it decreased after the treatment of emodin. The in vitro culture study was verified that lactate was beneficial for the proliferation, cell survival, migration, and phagocytosis property of the microglia. Conclusion Results from in vitro verification study, investigations from the recovery of ICH, and treatment of emodin verify that lactate plays an important role during the recovery of ICH. This could provide a novel therapeutic approach for ICH.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Shusheng Yang
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Erli Cai
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China.,Cell Molecular Biology Laboratory of Basic Medical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Peng Zeng
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binbin Nie
- Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.,Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing Tian
- Department of Pathology and Pathophysiology, School of Basic Medicine, Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China.,Hebei Provincial Key Laboratory of Basic Medicine for Diabetes, 2nd Hospital of Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
11
|
Walsh KB, Zhang X, Zhu X, Wohleb E, Woo D, Lu L, Adeoye O. Intracerebral hemorrhage induces monocyte-related gene expression within six hours: Global transcriptional profiling in swine ICH. Metab Brain Dis 2019; 34:763-774. [PMID: 30796715 PMCID: PMC6910870 DOI: 10.1007/s11011-019-00399-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Our prior research identified a significant association with monocyte level and ICH mortality. To advance our understanding, we sought to identify gene expression after ICH using a swine model to test the hypothesis that ICH would induce peripheral blood mononuclear cell (PBMC) gene expression. In 10 pigs with ICH, two PBMC samples were drawn from each with the first immediately prior to ICH induction and the second six hours later. RNA-seq was performed with subsequent bioinformatics analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity® Pathway Analysis (IPA). There were 182 significantly upregulated and 153 significantly down-regulated differentially expressed genes (DEGs) after ICH. Consistent with findings in humans, significant GO and KEGG pathways were primarily related to inflammation and the immune response. Five genes, all upregulated post-ICH and known to be associated with monocyte activation, were repeatedly DEGs in the significant KEGG pathways: CD14, TLR4, CXCL8, IL-18, and CXCL2. In IPA, the majority of upregulated disease/function categories were related to inflammation and immune cell activation. TNF and LPS were the most significantly activated upstream regulators, and ERK was the most highly connected node in the top network. ICH induced changes in PBMC gene expression within 6 h of onset related to inflammation, the immune response, and, more specifically, monocyte activation. Further research is needed to determine if these changes affect outcomes and may represent new therapeutic targets.
Collapse
Affiliation(s)
- Kyle B Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA.
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA.
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Neurobiology Research Center, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Long Lu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Opeolu Adeoye
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA
| |
Collapse
|
12
|
Deferoxamine therapy reduces brain hemin accumulation after intracerebral hemorrhage in piglets. Exp Neurol 2019; 318:244-250. [PMID: 31078524 DOI: 10.1016/j.expneurol.2019.05.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022]
Abstract
Hemopexin (Hpx) is critical for hemin scavenging after the erythrocyte lysis that occurs following intracerebral hemorrhage (ICH). Low-density lipoprotein receptor-related protein-1 (LRP1, also called CD91) is an important receptor through which the hemin-Hpx complex can undergo endocytosis. This study investigated changes in the hemin-Hpx-CD91 axis in both hematoma and perihematomal tissue in a large animal ICH model. The effect of deferoxamine (DFX) on hemin-Hpx-CD91 was also examined. The study consisted of two parts. First, piglets had an injection of autologous blood into the right frontal lobe of brain and were euthanized from day 1 to day 7. Hematoma and perihematomal tissue of brains were used for hemin assay, immunohistochemistry, and immunofluorescence. Second, piglets with ICH were treated with deferoxamine or vehicle, and were euthanized for hemin measurement and Hpx and CD91 immunohistochemistry. We found that there was an increase of hemin levels within the hematoma and perihematomal brain tissue after ICH. Hpx and CD91-positive cells were present in the clot and perihematomal tissue from day 1. Hpx and CD91 positive cells were Iba1 positive. After DFX therapy, hemin dropped markedly in the hematoma and perihematomal brain tissue. Furthermore, DFX treatment decreased the number of Hpx and CD91 positive cells in and around the hematoma. In conclusion, hemin accumulation occurs in and around the hematoma. Increases in Hpx and CD91 may be important in scavenging that hemin. DFX treatment decreased hemin release from the hematoma and reduced the expression of Hpx and CD91.
Collapse
|
13
|
Lactate potentiates angiogenesis and neurogenesis in experimental intracerebral hemorrhage. Exp Mol Med 2018; 50:1-12. [PMID: 29980670 PMCID: PMC6035243 DOI: 10.1038/s12276-018-0113-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/18/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Lactate accumulation has been observed in the brain with intracerebral hemorrhage (ICH). However, the outcome of lactate accumulation has not been well characterized. Here, we report that lactate accumulation contributes to angiogenesis and neurogenesis in ICH. In the first set of the experiment, a rat model of ICH was induced by injecting collagenase into the brain. The effects of lactate accumulation on the neurological function, apoptosis, and numbers of newborn endothelial cells and neurons, as well as the proliferation-associated signaling pathway, were evaluated in the rat brain. In the second set, exogenous L-lactate was infused into intact rat brains so that its effects could be further assessed. Following ICH, lactate accumulated around the hematoma; the numbers of PCNA+/vWF+ nuclei and PCNA+/DCX+ cells were significantly increased compared with the numbers in the Sham group. Moreover, ICH induced translocation of nuclear factor-kappa B (NF-κB) p65 into the nucleus, resulting in a notable upregulation of VEGF and bFGF mRNAs and proteins compared with the levels in the Sham controls. Administration of a lactate dehydrogenase inhibitor dramatically inhibited these effects, decreased the vascular density, and aggravated neurological severity scores and apoptosis after ICH. After exogenous L-lactate infusion, the numbers of PCNA+/vWF+ nuclei and PCNA+/DCX+ cells were strikingly increased compared with the numbers in the Sham controls. In addition, lactate facilitated NF-κB translocation to induce increased transcription of VEGF and bFGF. Co-infusion with an NF-κB inhibitor significantly inhibited these effects. These data suggest that lactate potentiates angiogenesis and neurogenesis by activating the NF-κB signaling pathway following ICH.
Collapse
|
14
|
White Matter Injury and Recovery after Hypertensive Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6138424. [PMID: 28680884 PMCID: PMC5478825 DOI: 10.1155/2017/6138424] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/07/2017] [Indexed: 12/26/2022]
Abstract
Hypertensive intracerebral hemorrhage (ICH) could very probably trigger white matter injury in patients. Through the continuous study of white matter injury after hypertensive ICH, we achieve a more profound understanding of the pathophysiological mechanism of its occurrence and development. At the same time, we found a series of drugs and treatment methods for the white matter repair. In the current reality, the research paradigm of white matter injury after hypertensive ICH is relatively obsolete or incomplete, and there are still lots of deficiencies in the research. In the face of the profound changes of stroke research perspective, we believe that the combination of the lenticulostriate artery, nerve nuclei of the hypothalamus-thalamus-basal ganglia, and the white matter fibers located within the capsula interna will be beneficial to the research of white matter injury and repair. This paper has classified and analyzed the study of white matter injury and repair after hypertensive ICH and also rethought the shortcomings of the current research. We hope that it could help researchers further explore and study white matter injury and repair after hypertensive ICH.
Collapse
|
15
|
Liu R, Cao S, Hua Y, Keep RF, Huang Y, Xi G. CD163 Expression in Neurons After Experimental Intracerebral Hemorrhage. Stroke 2017; 48:1369-1375. [PMID: 28360115 DOI: 10.1161/strokeaha.117.016850] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 01/27/2017] [Accepted: 02/09/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND PURPOSE CD163, a receptor for hemoglobin, is involved in hemoglobin clearance after intracerebral hemorrhage (ICH). In contrast to microglial/macrophage CD163, neuronal CD163 hemoglobin has not been well studied. This study examined the expression of neuronal CD163 in a pig model of ICH and in vitro rat cortical neurons and the impact of deferoxamine on that expression. METHODS There were 2 parts to this study. In the in vivo part, piglets had injection of autologous blood into the right frontal lobe. The time course of CD163 expression and the effect of deferoxamine on the expression of CD163 after ICH were determined in the grey matter. In the in vitro part, the levels of CD163 and neuronal death and the effect of deferoxamine were examined in rat cortical neurons culture treated with hemoglobin. RESULTS CD163-positive cells were found, and the CD163 protein levels were upregulated in the ipsilateral grey matter after ICH. The CD163 levels peaked at days 1 and 3. The CD163-positive cells were colocated with NeuN-positive, heme oxygenase-2-positive, and terminal deoxynucleatidyl transferase dUTP nick end labeling-positive cells. Deferoxamine treatment attenuated ICH-induced CD163 upregulation and significantly reduced both brain CD163 and hemoglobin levels at day 3. Treating neuronal cultures with hemoglobin for 24 hours resulted in CD163 upregulation and increased cell death. Deferoxamine significantly attenuated the hemoglobin-induced neuronal death and CD163 upregulation. CONCLUSIONS CD163 is expressed in neurons and upregulated after ICH. Deferoxamine reduced ICH-induced CD163 upregulation and brain cell death in vivo and hemoglobin-induced CD163 upregulation and neuronal death in vitro.
Collapse
Affiliation(s)
- Ran Liu
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Shenglong Cao
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Ya Hua
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Richard F Keep
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Yining Huang
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.)
| | - Guohua Xi
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (R.L., S.C., Y.H., R.F.K., G.X.); and Department of Neurology, Peking University First Hospital, Beijing, China (R.L., Y.H.).
| |
Collapse
|
16
|
Cao S, Zheng M, Hua Y, Chen G, Keep RF, Xi G. Hematoma Changes During Clot Resolution After Experimental Intracerebral Hemorrhage. Stroke 2016; 47:1626-31. [PMID: 27125525 DOI: 10.1161/strokeaha.116.013146] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/29/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Hematoma clearance occurs in the days after intracerebral hemorrhage (ICH) and has not been well studied. In the current study, we examined changes in the hematoma in a piglet ICH model. The effect of deferoxamine on hematoma was also examined. METHODS The ICH model was induced by an injection of autologous blood into the right frontal lobe of piglets. First, a natural time course of hematoma changes ≤7 days was determined. Second, the effect of deferoxamine on hematoma changes was examined. Hemoglobin and membrane attack complex levels in the hematoma were examined by enzyme-linked immunosorbent assay. Immunohistochemistry and Western blotting were used to examine CD47 (a regulator of erythrophagocytosis), CD163 (a hemoglobin scavenger receptor), and heme oxygenase-1 (a heme degradation enzyme) in the clot. RESULTS After ICH, there was a reduction in red blood cell diameter within the clot with time. This was accompanied by membrane attack complex accumulation and decreased hemoglobin levels. Erythrophagocytosis occurred in the hematoma, and this was associated with reduced clot CD47 levels. Activated macrophages/microglia were CD163 and hemeoxygenase-1 positive, and these accumulated in the clot with time. Deferoxamine treatment attenuated the process of hematoma resolution by reducing member attack complex formation and inhibiting CD47 loss in the clot. CONCLUSIONS These results indicate that membrane attack complex and erythrophagocytosis contribute to hematoma clearance after ICH, which can be altered by deferoxamine treatment.
Collapse
Affiliation(s)
- Shenglong Cao
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (S.C., M.Z., Y.H., R.F.K., G.X.); and Department of Neurosurgery, the 2nd Affiliated Hospital, Zhejiang University, Hangzhou, China (S.C., G.C.)
| | - Mingzhe Zheng
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (S.C., M.Z., Y.H., R.F.K., G.X.); and Department of Neurosurgery, the 2nd Affiliated Hospital, Zhejiang University, Hangzhou, China (S.C., G.C.)
| | - Ya Hua
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (S.C., M.Z., Y.H., R.F.K., G.X.); and Department of Neurosurgery, the 2nd Affiliated Hospital, Zhejiang University, Hangzhou, China (S.C., G.C.)
| | - Gao Chen
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (S.C., M.Z., Y.H., R.F.K., G.X.); and Department of Neurosurgery, the 2nd Affiliated Hospital, Zhejiang University, Hangzhou, China (S.C., G.C.)
| | - Richard F Keep
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (S.C., M.Z., Y.H., R.F.K., G.X.); and Department of Neurosurgery, the 2nd Affiliated Hospital, Zhejiang University, Hangzhou, China (S.C., G.C.)
| | - Guohua Xi
- From the Department of Neurosurgery, University of Michigan, Ann Arbor (S.C., M.Z., Y.H., R.F.K., G.X.); and Department of Neurosurgery, the 2nd Affiliated Hospital, Zhejiang University, Hangzhou, China (S.C., G.C.).
| |
Collapse
|
17
|
Wang AM, Leung GKK, Kiang KMY, Chan D, Cao P, Wu EX. Separation and quantification of lactate and lipid at 1.3 ppm by diffusion-weighted magnetic resonance spectroscopy. Magn Reson Med 2016; 77:480-489. [PMID: 26833380 DOI: 10.1002/mrm.26144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE To separate the spectrally overlapped lactate and lipid signals at 1.3 ppm using diffusion-weighted magnetic resonance spectroscopy (DW-MRS) based on their large diffusivity difference. METHODS DW-MRS was applied to the gel phantoms containing lactate and lipid droplets, and to the rat brain tumors. Lactate and lipid signals and their apparent diffusion coefficients were computed from the diffusion-weighted proton spectra. Biexponential fitting and direct spectral subtraction approaches were employed and compared. RESULTS DW-MRS could effectively separate lactate and lipid signals both in phantoms and rat brain C6 glioma by biexponential fitting. In phantoms, lactate and lipid signals highly correlated with the known lactate concentration and lipid volume fractions. In C6 glioma, both lactate and lipid signals were detected, and the lipid signal was an order of magnitude higher than lactate signal. The spectral subtraction approach using three diffusion weightings also allowed the separation of lactate and lipid signals, yielding results comparable to those by the biexponential fitting approach. CONCLUSION DW-MRS presents a new approach to separate and quantify spectrally overlapped molecules and/or macromolecules, such as lactate and lipid, by using the diffusivity difference associated with their different sizes or mobility within tissue microstructure. Magn Reson Med 77:480-489, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Anna M Wang
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Gilberto K K Leung
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karrie M Y Kiang
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Peng Cao
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ed X Wu
- Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
18
|
Fang J, Li H, Li G, Wang L. Effect of hyperbaric oxygen preconditioning on peri-hemorrhagic focal edema and aquaporin-4 expression. Exp Ther Med 2015; 10:699-704. [PMID: 26622378 DOI: 10.3892/etm.2015.2539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 04/24/2015] [Indexed: 01/07/2023] Open
Abstract
The aim of the present study was to investigate the effect of hyperbaric oxygen preconditioning (HBO-PC) on peri-hemorrhagic focal edema and aquaporin-4 (AQP-4) expression in an experimental intracerebral hemorrhage (ICH) rat model. Sixty-six Sprague Dawley® rats were divided into three groups: The sham-surgery group (SHG; n=6); the control group (A-ICH; n=30), in which the rats were injected with autologous blood; and the experimental HBO-PC group (P-HBO; n=30). The rats underwent brain edema and AQP-4 detection at 5 postoperative time-points (24, 48 and 72 h and 5 and 7 days). The water content in the brain tissues of the A-ICH animals was higher than that in the brain tissues of the SHG rats at each time-point (P<0.05), and the edema in the P-HBO was significantly more severe 24 and 48 h postoperatively than that at 7 days postoperatively (P<0.05). The difference between the P-HBO and A-ICH was significant at 48 and 72 h postoperatively (P<0.05). AQP-4 was expressed in the post-hemorrhagic rat brains of all groups; the SHG animals exhibited low expression, while the A-ICH animals exhibited an increased expression 24 h postoperatively. In the A-ICH, expression peaked at 48 h postoperatively and began to decrease gradually after 72 h. At the 7-day time-point, the expression level in the A-ICH was closer to but still higher than that of the SHG animals (P<0.05). The differences between the P-HBO and A-ICH animals at the postoperative 24-h, 48-h and 7-day time-points were statistically significant (P<0.05). In conclusion, HBO-PC may downregulate AQP-4 expression to reduce the intracerebral edema, thus strengthening tolerance to ICH and protecting the nerves.
Collapse
Affiliation(s)
- Jinyong Fang
- Department of Rehabilitation, The People's Hospital of Zhangdian, Zibo, Shandong 255025, P.R. China
| | - Hongling Li
- Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Guanglei Li
- Department of Neurological Intervention, The Second Hospital of Qinhuangdao, Qinhuangdao, Hebei 066600, P.R. China
| | - Lichun Wang
- Department of Rehabilitation, Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine, Cangzhou, Hebei 061001, P.R. China
| |
Collapse
|
19
|
Neuronal tumour necrosis factor-α and interleukin-1β expression in a porcine model of intracerebral haemorrhage: Modulation by U-74389G. Brain Res 2015; 1615:98-105. [PMID: 25916578 DOI: 10.1016/j.brainres.2015.04.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/06/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
Tumour necrosis factor α (TNF-α) and interleukin 1β (IL-1β) are important mediators of intracerebral haemorrhage (ICH) inflammatory response. Lazaroids, established antioxidants and neuroprotectants, have been studied in several brain pathologies. The present study was designed to investigate: a) TNF-α and IL-1β changes, in neurons and b) U-74389G effects, 4 and 24h after haematoma induction in a porcine model of intracerebral haemorrhage. In twenty male landrace pigs (swines) aged 135-150 days old, autologous whole blood was injected around the right basal ganglia territory; in ten of the pigs the lazaroid compound U-74389G was administered. Brain TNF-α and IL-1β immunopositive neurons were determined by immunoarray techniques at 4 and 24h timepoints. After the haematoma induction the number of TNF-α immunopositive neurons ipsilateral to the haematoma was significantly higher compared to the contralateral site at 4h (p<0.0005), while U-74389G significantly reduced the number of TNF-α immunopositive neurons, ipsilateral to the haematoma, at 4h (p=0.002); at 24h, TNF-α immunopositive neurons were found significantly lower in the control group ipsilateral to the haematoma in comparison to 4h timepoint(p<0.0005). The number of IL-1β immunopositive neurons at 4h after the hematoma induction was significantly higher ipsilateral to the haematoma site (p<0.0005). U-74389G had no statistical significant effect. TNF-α and IL-1β, increase in neurons, 4h after the haematoma induction, ipsilateral to the haematoma site. The administration of the antioxidant compound U-74389G, results in early (at 4h) decrease of TNF-α immunopositive neurons but shows no statistical significant effect to IL-1β immunopossitive neurons.
Collapse
|
20
|
Xi G, Strahle J, Hua Y, Keep RF. Progress in translational research on intracerebral hemorrhage: is there an end in sight? Prog Neurobiol 2014; 115:45-63. [PMID: 24139872 PMCID: PMC3961535 DOI: 10.1016/j.pneurobio.2013.09.007] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/11/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a common and often fatal stroke subtype for which specific therapies and treatments remain elusive. To address this, many recent experimental and translational studies of ICH have been conducted, and these have led to several ongoing clinical trials. This review focuses on the progress of translational studies of ICH including those of the underlying causes and natural history of ICH, animal models of the condition, and effects of ICH on the immune and cardiac systems, among others. Current and potential clinical trials also are discussed for both ICH alone and with intraventricular extension.
Collapse
Affiliation(s)
- Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States.
| | - Jennifer Strahle
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
21
|
Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke 2013; 45:290-2. [PMID: 24172580 DOI: 10.1161/strokeaha.113.003033] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Deferoxamine reduces neuronal death in a piglet model of intracerebral hemorrhage (ICH). This study examined the effect of deferoxamine on perihematomal white matter edema in piglets. METHODS ICH was induced by an injection of autologous blood into the right frontal lobe of piglets. In the first part of study, the time course of edema formation was determined. In the second part, the effects of deferoxamine on ICH-induced white matter edema, tumor necrosis factor α, and receptor-interacting protein kinase 1 were examined. RESULTS ICH resulted in marked brain edema and increased tumor necrosis factor α and receptor-interacting protein kinase 1 levels in white matter. Systemic treatment with deferoxamine markedly reduced white matter tumor necrosis factor α and receptor-interacting protein kinase 1 levels and attenuated white matter edema after ICH. CONCLUSIONS Deferoxamine reduces white matter edema, tumor necrosis factor α, and receptor-interacting protein kinase 1 levels after ICH in piglets, suggesting deferoxamine is a potential effective therapeutic agent for patients with ICH.
Collapse
Affiliation(s)
- Qing Xie
- From the Department of Neurosurgery, University of Michigan, Ann Arbor
| | | | | | | | | | | |
Collapse
|
22
|
Bimpis A, Papalois A, Tsakiris S, Kalafatakis K, Zarros A, Gkanti V, Skandali N, Al-Humadi H, Kouzelis C, Liapi C. Modulation of crucial adenosinetriphosphatase activities due to U-74389G administration in a porcine model of intracerebral hemorrhage. Metab Brain Dis 2013; 28:439-46. [PMID: 23344690 DOI: 10.1007/s11011-013-9380-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
Spontaneous intracerebral hemorrhage (ICH) represents a partially-understood cerebrovascular disease of high incidence, morbidity and mortality. We, herein, report the findings of our study concerning the role of two important adenosinetriphosphatases (ATPases) in a porcine model of spontaneous ICH that we have recently developed (by following recent references as well as previously-established models and techniques), with a focus on the first 4 and 24 h following the lesion's induction, in combination with a study of the effectiveness of the lazaroid antioxidant U-74389G administration. Our study demonstrates that the examined ICH model does not cause a decrease in Na(+),K(+)-ATPase activity (the levels of which are responsible for a very large part of neuronal energy expenditure) in the perihematomal basal ganglia territory, nor a change in the activity of Mg(2+)-ATPase. This is the first report focusing on these crucial ATPases in the experimental setting of ICH and differs from the majority of the findings concerning the behavior of these (crucial for central nervous system cell survival) enzymes under stroke-related ischemic conditions. The administration of U-74389G (an established antioxidant) in this ICH model revealed an injury specific type of behavior, that could be considered as neuroprotective provided that one considers that Na(+),K(+)- and Mg(2+)-ATPase inhibition might in this case diminish the local ATP consumption.
Collapse
Affiliation(s)
- Alexios Bimpis
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Spontaneous, nontraumatic intracerebral hemorrhage (ICH) is defined as bleeding within the brain parenchyma. Intracranial hemorrhage includes bleeding within the cranial vault and encompasses ICH, subdural hematoma, epidural bleeds, and subarachnoid hemorrhage (SAH). This review will focus only on ICH. This stroke subtype accounts for about 10% of all strokes. The hematoma locations are deep or ganglionic, lobar, cerebellar, and brain stem in descending order of frequency. Intracerebral hemorrhage occurs twice as common as SAH and is equally as deadly. Risk factors for ICH include hypertension, cerebral amyloid angiopathy, advanced age, antithrombotic therapy and history of cerebrovascular disease. The clinical presentation is "stroke like" with sudden onset of focal neurological deficits. Noncontrast head computerized tomography (CT) scan is the standard diagnostic tool. However, newer neuroimaging techniques have improved the diagnostic yield in terms of underlying pathophysiology and may aid in prognosis. Intracerebral hemorrhage is a neurological emergency. Medical care begins with stabilization of airway, breathing function, and circulation (ABCs), followed by specific measures aimed to decrease secondary neurological damage and to prevent both medical and neurological complications. Reversal of coagulopathy when present is of the essence. Blood pressure management can be key and continues as an area of debate and ongoing research. Surgical evacuation of ICH is of unproven benefit though a subset of well-selected patients may have improved outcomes. Ventriculostomy and intracranial pressure (ICP) monitoring are interventions also used in this patient population. To date, hemostatic medications and neuroprotectants have failed to result in clinical improvement. A multidisciplinary approach is recommended, with participation of vascular neurology, vascular neurosurgery, critical care, and rehabilitation medicine as the main players.
Collapse
|
24
|
Perihematomal glutamate level is associated with the blood-brain barrier disruption in a rabbit model of intracerebral hemorrhage. SPRINGERPLUS 2013; 2:358. [PMID: 23961420 PMCID: PMC3738910 DOI: 10.1186/2193-1801-2-358] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 07/08/2013] [Indexed: 02/04/2023]
Abstract
Objective To observe the relationship between the perihematomal glutamate levels and the blood–brain barrier (BBB) permeability in a rabbit model of intracerebral hemorrhage (ICH). Methods Seventy-two rabbits were randomly divided into an intracerebral hemorrhage (ICH) model group and a normal control (NC) group, and each group of 36 rabbits was subsequently divided into 6, 12, 18, 24, 48 and 72 h groups (n = 6 each). An ICH model was induced by stereotactic injection of autologous, arterial, non-anticoagulated blood into rabbit basal ganglia. The same procedures were performed in the NC group, but blood was not injected. The rabbits were sacrificed at specific time points after the experiment began depending on their group. Perihematomal brain tissues were collected to determine glutamate levels, BBB permeability and brain water content (BWC). Results All of the assessed parameters were increased 6 hour after blood infusion and continued to gradually increase, peaking at 48 hours. Differences were observed when ICH values were compared with those of the NC group (p < 0.05). Conclusions Perihematomal glutamate increased significantly after ICH. High levels of glutamate are closely associated with BBB disruption and the brain edema. Therefore, glutamate may play an important role in the pathogenesis of secondary brain injury after (ICH).
Collapse
|
25
|
Zhao X, Wang Y, Wang C, Li S, Wang Y, Yang Z. Quantitative evaluation for secondary injury to perihematoma of hypertensive cerebral hemorrhage by functional MR and correlation analysis with ischemic factors. Neurol Res 2013; 28:66-70. [PMID: 16464365 DOI: 10.1179/016164106x91898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES To analyse quantitatively for the secondary injury to the perihematoma region of intracerebral hemorrhage (ICH) patients by functional MR imaging technique. METHODS 35 ICH patients were recruited and performed T1, T2, perfusion weight imaging (PWI), diffusion weight imaging (DWI) and FLAIR sequence scanning. Hematoma volume and edema volume of perihematomal area as well as parameters of blood volume [regional cerebral blood volume (rCBV), mean transit time (MTT)] alteration were calculated. RESULTS Varied blood flow decline was detected in the patients on the perihematoma sides, compared with the corresponding area of the opposite sides. There was significant difference of rCBV and MTT (p=0.00) and mild negative correlation between rCBV and hematoma volume (p=0.00) among groups; edema volume of perihematoma region and hematoma volume showed a linear correlation (p=0.00). Moreover, positive correlation between edema intensity and rCBV was detected, (p=0.00); the most significant perihematoma edema was in the group of day 10 to day 14; the lowest rCBV occurred in the early stage. (days 2-5 from symptom onset). CONCLUSION We have concluded that rCBV and MTT of perihematoma region decreased remarkably compared with the contralateral side, and the decline would last over 3 weeks. Quantitative research suggested edema intensity is closely related with rCBV. We believe that the reduced regional blood flow of perihematoma contributes to the secondary ischemic injury of perihematoma tissue. However, the peak of edema would appear later than the onset of the peak of ischemia, it suggests that edema surrounding the hematoma is not only the result from the single ischemic factor, but also results from multiple disadvantage mechanisms.
Collapse
Affiliation(s)
- Xingquan Zhao
- Department of Neurology of Beijing Tiantan Hospital, affiliated with Capital University of Medical Sciences, China.
| | | | | | | | | | | |
Collapse
|
26
|
Mohan S, Ahmad AS, Glushakov AV, Chambers C, Doré S. Putative role of prostaglandin receptor in intracerebral hemorrhage. Front Neurol 2012; 3:145. [PMID: 23097645 PMCID: PMC3477820 DOI: 10.3389/fneur.2012.00145] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023] Open
Abstract
Each year, approximately 795,000 people experience a new or recurrent stroke. Of all strokes, 84% are ischemic, 13% are intracerebral hemorrhage (ICH) strokes, and 3% are subarachnoid hemorrhage strokes. Despite the decreased incidence of ischemic stroke, there has been no change in the incidence of hemorrhagic stroke in the last decade. ICH is a devastating disease 37–38% of patients between the ages of 45 and 64 die within 30 days. In an effort to prevent ischemic and hemorrhagic strokes we and others have been studying the role of prostaglandins and their receptors. Prostaglandins are bioactive lipids derived from the metabolism of arachidonic acid. They sustain homeostatic functions and mediate pathogenic mechanisms, including the inflammatory response. Most prostaglandins are produced from specific enzymes and act upon cells via distinct G-protein coupled receptors. The presence of multiple prostaglandin receptors cross-reactivity and coupling to different signal transduction pathways allow differentiated cells to respond to prostaglandins in a unique manner. Due to the number of prostaglandin receptors, prostaglandin-dependent signaling can function either to promote neuronal survival or injury following acute excitotoxicity, hypoxia, and stress induced by ICH. To better understand the mechanisms of neuronal survival and neurotoxicity mediated by prostaglandin receptors, it is essential to understand downstream signaling. Several groups including ours have discovered unique roles for prostaglandin receptors in rodent models of ischemic stroke, excitotoxicity, and Alzheimer disease, highlighting the emerging role of prostaglandin receptor signaling in hemorrhagic stroke with a focus on cyclic-adenosine monophosphate and calcium (Ca2+) signaling. We review current ICH data and discuss future directions notably on prostaglandin receptors, which may lead to the development of unique therapeutic targets against hemorrhagic stroke and brain injuries alike.
Collapse
Affiliation(s)
- Shekher Mohan
- Department of Anesthesiology, College of Medicine, University of Florida Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
27
|
Guo F, Hua Y, Wang J, Keep RF, Xi G. Inhibition of carbonic anhydrase reduces brain injury after intracerebral hemorrhage. Transl Stroke Res 2012; 3:130-7. [PMID: 22400066 PMCID: PMC3293490 DOI: 10.1007/s12975-011-0106-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbonic anhydrase-1 (CA-1) is a metalloenzyme present at high concentrations in erythrocytes. Our previous studies showed that erythrocyte lysis contributes to brain edema formation after intracerebral hemorrhage (ICH) and a recent study indicates that CA-1 can cause blood-brain barrier disruption. The present study investigated the role of CA-1 in ICH-induced brain injury.There were three groups in the study. In the first, adult male Sprague-Dawley rats received 100 μl autologous blood injection into the right caudate. Sham rats had a needle insertion. Rat brains were used for brain CA-1 level determination. In the second group, rats received an intracaudate injection of either 50 μl CA-1 (1 μg/μl) or saline. Brain water content, microglia activation and neuronal death (Fluoro-Jade C staining) were examined 24 hours later. In the third group, acetazolamide (AZA, 5 μl, 1 mM), an inhibitor of carbonic anhydrases, or vehicle was co-injected with 100 μl blood. Brain water content, neuronal death and behavioral deficits were measured. We found that CA-I levels were elevated in the ipsilateral basal ganglia at 24 hours after ICH. Intracaudate injection of CA-1 induced brain edema (79.0 ± 0.6 vs. 78.0±0.2% in saline group, p<0.01), microglia activation and neuronal death (p<0.01) at 24 hours. AZA, an inhibitor of CA, reduced ICH-induced brain water content (79.3 ± 0.7 vs. 81.0 ± 1.0% in the vehicle-treated group, p<0.05), neuronal death and improved functional outcome (p<0.05).These results suggest that CA-1 from erythrocyte lysis contributes to brain injury after ICH.
Collapse
Affiliation(s)
- Fuyou Guo
- Department of Neurosurgery, University of Michigan
| | | | | | | | | |
Collapse
|
28
|
Abstract
Intracerebral hemorrhage is a devastating disease, and no specific therapy has been proven to reduce mortality in a randomized controlled trial. However, management in a neuroscience intensive care unit does appear to improve outcomes, suggesting that many available therapies do in fact provide benefit. In the acute phase of intracerebral hemorrhage care, strategies aimed at minimizing ongoing bleeding include reversal of anticoagulation and modest blood pressure reduction. In addition, the monitoring and regulation of glucose levels, temperature, and, in selected cases, intracranial pressure are recommended by many groups. Selected patients may benefit from hematoma evacuation or external ventricular drainage. Ongoing clinical trials are examining aggressive blood pressure management, hemostatic therapy, platelet transfusion, stereotactic hematoma evacuation, and intraventricular thrombolysis. Finally, preventing recurrence of intracerebral hemorrhage is of pivotal importance, and tight blood pressure management is paramount.
Collapse
Affiliation(s)
- H Bart Brouwers
- Division of Neurocritical Care and Emergency Neurology, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | |
Collapse
|
29
|
Chen Z, Xi G, Mao Y, Keep RF, Hua Y. Effects of progesterone and testosterone on ICH-induced brain injury in rats. ACTA NEUROCHIRURGICA. SUPPLEMENT 2011; 111:289-93. [PMID: 21725770 DOI: 10.1007/978-3-7091-0693-8_48] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Studies have shown that progesterone reduces brain injury, whereas testosterone increases lesion size after ischemic stroke. This study examined the effects of progesterone and testosterone on intracerebral hemorrhage (ICH)-induced brain injury. Male Sprague-Dawley rats received an injection of 100 μL autologous whole blood into the right basal ganglia. Progesterone (16 mg/kg), testosterone (15 mg/kg) or vehicle was given intraperitoneally 2 h after ICH. Behavioral tests were performed, and the rats were killed after 24 h for brain edema measurement. Perihematomal brain edema was reduced in progesterone-treated rats compared to vehicle-treated rats (p<0.05). Progesterone also improved functional outcome following ICH (p<0.05). Testosterone treatment did not affect perihematomal edema formation, but resulted in lower forelimb placing score (p<0.05). In conclusion, progesterone can reduce brain edema and improve functional outcome, whereas testosterone may have a deleterious effect after ICH in male rats.
Collapse
Affiliation(s)
- Zheng Chen
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
30
|
Voisin P, Bouchaud V, Merle M, Diolez P, Duffy L, Flint K, Franconi JM, Bouzier-Sore AK. Microglia in close vicinity of glioma cells: correlation between phenotype and metabolic alterations. FRONTIERS IN NEUROENERGETICS 2010; 2:131. [PMID: 21031160 PMCID: PMC2965014 DOI: 10.3389/fnene.2010.00131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/14/2010] [Indexed: 01/22/2023]
Abstract
Microglia are immune cells within the central nervous system. In brain-developing tumors, gliomas are able to silence the defense and immune functions of microglia, a phenomenon which strongly contributes to tumor progression and treatment resistance. Being activated and highly motile, microglia infiltrate tumors and secrete macrophagic chemoattractant factors. Thereafter, the tumor cells shut down their immune properties and stimulate the microglia to release tumor growth-promoting factors. The result of such modulation is that a kind of symbiosis occurs between microglia and tumor cells, in favor of tumor growth. However, little is known about microglial phenotype and metabolic modifications in a tumoral environment. Co-cultures were performed using CHME5 microglia cells grown on collagen beads or on coverslips and placed on monolayer of C6 cells, limiting cell/cell contacts. Phagocytic behavior and expression of macrophagic and cytoskeleton markers were monitored. Respiratory properties and energetic metabolism were also studied with regard to the activated phenotype of microglia. In co-cultures, transitory modifications of microglial morphology and metabolism were observed linked to a concomitant transitory increase of phagocytic properties. Therefore, after 1 h of co-culture, microglia were activated but when longer in contact with tumor cells, phagocytic properties appear silenced. Like the behavior of the phenotype, microglial respiration showed a transitory readjustment although the mitochondria maintained their perinuclear relocation. Nevertheless, the energetic metabolism of the microglia was altered, suggesting a new energetic steady state. The results clearly indicate that like the depressed immune properties, the macrophagic and metabolic status of the microglia is quickly driven by the glioma environment, despite short initial phagocytic activation. Such findings question the possible contribution of diffusible tumor factors to the microglial metabolism.
Collapse
Affiliation(s)
- Pierre Voisin
- RMSB Center, Centre National de la Recherche Scientifique/Université Victor Segalen Bordeaux 2 Bordeaux, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Okauchi M, Hua Y, Keep RF, Morgenstern LB, Schallert T, Xi G. Deferoxamine treatment for intracerebral hemorrhage in aged rats: therapeutic time window and optimal duration. Stroke 2009; 41:375-82. [PMID: 20044521 DOI: 10.1161/strokeaha.109.569830] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Deferoxamine (DFX) reduces brain edema, neurological deficits, and brain atrophy after intracerebral hemorrhage (ICH) in aged and young rats. Our previous study found that 50 mg/kg is an effective dose in aged rats. In the present study, we explored potential therapeutic time windows and optimal therapeutic durations. METHODS Aged male Fischer 344 rats (18 months old) sustained an intracaudate injection of 100 microL autologous whole blood, followed by intramuscular DFX or vehicle beginning at different time points, or continuing for different durations. Subgroups of rats were euthanized at day 3 for brain edema measurement and day 56 for brain atrophy determination. Behavioral tests were performed on days 1, 28, and 56 after ICH. RESULTS Systemic administration of DFX, when begun within 12 hours after ICH, reduced brain edema. DFX treatment started 2 hours after ICH and administered for >or=7 days attenuated ICH-induced ventricle enlargement, caudate atrophy, and neurological deficits. DFX attenuated ICH-induced brain atrophy and neurological deficits without detectable side effects when begun within 24 hours and administered for 7 days. CONCLUSIONS To the extent that these results can be translated to humans, the therapeutic time window and the optimal duration for DFX in this aged rat model of ICH may provide useful information for an ongoing DFX-ICH clinical trial.
Collapse
Affiliation(s)
- Masanobu Okauchi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Mich 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2009; 105:7-12. [PMID: 19066073 DOI: 10.1007/978-3-211-09469-3_2] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hematoma and perihematomal regions after intracerebral hemorrhage (ICH) are biochemically active environments known to undergo potent oxidizing reactions. We report facile production of bilirubin oxidation products (BOXes) via hemoglobin/Fenton reaction under conditions approximating putative in vivo conditions seen following ICH. Using a mixture of human hemoglobin, physiological buffers, unconjugated solubilized bilirubin, and molecular oxygen and/or hydrogen peroxide, we generated BOXes, confirmed by spectral signature consistent with known BOXes mixtures produced by independent chemical synthesis, as well as HPLC-MS of BOX A and BOX B. Kinetics are straightforward and uncomplicated, having initial rates around 0.002 microM bilirubin per microM hemoglobin per second under normal experimental conditions. In hematomas from porcine ICH model, we observed significant production of BOXes, malondialdehyde, and superoxide dismutase, indicating a potent oxidizing environment. BOX concentrations increased from 0.084 +/- 0.01 in fresh blood to 22.24 +/- 4.28 in hematoma at 72h, and were 11.22 +/- 1.90 in adjacent white matter (nmol/g). Similar chemical and analytical results are seen in ICH in vivo, indicating the hematoma is undergoing similar potent oxidations. This is the first report of BOXes production using a well-defined biological reaction and in vivo model of same. Following ICH, amounts of unconjugated bilirubin in hematoma can be substantial, as can levels of iron and hemoglobin. Oxidation of unconjugated bilirubin to yield bioactive molecules, such as BOXes, is an important discovery, expanding the role of bilirubin in pathological processes seen after ICH.
Collapse
|
33
|
Hanley DF. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke 2009; 40:1533-8. [PMID: 19246695 DOI: 10.1161/strokeaha.108.535419] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE This review focuses on the emerging principles of intracerebral hemorrhage (ICH) management, emphasizing the natural history and treatment of intraventricular hemorrhage. The translational and clinical findings from recent randomized clinical trials are defined and discussed. Summary of Review- Brain hemorrhage is the most severe of the major stroke subtypes. Extension of the hemorrhage into the ventricles (a 40% occurrence) can happen early or late in the sequence of events. Epidemiological data demonstrate the amount of blood in the ventricles relates directly to the degree of injury and likelihood of survival. Secondary tissue injury processes related to intraventricular bleeding can be reversed by removal of clot in animals. Specific benefits of removal include limitation of inflammation, edema, and cell death, as well as restoration of cerebral spinal fluid flow, intracranial pressure homeostasis, improved consciousness, and shortening of intensive care unit stay. Limited clinical knowledge exists about the benefits of intraventricular hemorrhage (IVH) removal in humans, because organized attempts to remove blood have not been undertaken in large clinical trials on a generalized scale. New tools to evaluate the volume and location of IVH and to test the benefits/risks of removal have been used in the clinical domain. Initial efforts are encouraging that increased survival and functional improvement can be achieved. Little controversy exists regarding the need to scientifically investigate treatment of this severity factor. CONCLUSIONS Animal models demonstrate clot removal can improve the acute and long-term consequences of intraventricular extension from intracerebral hemorrhage by using minimally invasive techniques coupled to recombinant tissue plasminogen activator-mediated clot lysis. The most recent human clinical trials show that severity of initial injury and the long-term consequences of blood extending into the ventricles are clearly related to the amount of bleeding into the ventricular system. The failure of the last 2 pivotal brain hemorrhage randomized control trials may well relate to the consequences of intraventricular bleeding. Small proof of concept studies, meta-analyses, and preliminary pharmacokinetics studies support the idea of positive shifts in mortality and morbidity, if this 1 critical disease severity factor, IVH, is properly addressed. Understanding clinical methods for the removal of IVH is required if survival and long-term functional outcome of brain hemorrhage is to improve worldwide.
Collapse
Affiliation(s)
- Daniel F Hanley
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, CRB-II, Baltimore, MD 21231, USA.
| |
Collapse
|
34
|
James ML, Warner DS, Laskowitz DT. Preclinical models of intracerebral hemorrhage: a translational perspective. Neurocrit Care 2008; 9:139-52. [PMID: 18058257 DOI: 10.1007/s12028-007-9030-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating and relatively common disease affecting as many as 50,000 people annually in the United States alone. ICH remains associated with poor outcome, and approximately 40-50% of afflicted patients will die within 30 days. In reports from the NIH and AHA, the importance of developing clinically relevant models of ICH that will extend our understanding of the pathophysiology of the disease and target new therapeutic approaches was emphasized. Traditionally, preclinical ICH research has most commonly utilized two paradigms: clostridial collagenase-induced hemorrhage and autologous blood injection. In this article, the use of various species is examined in the context of the different model types for ICH, and a mechanistic approach is considered in evaluating the numerous breakthroughs in our current fund of knowledge. Each of the model types has its inherent strengths and weaknesses and has the potential to further our understanding of the pathophysiology and treatment of ICH. In particular, transgenic rodent models may be helpful in addressing genetic influences on recovery from ICH.
Collapse
Affiliation(s)
- Michael Lucas James
- Department of Anesthesiology, Duke University Medical Center, Box 3094, Durham, NC 27710, USA.
| | | | | |
Collapse
|
35
|
Knight RA, Han Y, Nagaraja TN, Whitton P, Ding J, Chopp M, Seyfried DM. Temporal MRI assessment of intracerebral hemorrhage in rats. Stroke 2008; 39:2596-602. [PMID: 18635862 DOI: 10.1161/strokeaha.107.506683] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE MRI was used to evaluate the effects of experimental intracerebral hemorrhage (ICH) on brain tissue injury and recovery. METHODS Primary ICH was induced in rats (n=6) by direct infusion of autologous blood into the striatum. The evolution of ICH damage was assessed by MRI estimates of T(2) and T(1sat) relaxation times, cerebral blood flow, vascular permeability, and susceptibility-weighted imaging before surgery (baseline) and at 2 hours and 1, 7, and 14 days post-ICH. Behavioral testing was done before and at 1, 7, and 14 days post-ICH. Animals were euthanized for histology at 14 days. RESULTS The MRI appearance of the hemorrhage and surrounding regions changed in a consistent manner over time. Two primary regions of interest were identified based on T(2) values. These included a core, corresponding to the bulk of the hemorrhage, and an adjacent rim; both varied with time. The core was associated with significantly lower cerebral blood flow values at all post-ICH time points, whereas cerebral blood flow varied in the rim. Increases in vascular permeability were noted at 1, 7, and 14 days. Changes in T(1sat) were similar to those of T(2). MRI and histological estimates of tissue loss were well correlated and showed approximately 9% hemispheric tissue loss. CONCLUSIONS Although the cerebral blood flow changes observed with this ICH model may not exactly mimic the clinical situation, our results suggest that the evolution of ICH injury can be accurately characterized with MRI. These methods may be useful to evaluate therapeutic interventions after experimental ICH and eventually in humans.
Collapse
Affiliation(s)
- Robert A Knight
- Henry Ford Hospital, Department of Neurology-NMR Research, 2799 West Grand Blvd, Detroit, MI 48202, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Misra UK, Kalita J, Vajpayee A, Phadke RV, Hadique A, Savlani V. Effect of single mannitol bolus in intracerebral hemorrhage. Eur J Neurol 2007; 14:1118-23. [PMID: 17727664 DOI: 10.1111/j.1468-1331.2007.01918.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of existing controversy about use of mannitol in intracerebral hemorrhage (ICH) this open exploratory trial with blinded outcome assessment of single mannitol bolus in ICH was undertaken. CT proven primary supratentorial ICH patients having midline shift of > or =3 mm were randomized into 20% mannitol (1.5 g/kg) and control groups. Clinical evaluation included Glasgow coma scale (GCS) score, Canadian Neurological scale (CNS) score, pupils, breathing, extensor posturing and contra-lateral pyramidal signs. On cranial MRI horizontal (HS), superior sagittal sinus to pontomesencephalic junction (SSS-PMJ) distance and edema hematoma complex were measured. Twelve patients each were in mannitol and control groups. The age, sex, GCS score, CNS score, pupillary asymmetry, contra-lateral pyramidal signs, HS and SSS-PMJ distance in mannitol and control groups did not differ significantly. Mannitol infusion resulted clinical improvement in five patients, which lasted for 30-60 min. HS and SSS-PMJ distance in mannitol and control groups did not change at 30 or 60 min from the baseline. The change in HS and SSS-PMJ distance were also not significantly different between the two groups both at 30 and 60 min. Mannitol led to transient clinical improvement in five patients without significant reduction in HS or SSS-PMJ distance at 30 and 60 min.
Collapse
Affiliation(s)
- U K Misra
- Department of Neurology, Sanjay Ghandi PGIMS, Lucknow, India.
| | | | | | | | | | | |
Collapse
|
37
|
Loftspring MC, Clark JF, Wagner KR. A novel duplex ELISA method for quantitation of plasma proteins in areas of brain edema. Brain Res 2007; 1162:130-2. [PMID: 17618608 PMCID: PMC2958047 DOI: 10.1016/j.brainres.2007.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 06/07/2007] [Accepted: 06/08/2007] [Indexed: 11/23/2022]
Abstract
We have developed a novel type of duplex enzyme-linked immunosorbent assay (ELISA) for the quantitation of the major plasma proteins, IgG and albumin, in edematous brain tissue. We test this duplex ELISA on our porcine intracerebral hemorrhage (ICH) model and show that it is as accurate and sensitive as independent single ELISAs. This method is useful as a marker of edema in brain tissue and the same design can be applied to other proteins and sample types.
Collapse
Affiliation(s)
- Matthew C Loftspring
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | |
Collapse
|
38
|
Abstract
A significant amount of new information has been generated in animal models of intracerebral hemorrhage during the past several years. These include findings on the pathophysiological, biochemical and molecular processes that underlie the development of brain tissue injury after intracerebral hemorrhage as well as potential new treatments. We review these various findings that include glutamate receptor activation, oxidative stress development, intracellular signaling through the transcription factor, nuclear factor-kappaB, and markedly upregulated cytokine gene expression. We also briefly review the surgical treatment for intracerebral hemorrhage and list the pharmacological treatment studies that have recently appeared.
Collapse
Affiliation(s)
- Kenneth R Wagner
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| |
Collapse
|
39
|
Loftspring MC, Beiler S, Beiler C, Wagner KR. Plasma proteins in edematous white matter after intracerebral hemorrhage confound immunoblots: an ELISA to quantify contamination. J Neurotrauma 2007; 23:1904-11. [PMID: 17184198 DOI: 10.1089/neu.2006.23.1904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH) and traumatic brain injury can induce brain tissue edema (i.e., interstitial and/or vasogenic), containing high concentrations of plasma proteins. To understand biochemical processes in edema development following these insults, it would be useful to examine alterations in various proteins (e.g., transcription factors, signaling). However, determining altered protein responses in edematous brain tissue using standard immunoblotting techniques is problematic due to contaminating plasma proteins. To solve this problem, we developed an enzyme-linked immunosorbent assay (ELISA) method to quantify the two major plasma proteins, albumin and immunoglobulin G (IgG), that comprise about 80% of the total plasma proteins. We tested our method on edematous white matter samples from our porcine ICH model. To induce ICH, we infused autologous arterial whole blood (3 mL) into frontal hemispheric white matter of pentobarbital- anesthetized pigs ( approximately 20 kg) over 15 min. We froze brains in situ at various times up to 24 h post- ICH and sampled white matter adjacent and contralateral to hematomas. We prepared cytoplasmic extracts that we subjected to ELISA and immunoblotting analyses. Our results demonstrate that this ELISA method is accurate, reproducible, and enables the concentrations of albumin and IgG in edematous brain tissue samples to be accurately determined. By using this correction method, equal amounts of cellular protein can be loaded onto gels during immunoblotting procedures. This method is applicable to edematous tissue samples in brain injury models in which high plasma protein concentrations result from interstitial or vasogenic edema development.
Collapse
Affiliation(s)
- Matthew C Loftspring
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
40
|
The effect of blood pressure on hematoma and perihematomal area in acute intracerebral hemorrhage. Neurosurg Clin N Am 2006; 17 Suppl 1:11-24. [DOI: 10.1016/s1042-3680(06)80004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Wagner KR, Beiler S, Beiler C, Kirkman J, Casey K, Robinson T, Larnard D, de Courten-Myers GM, Linke MJ, Zuccarello M. Delayed profound local brain hypothermia markedly reduces interleukin-1beta gene expression and vasogenic edema development in a porcine model of intracerebral hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:177-82. [PMID: 16671450 DOI: 10.1007/3-211-30714-1_39] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
White matter (lobar) intracerebral hemorrhage (ICH) can cause edema-related deaths and life-long morbidity. In our porcine model, ICH induces oxidative stress, acute interstitial and delayed vasogenic edema, and up-regulates interleukin-1beta (IL-1beta), a proinflammatory cytokine-linked to blood-brain barrier (BBB) opening. In brain injury models, hypothermia reduces inflammatory cytokine production and protects the BBB. Clinically, however, hypothermia for stroke treatment using surface and systemic approaches can be challenging. We tested the hypothesis that an alternative approach, i.e., local brain cooling using the ChillerPad System, would reduce IL-1beta gene expression and vasogenic edema development even if initiated several hours after ICH. We infused autologous whole blood (3.0 mL) into the frontal hemispheric white matter of 20 kg pentobarbital-anesthetized pigs. At 3 hours post-ICH, we performed a craniotomy for epidural placement of the ChillerPad. Chilled saline was then circulated through the pad for 12 hours to induce profound local hypothermia (14 degrees C brain surface temperature). We froze brains in situ at 16 hours after ICH induction, sampled perihematomal white matter, extracted RNA, and performed real-time RT-PCR. Local brain cooling markedly reduced both IL-1beta RNA levels and vasogenic edema. These robust results support the potential for local brain cooling to protect the BBB and reduce injury after ICH.
Collapse
Affiliation(s)
- K R Wagner
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Priorities for clinical research in intracerebral hemorrhage: report from a National Institute of Neurological Disorders and Stroke workshop. Stroke 2005; 36:e23-41. [PMID: 15692109 DOI: 10.1161/01.str.0000155685.77775.4c] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Spontaneous intracerebral hemorrhage (ICH) is one of the most lethal stroke types. In December 2003, a National Institute of Neurological Disorders and Stroke (NINDS) workshop was convened to develop a consensus for ICH research priorities. The focus was clinical research aimed at acute ICH in patients. METHODS Workshop participants were divided into 6 groups: (1) current state of ICH research; (2) basic science; and (3) imaging, (4) medical, (5) surgical, and (6) clinical methodology. Each group formulated research priorities before the workshop. At the workshop, these were discussed and refined. RESULTS Recent progress in management of hemorrhage growth, intraventricular hemorrhage, and limitations in the benefit of open craniotomy were noted. The workshop identified the importance of developing animal models to reflect human ICH, as well as the phenomena of rebleeding. More human ICH pathology is needed. Real-time, high-field magnets and 3-dimensional imaging, as well as high-resolution tissue probes, are ICH imaging priorities. Trials of acute blood pressure-lowering in ICH and coagulopathy reversal are medical priorities. The exact role of edema in human ICH pathology and its treatment requires intensive study. Trials of minimally invasive surgical techniques including mechanical and chemical surgical adjuncts are critically important. The methodologic challenges include establishing research networks and a multi-specialty approach. Waiver of consent issues and standardizing care in trials are important issues. Encouragement of young investigators from varied backgrounds to enter the ICH research field is critical. CONCLUSIONS Increasing ICH research is crucial. A collaborative approach is likely to yield therapies for this devastating form of brain injury.
Collapse
|
43
|
Mun-Bryce S, Roberts LJM, Hunt WC, Bartolo A, Okada Y. Acute changes in cortical excitability in the cortex contralateral to focal intracerebral hemorrhage in the swine. Brain Res 2005; 1026:218-26. [PMID: 15488483 DOI: 10.1016/j.brainres.2004.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2004] [Indexed: 11/24/2022]
Abstract
Injury to the cerebral cortex results in functional deficits not only within the vicinity of the lesion but also in remote brain regions sharing neuronal connections with the injured site. To understand the electrophysiological basis of this phenomenon, we evaluated the effects of a focal intracerebral hemorrhage (ICH) on cortical excitability in a remote, functionally connected brain region. Cortical excitability was assessed by measuring the somatic evoked potential (SEP) elicited by electrical stimulation of the swine snout, which is somatotopically represented in the rostrum area of the primary somatosensory (SI) cortex. The SEP was measured on the SI cortex ipsilateral to the site of ICH and on the contralateral SI cortex during the acute period (< or =11 h) after collagenase-induced ICH. The ICH rapidly attenuated the SEP on the ipsilateral cortex as we reported earlier. Interestingly, the ICH also attenuated the SEP on the contralateral SI cortex. Evoked potentials in the contralateral SI cortex showed a gradual decrease in amplitude during this acute period of ICH. We then investigated whether the interhemispheric connections shared by the contralateral SI and the lesion cortex were responsible for the diminished evoked potentials in the uninjured hemisphere after ICH. A separate group of animals underwent corpus callosal transection prior to electrocorticography (ECoG) recordings and ICH injury. Within hours of hemorrhagic injury, a gradual but marked increase in evoked potential amplitude was observed in the homotopic SI cortex of callosotomized animals as compared to pre-injection recordings. The enhancement suggests that there are additional effects of ICH on remote areas functionally connected to the site of injury. Functional deficits were present in both SI cortices within the first several hours of a unilateral injury indicating that the cessation of brain activity in the lesioned SI is mirrored in the contralateral hemisphere. This electrophysiological depression in the uninjured SI cortex is mediated in part by the interhemispheric connections of the corpus callosum.
Collapse
Affiliation(s)
- Sheila Mun-Bryce
- Department of Neurology, University of New Mexico Health Science Center, 915 Camino de Salud NE, Albuquerque, NM 87131, USA.
| | | | | | | | | |
Collapse
|
44
|
Ardizzone TD, Lu A, Wagner KR, Tang Y, Ran R, Sharp FR. Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke 2004; 35:2587-91. [PMID: 15375303 DOI: 10.1161/01.str.0000143451.14228.ff] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Intracerebral hemorrhage has no effective treatment. The delayed appearance of edema, apoptosis, and inflammation in perihematomal brain suggests that these events may be targets for therapeutic intervention. To develop successful treatments, we must learn more about the effects of hemorrhage on brain tissue. In this study, we investigated the acute metabolic effects of intrastriatal hemorrhage in rat brain. METHODS Lysed blood or saline (50 microL each) was injected into the striatum of male Sprague-Dawley rats. The rats recovered for 1 to 72 hours before injection of [14C]-2-deoxyglucose (intraperitoneally) 30 minutes before decapitation. Animals were pretreated with the N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor antagonists dizolcilpine maleate (MK-801; 1 mg/kg) or 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline (NBQX; 30 mg/kg), or saline vehicle. Additional animals received intrastriatal injections of glutamate (1.0 mmol/L), NMDA (1.0 mmol/L), or AMPA (0.1 mmol/L) in the place of blood. Semiquantitative autoradiographs from the brains were analyzed to determine the effects of hemorrhage on relative glucose metabolism. RESULTS We found an acute phase of increased [14C]-2-deoxyglucose uptake in the perihematomal region that peaks 3 hours after lysed blood injection. Saline injections had no effect on striatal glucose utilization. The increased [14C]-2-deoxyglucose uptake produced by the hemorrhages was blocked by pretreatment with MK-801 and NBQX. Glutamate injections alone had no effect on striatal metabolism, whereas NMDA and AMPA injections increased [14C]-2-deoxyglucose uptake. CONCLUSIONS The data imply that glutamate activation of NMDA or AMPA receptors increases glucose metabolism in perihematomal brain at early times after intracerebral hemorrhage. This may provide a possible target for the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Timothy D Ardizzone
- Department of Neurology, University of Cincinnati College of Medicine, Ohio, USA
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Simon R Platt
- The Animal Health Trust, Centre for Small Animal Studies, Newmarket, Suffolk, England, United Kingdom, CB8 7UU
| | | |
Collapse
|
46
|
Abstract
Heme and iron metabolism are of considerable interest and importance in normal brain function as well as in neurodegeneration and neuropathologically following traumatic injury and hemorrhagic stroke. After a cerebral hemorrhage, large numbers of hemoglobin-containing red blood cells are released into the brain's parenchyma and/or subarachnoid space. After hemolysis and the subsequent release of heme from hemoglobin, several pathways are employed to transport and metabolize this heme and its iron moiety to protect the brain from potential oxidative stress. Required for these processes are various extracellular and intracellular transporters and storage proteins, the heme oxygenase isozymes and metabolic proteins with differing localizations in the various brain-cell types. In the past several years, additional new genes and proteins have been discovered that are involved in the transport and metabolism of heme and iron in brain and other tissues. These discoveries may provide new insights into neurodegenerative diseases like Alzheimer's, Parkinson's, and Friedrich's ataxia that are associated with accumulation of iron in specific brain regions or in specific organelles. The present review will examine the uptake and metabolism of heme and iron in the brain and will relate these processes to blood removal and to the potential mechanisms underlying brain injury following cerebral hemorrhage.
Collapse
Affiliation(s)
- Kenneth R Wagner
- Departments of Neurology, Pediatrics and Neuroscience Programl, Unviersity of Cincinnati College of Medicine, Cincinnati, Ohio 45220, USA.
| | | | | | | | | |
Collapse
|
47
|
Abstract
Sequential changes in brain parenchyma surrounding an intracerebral hemorrhage are described here. Re-bleeding occurs within the first several hours after the initial hemorrhage in about 30%, of cases. The coagulation cascade is activated as soon as blood encounters tissue. Perihematomal brain edema develops in response to clot retraction, thrombin formation, erythrocyte lysis, hemoglobin toxicity, complement activation, mass effect, and blood-brain barrier disruption. Early hematoma evacuation interrupts edema formation. The toxicity ofextravasated blood in brain parenchyma has not been studied well in traumatic injury or in hemorrhagic tumor models yet, but similar mechanisms of edema formation are likely to occur in these conditions.
Collapse
Affiliation(s)
- J T Hoff
- Department of Neurosurgery, University of Michigan Health System, Ann Arbor, Michigan 48109-0338, USA.
| | | |
Collapse
|
48
|
Abstract
A number of mechanisms seem to be involved in edema formation after an ICH. At least three phases of edema are involved in ICH. These include a very early phase (first several hours) involving hydrostatic pressure and clot retraction, a second phase (first 2 days) involving the activation of the coagulation cascade and thrombin production, and a third phase (after 3 days) involving RBC lysis and hemoglobin-induced neuronal toxicity. Activation of the complement system in brain parenchyma also plays an important role in the second and third phases. There are potential therapeutic strategies to address each of these mechanisms. Because the adverse effect of an ICH seems to result from a toxic effect of blood components on brain tissue, early clot removal may be the best strategy, because it results in the removal of all the toxic components [93]. Hematoma aspiration after tissue plasminogen activator (tPA) infusion has also been shown to be relatively safe and effective in animal models. Kaufman et al [94] reported that tPA lysed the hematoma in minutes and did not cause inflammation or bleeding in rabbits. Because clots lysed with tPA can be aspirated through a needle or catheter, mechanical brain injury by this method is minimized. In a rat model, aspiration of clot with tPA reduced clot volume and brain injury [95,96]. Recently, Wagner et al [97] infused tPA into hematomas in a porcine model at 3 hours after induction and aspirated the liquified clots 1 hour later. Clot removal after tPA treatment resulted in a 72% reduction in hematoma volume compared with untreated controls. Clot removal also reduced brain edema volume and BBB disruption and improved cerebral tissue pressure [93]. Six randomized trials have been accomplished, but surgical evacuation of the clot remains controversial [98-103]. Recently, thrombolysis and aspiration under CT guidance reduced the hematoma volume effectively [104]. Infusion of tPA directly into the hematoma before clot aspiration has also been used in human beings. Up to 90% of the original hematoma volume can be removed [105, 106]. Schaller et al [107] injected tPA directly into a hematoma 72 hours after the ictus in patients. The hematomas were lysed, and the liquified clots were drained in 14 patients. Two patients died, but none had recurrent hemorrhage. In conclusion, much has been learned about the basic mechanisms involved in edema formation after ICH. Animal models indicate that a number of components of blood are capable of inducing brain injury and brain edema. Now, it is time to translate that basic information into clinical trials.
Collapse
Affiliation(s)
- Guohua Xi
- Department of Neurosurgery, University of Michigan, MC, TC 2128, 1500 East Medical Center Drive, Ann Arbor, MI 48109-0338, USA
| | | | | |
Collapse
|
49
|
Abstract
Experimental animal ICH models are able to reproduce the overall important pathophysiologic events documented in human ICH, including edema development, markedly reduced metabolism, and tissue pathologic responses. Thus, ICH models serve as an important tool for new understanding of the mechanisms underlying brain injury after an intracerebral bleed. Currently, ongoing studies in several laboratories using these models investigating secondary inflammatory responses as well as intracellular signaling and molecular events are expected to provide therapeutic targets for treating ICH. Future studies should also be directed at one aspect of ICH modeling that has received little attention--potential differences in the hemostatic systems and physical and biochemical properties of clots in animals that might make their susceptibility to aspiration and/or fibrinolytic drugs and rates of rehemorrhage different than in human beings. Also, future efforts should be directed toward the development of a model that mimics the pathophysiologic processes that lead to spontaneous ICH, progression of hemorrhage, and the recurrence of bleeding in human beings. This model would not only provide better understanding of the dynamic events leading to ICH and tissue injury but should also lead to the development of highly effective pharmacologic and surgical treatments.
Collapse
Affiliation(s)
- Norberto Andaluz
- Department of Neurosurgery, University of Cincinnati College of Medicine, Neurosurgical Services, Department of Veterans Affairs Medical Center, 3200 Vine Street, Cincinnati, OH, USA
| | | | | |
Collapse
|
50
|
Tang Y, Lu A, Aronow BJ, Wagner KR, Sharp FR. Genomic responses of the brain to ischemic stroke, intracerebral haemorrhage, kainate seizures, hypoglycemia, and hypoxia. Eur J Neurosci 2002; 15:1937-52. [PMID: 12099900 DOI: 10.1046/j.1460-9568.2002.02030.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
RNA expression profiles in rat brain were examined 24 h after ischemic stroke, intracerebral haemorrhage, kainate-induced seizures, insulin-induced hypoglycemia, and hypoxia and compared to sham- or untouched controls. Rat oligonucleotide microarrays were used to compare expression of over 8000 transcripts from three subjects in each group (n = 27). Of the somewhat less than 4000 transcripts called 'present' in normal or treated cortex, 5-10% of these were up-regulated 24 h after ischemia (415), haemorrhage (205), kainate (187), and hypoglycemia (302) with relatively few genes induced by 6 h of moderate (8% oxygen) hypoxia (15). Of the genes induced 24 h after ischemia, haemorrhage, and hypoglycemia, approximately half were unique for each condition suggesting unique components of the responses to each of the injuries. A significant component of the responses involved immune-process related genes likely to represent responses to dying neurons, glia and vessels in ischemia; to blood elements in haemorrhage; and to the selectively vulnerable neurons that die after hypoglycemia. All of the genes induced by kainate were also induced either by ischemia, haemorrhage or hypoglycemia. This strongly supports the concept that excitotoxicity not only plays an important role in ischemia, but is an important mechanism of brain injury after intracerebral haemorrhage and hypoglycemia. In contrast, there was only a single gene that was down-regulated by all of the injury conditions suggesting there is not a common gene down-regulation response to injury.
Collapse
Affiliation(s)
- Yang Tang
- Department of Neurology and Neuroscience Program, University of Cincinnati, 3125 Eden Avenue, Cincinnati, OH 45267-0536, USA
| | | | | | | | | |
Collapse
|