1
|
Ito H, Hosomi S, Nishida T, Nakamura Y, Iba J, Ogura H, Oda J. A review on targeted temperature management for cardiac arrest and traumatic brain injury. Front Neurosci 2024; 18:1397300. [PMID: 39544908 PMCID: PMC11560895 DOI: 10.3389/fnins.2024.1397300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Therapeutic hypothermia inhibits organ damage by suppressing metabolism, which makes it a therapy of choice for treating various diseases. Specifically, it is often used to treat conditions involving central nervous system disorders where it is expected to positively impact functional prognosis. Although keeping the body temperature at a hypothermic level has been conventionally used, how to manage the body temperature correctly remains a topic of debate. Recently, the concept of temperature management has been proposed to improve the quality of body temperature control and avoid hyperthermia. This review focuses on the effect of temperature on the central nervous system in conditions involving central nervous system disorders and the practice of temperature management in clinical situations.
Collapse
Affiliation(s)
| | - Sanae Hosomi
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
2
|
Hansson MJ, Elmér E. Cyclosporine as Therapy for Traumatic Brain Injury. Neurotherapeutics 2023; 20:1482-1495. [PMID: 37561274 PMCID: PMC10684836 DOI: 10.1007/s13311-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
Drug development in traumatic brain injury (TBI) has been impeded by the complexity and heterogeneity of the disease pathology, as well as limited understanding of the secondary injury cascade that follows the initial trauma. As a result, patients with TBI have an unmet need for effective pharmacological therapies. One promising drug candidate is cyclosporine, a polypeptide traditionally used to achieve immunosuppression in transplant recipients. Cyclosporine inhibits mitochondrial permeability transition, thereby reducing secondary brain injury, and has shown neuroprotective effects in multiple preclinical models of TBI. Moreover, the cyclosporine formulation NeuroSTAT® displayed positive effects on injury biomarker levels in patients with severe TBI enrolled in the Phase Ib/IIa Copenhagen Head Injury Ciclosporin trial (NCT01825044). Future research on neuroprotective compounds such as cyclosporine should take advantage of recent advances in fluid-based biomarkers and neuroimaging to select patients with similar disease pathologies for clinical trials. This would increase statistical power and allow for more accurate assessment of long-term outcomes.
Collapse
Affiliation(s)
- Magnus J Hansson
- Abliva AB, Lund, Sweden.
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden.
| | - Eskil Elmér
- Abliva AB, Lund, Sweden
- Department of Clinical Sciences, Mitochondrial Medicine, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Shin M, Fujita M, Hifumi T, Koga Y, Yagi T, Nakahara T, Todani M, Kaneda K, Tsuruta R. Rapid rewarming rate associated with favorable neurological outcomes in patients with post-cardiac arrest syndrome patients treated with targeted temperature management. Acute Med Surg 2023; 10:e897. [PMID: 37841965 PMCID: PMC10568044 DOI: 10.1002/ams2.897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Aim To determine whether the rewarming rate is associated with neurological outcomes in patients with post-cardiac arrest syndrome treated with targeted temperature management (TTM) at 34°C. Methods We conducted a retrospective analysis of a nationwide cohort study of out-of-hospital cardiac arrest in Japan. Adult patients who experienced a return of spontaneous circulation and completed TTM at 34°C between June 2014 and December 2019 were divided equally into three groups (slow, moderate, and rapid) according to their rewarming rates from 34°C to 36°C. The rates of favorable neurological outcomes (Cerebral Performance Category of 1-2 after 30 days) were compared among the groups, and the adjusted odds ratios for a favorable neurological outcome were calculated for the groups. Results We analyzed 348, 357, and 358 patients in the slow, moderate, and rapid groups, respectively. The periods of rewarming from 34°C to 36°C were 41.9 ± 10.5, 22.4 ± 1.8, and 12.2 ± 3.6 h, respectively. The number of favorable neurological outcomes after 30 days was 121 (34.8%), 125 (35.0%), and 147 (41.1%), respectively, with no significant differences among the three groups (p = 0.145). Rapid rewarming was independently associated with a favorable neurological outcome compared with slow rewarming (adjusted odds ratio 1.57 [95% confidence interval 1.04-2.37]; p = 0.031). Conclusions Rapid rewarming after TTM at 34°C was associated with a more favorable neurological outcome than slow rewarming.
Collapse
Affiliation(s)
- Masaru Shin
- Advanced Medical Emergency and Critical Care CenterYamaguchi University HospitalUbeJapan
| | - Motoki Fujita
- Acute and General MedicineYamaguchi University Graduate School of MedicineUbeJapan
| | - Toru Hifumi
- Department of Emergency and Critical Care MedicineSt. Luke's International HospitalTokyoJapan
| | - Yasutaka Koga
- Advanced Medical Emergency and Critical Care CenterYamaguchi University HospitalUbeJapan
| | - Takeshi Yagi
- Advanced Medical Emergency and Critical Care CenterYamaguchi University HospitalUbeJapan
| | - Takashi Nakahara
- Advanced Medical Emergency and Critical Care CenterYamaguchi University HospitalUbeJapan
| | - Masaki Todani
- Acute and General MedicineYamaguchi University Graduate School of MedicineUbeJapan
| | - Kotaro Kaneda
- Advanced Medical Emergency and Critical Care CenterYamaguchi University HospitalUbeJapan
| | - Ryosuke Tsuruta
- Advanced Medical Emergency and Critical Care CenterYamaguchi University HospitalUbeJapan
- Acute and General MedicineYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
4
|
Karlsson M, Yang Z, Chawla S, Delso N, Pukenas B, Elmér E, Hugerth M, Margulies SS, Ehinger J, Hansson MJ, Wang KKW, Kilbaugh TJ. Evaluation of Diffusion Tensor Imaging and Fluid Based Biomarkers in a Large Animal Trial of Cyclosporine in Focal Traumatic Brain Injury. J Neurotrauma 2021; 38:1870-1878. [PMID: 33191835 DOI: 10.1089/neu.2020.7317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
All phase III trials evaluating medical treatments for traumatic brain injury (TBI), performed to date, have failed. To facilitate future success there is a need for novel outcome metrics that can bridge pre-clinical studies to clinical proof of concept trials. Our objective was to assess diffusion tensor imaging (DTI) and biofluid-based biomarkers as efficacy outcome metrics in a large animal study evaluating the efficacy of cyclosporine in TBI. This work builds on our previously published study that demonstrated a reduced volume of injury by 35% with cyclosporine treatment based on magnetic resonance imaging (MRI) results. A focal contusion injury was induced in piglets using a controlled cortical impact (CCI) device. Cyclosporine in a novel Cremophor/Kolliphor EL-free lipid emulsion, NeuroSTAT, was administered by continuous intravenous infusion for 5 days. The animals underwent DTI on day 5. Glial fibrillary acidic protein (GFAP), as a measure of astroglia injury, and neurofilament light (NF-L), as a measure of axonal injury, were measured in blood on days 1, 2, and 5, and in cerebrospinal fluid (CSF) on day 5 post-injury. Normalized fractional anisotropy (FA) was significantly (p = 0.027) higher in in the treatment group, indicating preserved tissue integrity with treatment. For the biomarkers, we observed a statistical trend of a decreased level of NF-L in CSF (p = 0.051), in the treatment group relative to placebo, indicating less axonal injury. Our findings suggest that DTI, and possibly CSF NF-L, may be feasible as translational end-points assessing neuroprotective drugs in TBI.
Collapse
Affiliation(s)
- Michael Karlsson
- Department of Neurosurgery, Rigshospitalet, Copenhagen, Denmark.,Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Zhihui Yang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Nile Delso
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Bryan Pukenas
- Department of Radiology, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Abliva AB, Lund, Sweden
| | | | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Johannes Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Abliva AB, Lund, Sweden
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Department of Emergency Medicine, University of Florida, Gainesville, Florida, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
5
|
Sonnier M, Rittenberger JC. State-of-the-art considerations in post-arrest care. J Am Coll Emerg Physicians Open 2020; 1:107-116. [PMID: 33000021 PMCID: PMC7493544 DOI: 10.1002/emp2.12022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/10/2022] Open
Abstract
Cardiac arrest has a high rate of morbidity and mortality. Several advances in post-cardiac arrest management can improve outcome, but are time-dependent, placing the emergency physician in a critical role to both recognize the need for and initiate therapy. We present a novel perspective of both the workup and therapeutic interventions geared toward the emergency physician during the first few hours of care. We describe how the immediate care of a post-cardiac arrest patient is resource intensive and requires simultaneous evaluation for the underlying cause and intensive management to prevent further end organ damage, particularly of the central nervous system. The goal of the initial focused assessment is to rapidly determine if any reversible causes of cardiac arrest are present and to intervene when possible. Interventions performed in this acute period are aimed at preventing additional brain injury through optimizing hemodynamics, providing ventilatory support, and by using therapeutic hypothermia when indicated. After the initial phase of care, disposition is guided by available resources and the clinician's judgment. Transfer to a specialized cardiac arrest center is prudent in centers that do not have significant support or experience in the care of these patients.
Collapse
Affiliation(s)
| | - Jon C. Rittenberger
- Guthrie Robert Packer HospitalSayrePennsylvania
- Geisinger Commonwealth Medical CollegeScrantonPennsylvania
| |
Collapse
|
6
|
Hypothermia-rewarming: A Double-edged sword? Med Hypotheses 2019; 133:109387. [PMID: 31541781 DOI: 10.1016/j.mehy.2019.109387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 01/05/2023]
Abstract
Hypothermia is a condition in which the body's core temperature drops below 35.0 °C. Hypothermia is the opposite of hyperthermia, which the metabolism and body functions are abnormal. Severe hypothermia is a life-threatening problem that may cause atrial and ventricular dysrhythmias, coagulopathy, cardiac, and central nervous system depression. What is worse, it is fatal when untreated or treated improperly. Accidental deaths due to hypothermia resulting from immersion in cold water, especially involving naval fighters and maritime victims have occurred continually in the past years. Currently, the treatment of hypothermia has become a research focus. Rewarming is the only approach that should be considered for hypothermia treatment. However, the treatment is of low efficiency, and few active rewarming cases have been reported. It is well known that timely reperfusion is the best way to save the lives of patients with ischemia. Similarly, reoxygenation is effective for hypoxia. However, several studies have identified that improper reperfusion of ischemic tissues and reoxygenation of hypoxic tissues give rise to further injury. Analogically, this study attempts to propose the hypothesis that hypothermia-rewarming injury may also exist. When suffered from hypothermia, both the blood circulation and the oxygen supply in the body will be affected in a deficient state, an injury may also appear in the improper rewarming process. In a word, hypothermia-rewarming may be a double-edged sword.
Collapse
|
7
|
Ueda Y, Oda Y, Povlishock JT, Wei EP. Mechanisms Associated with the Adverse Vascular Consequences of Rapid Posthypothermic Rewarming and Their Therapeutic Modulation in Rats. Ther Hypothermia Temp Manag 2019; 10:204-210. [PMID: 31433258 DOI: 10.1089/ther.2019.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously demonstrated that rapid posthypothermic rewarming in noninjured animals was capable of damaging cerebral arterioles both at endothelial and smooth muscle levels. Such adverse consequences could be prevented with antioxidants, suggesting the involvement of free radicals. In this study, we further investigate the mechanisms associated with free radicals production by using two radical scavengers, superoxide dismutase (SOD) and catalase. Employing rats, the cerebral vascular response was evaluated at 2, 3, and 4 hours after onset of hypothermia. Before rapid rewarming, SOD treatment, but not catalase, preserved the NO-mediated dilation induced by acetylcholine (ACh). On the contrary, catalase preserved the hypercapnia-induced relaxation of the smooth muscle cells, whereas SOD offered only partial protection. Adding SOD to catalase treatment offered no additional benefit. These results suggest that rapid posthypothermic rewarming impairs ACh- and hypercapnia-induced vasodilation through different subcellular mechanisms. In the case of diminished vascular response to ACh, it appears to act on the endothelial front primarily by superoxide anions, as evidenced by its full preservation after SOD treatment. In terms of impaired dilation to hypercapnia, hydrogen peroxide and/or its derivatives are the likely candidates in targeting the smooth muscle cells. The partial protection of SOD to hypercapnia-induced dilation is believed to be the reduced amount of superoxide that would otherwise spontaneously dismutate to produce hydrogen peroxide. Although SOD exerts some indirect influence on the hydrogen peroxide production downstream, catalase apparently has no influence on upstream superoxide production.
Collapse
Affiliation(s)
- Yuji Ueda
- Department of Neurosurgery, Tokuyama Central Hospital, Yamaguchi, Japan
| | - Yasutaka Oda
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Yamaguchi, Japan
| | - John T Povlishock
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| | - Enoch P Wei
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
8
|
Davies A, Wassink G, Bennet L, Gunn AJ, Davidson JO. Can we further optimize therapeutic hypothermia for hypoxic-ischemic encephalopathy? Neural Regen Res 2019; 14:1678-1683. [PMID: 31169174 PMCID: PMC6585539 DOI: 10.4103/1673-5374.257512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy is a leading cause of neonatal death and disability. Therapeutic hypothermia significantly reduces death and major disability associated with hypoxic-ischemic encephalopathy; however, many infants still experience lifelong disabilities to movement, sensation and cognition. Clinical guidelines, based on strong clinical and preclinical evidence, recommend therapeutic hypothermia should be started within 6 hours of birth and continued for a period of 72 hours, with a target brain temperature of 33.5 ± 0.5°C for infants with moderate to severe hypoxic-ischemic encephalopathy. The clinical guidelines also recommend that infants be rewarmed at a rate of 0.5°C per hour, but this is not based on strong evidence. There are no randomized controlled trials investigating the optimal rate of rewarming after therapeutic hypothermia for infants with hypoxic-ischemic encephalopathy. Preclinical studies of rewarming are conflicting and results were confounded by treatment with sub-optimal durations of hypothermia. In this review, we evaluate the evidence for the optimal start time, duration and depth of hypothermia, and whether the rate of rewarming after treatment affects brain injury and neurological outcomes.
Collapse
Affiliation(s)
- Anthony Davies
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Olah E, Poto L, Hegyi P, Szabo I, Hartmann P, Solymar M, Petervari E, Balasko M, Habon T, Rumbus Z, Tenk J, Rostas I, Weinberg J, Romanovsky AA, Garami A. Therapeutic Whole-Body Hypothermia Reduces Death in Severe Traumatic Brain Injury if the Cooling Index Is Sufficiently High: Meta-Analyses of the Effect of Single Cooling Parameters and Their Integrated Measure. J Neurotrauma 2018; 35:2407-2417. [PMID: 29681213 DOI: 10.1089/neu.2018.5649] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Therapeutic hypothermia was investigated repeatedly as a tool to improve the outcome of severe traumatic brain injury (TBI), but previous clinical trials and meta-analyses found contradictory results. We aimed to determine the effectiveness of therapeutic whole-body hypothermia on the deaths of adult patients with severe TBI by using a novel approach of meta-analysis. We searched the PubMed, EMBASE, and Cochrane Library databases from inception to February 2017. The identified human studies were evaluated regarding statistical, clinical, and methodological designs to ensure interstudy homogeneity. We extracted data on TBI severity, body temperature, death, and cooling parameters; then we calculated the cooling index, an integrated measure of therapeutic hypothermia. Forest plot of all identified studies showed no difference in the outcome of TBI between cooled and not cooled patients, but interstudy heterogeneity was high. On the contrary, by meta-analysis of randomized clinical trials that were homogenous with regard to statistical, clinical designs, and precisely reported the cooling protocol, we showed decreased odds ratio for death in therapeutic hypothermia compared with no cooling. As independent factors, milder and longer cooling, and rewarming at <0.25°C/h were associated with better outcome. Therapeutic hypothermia was beneficial only if the cooling index (measure of combination of cooling parameters) was sufficiently high. We conclude that high methodological and statistical interstudy heterogeneity could underlie the contradictory results obtained in previous studies. By analyzing methodologically homogenous studies, we show that cooling improves the outcome of severe TBI, and this beneficial effect depends on certain cooling parameters and on their integrated measure, the cooling index.
Collapse
Affiliation(s)
- Emoke Olah
- 1 Institute for Translational Medicine, Medical School, University of Pecs , Pecs, Hungary
| | - Laszlo Poto
- 2 Institute of Bioanalysis, Medical School, University of Pecs , Pecs, Hungary
| | - Peter Hegyi
- 1 Institute for Translational Medicine, Medical School, University of Pecs , Pecs, Hungary
- 3 Division of Gastroenterology, First Department of Medicine, Medical School, University of Pecs , Pecs, Hungary
- 4 Momentum Gastroenterology Multidisciplinary Research Group, Hungarian Academy of Sciences - University of Szeged , Szeged, Hungary
| | - Imre Szabo
- 3 Division of Gastroenterology, First Department of Medicine, Medical School, University of Pecs , Pecs, Hungary
| | - Petra Hartmann
- 5 Institute of Surgical Research, University of Szeged , Szeged, Hungary
| | - Margit Solymar
- 1 Institute for Translational Medicine, Medical School, University of Pecs , Pecs, Hungary
| | - Erika Petervari
- 1 Institute for Translational Medicine, Medical School, University of Pecs , Pecs, Hungary
| | - Marta Balasko
- 1 Institute for Translational Medicine, Medical School, University of Pecs , Pecs, Hungary
| | - Tamas Habon
- 6 Department of Cardiology and Angiology, First Department of Medicine, Medical School, University of Pecs , Pecs, Hungary
| | - Zoltan Rumbus
- 1 Institute for Translational Medicine, Medical School, University of Pecs , Pecs, Hungary
| | - Judit Tenk
- 1 Institute for Translational Medicine, Medical School, University of Pecs , Pecs, Hungary
| | - Ildiko Rostas
- 1 Institute for Translational Medicine, Medical School, University of Pecs , Pecs, Hungary
| | - Jordan Weinberg
- 7 Trauma Research, St. Joseph's Hospital and Medical Center , Phoenix, Arizona
| | - Andrej A Romanovsky
- 7 Trauma Research, St. Joseph's Hospital and Medical Center , Phoenix, Arizona
| | - Andras Garami
- 1 Institute for Translational Medicine, Medical School, University of Pecs , Pecs, Hungary
| |
Collapse
|
10
|
Leung LY, Cardiff K, Yang X, Srambical Wilfred B, Gilsdorf J, Shear D. Selective Brain Cooling Reduces Motor Deficits Induced by Combined Traumatic Brain Injury, Hypoxemia and Hemorrhagic Shock. Front Neurol 2018; 9:612. [PMID: 30123177 PMCID: PMC6085442 DOI: 10.3389/fneur.2018.00612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/09/2018] [Indexed: 11/13/2022] Open
Abstract
Selective brain cooling (SBC) can potentially maximize the neuroprotective benefits of hypothermia for traumatic brain injury (TBI) patients without the complications of whole body cooling. We have previously developed a method that involved extraluminal cooling of common carotid arteries, and demonstrated the feasibility, safety and efficacy for treating isolated TBI in rats. The present study evaluated the neuroprotective effects of 4-h SBC in a rat model of penetrating ballistic-like brain injury (PBBI) combined with hypoxemic and hypotensive insults (polytrauma). Rats were randomly assigned into two groups: PBBI+polytrauma without SBC (PHH) and PBBI+polytrauma with SBC treatment (PHH+SBC). All animals received unilateral PBBI, followed by 30-min hypoxemia (fraction of inspired oxygen = 0.1) and then 30-min hemorrhagic hypotension (mean arterial pressure = 40 mmHg). Fluid resuscitation was given immediately following hypotension. SBC was initiated 15 min after fluid resuscitation and brain temperature was maintained at 32-33°C (core temperature at ~36.5°C) for 4 h under isoflurane anesthesia. The PHH group received the same procedures minus the cooling. At 7, 10, and 21 days post-injury, motor function was assessed using the rotarod task. Cognitive function was assessed using the Morris water maze at 13-17 days post-injury. At 21 days post-injury, blood samples were collected and the animals were transcardially perfused for subsequent histological analyses. SBC transiently augmented cardiovascular function, as indicated by the increase in mean arterial pressure and heart rate during cooling. Significant improvement in motor functions were detected in SBC-treated polytrauma animals at 7, 10, and 21 days post-injury compared to the control group (p < 0.05). However, no significant beneficial effects were detected on cognitive measures following SBC treatment in the polytrauma animals. In addition, the blood serum and plasma levels of cytokines interleukin-1 and -10 were comparable between the two groups. Histological results also did not reveal any between-group differences in subacute neurodegeneration and astrocyte/ microglial activation. In summary, 4-h SBC delivered through extraluminal cooling of the common carotid arteries effectively ameliorated motor deficits induced by PBBI and polytrauma. Improving cognitive function or mitigating subacute neurodegeneration and neuroinflammation might require a different cooling regimen such as extended cooling, a slow rewarming period and a lower temperature.
Collapse
Affiliation(s)
- Lai Yee Leung
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Katherine Cardiff
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Xiaofang Yang
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard Srambical Wilfred
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Janice Gilsdorf
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah Shear
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
11
|
Thau-Zuchman O, Gomes RN, Dyall SC, Davies M, Priestley JV, Groenendijk M, De Wilde MC, Tremoleda JL, Michael-Titus AT. Brain Phospholipid Precursors Administered Post-Injury Reduce Tissue Damage and Improve Neurological Outcome in Experimental Traumatic Brain Injury. J Neurotrauma 2018; 36:25-42. [PMID: 29768974 PMCID: PMC6306688 DOI: 10.1089/neu.2017.5579] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) leads to cellular loss, destabilization of membranes, disruption of synapses and altered brain connectivity, and increased risk of neurodegenerative disease. A significant and long-lasting decrease in phospholipids (PLs), essential membrane constituents, has recently been reported in plasma and brain tissue, in human and experimental TBI. We hypothesized that supporting PL synthesis post-injury could improve outcome post-TBI. We tested this hypothesis using a multi-nutrient combination designed to support the biosynthesis of PLs and available for clinical use. The multi-nutrient, Fortasyn® Connect (FC), contains polyunsaturated omega-3 fatty acids, choline, uridine, vitamins, cofactors required for PL biosynthesis, and has been shown to have significant beneficial effects in early Alzheimer's disease. Male C57BL/6 mice received a controlled cortical impact injury and then were fed a control diet or a diet enriched with FC for 70 days. FC led to a significantly improved sensorimotor outcome and cognition, reduced lesion size and oligodendrocyte loss, and it restored myelin. It reversed the loss of the synaptic protein synaptophysin and decreased levels of the axon growth inhibitor, Nogo-A, thus creating a permissive environment. It decreased microglia activation and the rise in ß-amyloid precursor protein and restored the depressed neurogenesis. The effects of this medical multi-nutrient suggest that support of PL biosynthesis post-TBI, a new treatment paradigm, has significant therapeutic potential in this neurological condition for which there is no satisfactory treatment. The multi-nutrient tested has been used in dementia patients and is safe and well tolerated, which would enable rapid clinical exploration in TBI.
Collapse
Affiliation(s)
- Orli Thau-Zuchman
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Rita N Gomes
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Simon C Dyall
- 3 Bournemouth University, Royal London House, Bournemouth, United Kingdom
| | - Meirion Davies
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - John V Priestley
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Martine Groenendijk
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Martijn C De Wilde
- 2 Nutricia Research-Nutricia Advanced Medical Nutrition, Utrecht, The Netherlands
| | - Jordi L Tremoleda
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Adina T Michael-Titus
- 1 Centre for Neuroscience and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
12
|
Karlsson M, Pukenas B, Chawla S, Ehinger JK, Plyler R, Stolow M, Gabello M, Hugerth M, Elmér E, Hansson MJ, Margulies S, Kilbaugh T. Neuroprotective Effects of Cyclosporine in a Porcine Pre-Clinical Trial of Focal Traumatic Brain Injury. J Neurotrauma 2018; 36:14-24. [PMID: 29929438 PMCID: PMC6306685 DOI: 10.1089/neu.2018.5706] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial dysfunction is thought to be a hallmark of traumatic brain injury (TBI) and plays a pivotal role in the resulting cellular injury. Cyclophilin D-mediated activation of the mitochondrial permeability transition pore has been suggested to contribute to this secondary injury cascade. Cyclosporine possesses neuroprotective properties that have been attributed to the desensitization of mitochondrial permeability transition pore activation. In vivo animal experiments have demonstrated neuroprotective effects of cyclosporine in more than 20 independent experimental studies in a multitude of different experimental models. However, the majority of these studies have been carried out in rodents. The aim of the present study was to evaluate the efficacy of a novel and cremophor/kolliphor EL-free lipid emulsion formulation of cyclosporine in a translational large animal model of TBI. A mild-to-moderate focal contusion injury was induced in piglets using a controlled cortical impact device. After initial step-wise analyses of pharmacokinetics and comparing with exposure of cyclosporine in clinical TBI trials, a 5-day dosing regimen with continuous intravenous cyclosporine infusion (20 mg/kg/day) was evaluated in a randomized and blinded placebo-controlled setting. Cyclosporine reduced the volume of parenchymal injury by 35%, as well as improved markers of neuronal injury, as measured with magnetic resonance spectroscopic imaging. Further, a consistent trend toward positive improvements in brain metabolism and mitochondrial function was observed in the pericontusional tissue. In this study, we have demonstrated efficacy using a novel cyclosporine formulation in clinically relevant and translatable outcome metrics in a large animal model of focal TBI.
Collapse
Affiliation(s)
- Michael Karlsson
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 3 Department of Neurosurgery, Rigshospitalet , Copenhagen, Denmark
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Bryan Pukenas
- 5 Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Sanjeev Chawla
- 5 Department of Radiology, Hospital of the University of Pennsylvania, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Johannes K Ehinger
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Ross Plyler
- 6 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Madeline Stolow
- 6 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Melissa Gabello
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Eskil Elmér
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Magnus J Hansson
- 2 Mitochondrial Medicine, Department of Clinical Sciences, Lund University , Lund, Sweden
- 4 NeuroVive Pharmaceutical AB , Lund, Sweden
| | - Susan Margulies
- 6 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Todd Kilbaugh
- 1 Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| |
Collapse
|
13
|
Wu TW, Tamrazi B, Soleymani S, Seri I, Noori S. Hemodynamic Changes During Rewarming Phase of Whole-Body Hypothermia Therapy in Neonates with Hypoxic-Ischemic Encephalopathy. J Pediatr 2018; 197:68-74.e2. [PMID: 29571928 DOI: 10.1016/j.jpeds.2018.01.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/10/2018] [Accepted: 01/24/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To delineate the systemic and cerebral hemodynamic response to incremental increases in core temperature during the rewarming phase of therapeutic hypothermia in neonatal hypoxic-ischemic encephalopathy (HIE). STUDY DESIGN Continuous hemodynamic data, including heart rate (HR), mean arterial blood pressure (MBP), cardiac output by electrical velocimetry (COEV), arterial oxygen saturation, and renal (RrSO2) and cerebral (CrSO2) regional tissue oxygen saturation, were collected from 4 hours before the start of rewarming to 1 hour after the completion of rewarming. Serial echocardiography and transcranial Doppler were performed at 3 hours and 1 hour before the start of rewarming (T-3 and T-1; "baseline") and at 2, 4, and 7 hours after the start of rewarming (T+2, T+4, and T+7; "rewarming") to determine Cardiac output by echocardiography (COecho), stroke volume, fractional shortening, and middle cerebral artery (MCA) flow velocity indices. Repeated-measures analysis of variance was used for statistical analysis. RESULTS Twenty infants with HIE were enrolled (mean gestational age, 38.8 ± 2 weeks; mean birth weight, 3346 ± 695 g). During rewarming, HR, COecho, and COEV increased from baseline to T+7, and MBP decreased. Despite an increase in fractional shortening, stroke volume remained unchanged. RrSO2 increased, and renal fractional oxygen extraction (FOE) decreased. MCA peak systolic flow velocity increased. There were no changes in CrSO2 or cerebral FOE. CONCLUSIONS In neonates with HIE, CO significantly increases throughout rewarming. This is due to an increase in HR rather than stroke volume and is associated with an increase in renal blood flow. The lack of change in cerebral tissue oxygen saturation and extraction, in conjunction with an increase in MCA peak systolic velocity, suggests that cerebral flow metabolism coupling remained intact during rewarming.
Collapse
Affiliation(s)
- Tai-Wei Wu
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA.
| | - Benita Tamrazi
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Sadaf Soleymani
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Istvan Seri
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA; First Department of Pediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Shahab Noori
- Fetal and Neonatal Institute, Division of Neonatology, Children's Hospital Los Angeles, Los Angeles, CA; Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
14
|
Dietrich WD, Bramlett HM. Therapeutic hypothermia and targeted temperature management for traumatic brain injury: Experimental and clinical experience. Brain Circ 2017; 3:186-198. [PMID: 30276324 PMCID: PMC6057704 DOI: 10.4103/bc.bc_28_17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/20/2017] [Accepted: 11/24/2017] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a worldwide medical problem, and currently, there are few therapeutic interventions that can protect the brain and improve functional outcomes in patients. Over the last several decades, experimental studies have investigated the pathophysiology of TBI and tested various pharmacological treatment interventions targeting specific mechanisms of secondary damage. Although many preclinical treatment studies have been encouraging, there remains a lack of successful translation to the clinic and no therapeutic treatments have shown benefit in phase 3 multicenter trials. Therapeutic hypothermia and targeted temperature management protocols over the last several decades have demonstrated successful reduction of secondary injury mechanisms and, in some selective cases, improved outcomes in specific TBI patient populations. However, the benefits of therapeutic hypothermia have not been demonstrated in multicenter randomized trials to significantly improve neurological outcomes. Although the exact reasons underlying the inability to translate therapeutic hypothermia into a larger clinical population are unknown, this failure may reflect the suboptimal use of this potentially powerful therapeutic in potentially treatable severe trauma patients. It is known that multiple factors including patient recruitment, clinical treatment variables, and cooling methodologies are all important in yielding beneficial effects. High-quality multicenter randomized controlled trials that incorporate these factors are required to maximize the benefits of this experimental therapy. This article therefore summarizes several factors that are important in enhancing the beneficial effects of therapeutic hypothermia in TBI. The current failures of hypothermic TBI clinical trials in terms of clinical protocol design, patient section, and other considerations are discussed and future directions are emphasized.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Helen M Bramlett
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
15
|
Frati A, Cerretani D, Fiaschi AI, Frati P, Gatto V, La Russa R, Pesce A, Pinchi E, Santurro A, Fraschetti F, Fineschi V. Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review. Int J Mol Sci 2017; 18:2600. [PMID: 29207487 PMCID: PMC5751203 DOI: 10.3390/ijms18122600] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the world's leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca2+. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.
Collapse
Affiliation(s)
- Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy.
- Department of Neurosciences, Mental Health, and Sensory Organs, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.
| | - Daniela Cerretani
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy.
| | - Anna Ida Fiaschi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Mario Bracci 16, 53100 Siena, Italy.
| | - Paola Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy.
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy.
| | - Vittorio Gatto
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy.
| | - Raffaele La Russa
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy.
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy.
| | - Alessandro Pesce
- Department of Neurosciences, Mental Health, and Sensory Organs, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.
| | - Enrica Pinchi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy.
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy.
| | - Flavia Fraschetti
- Department of Neurosciences, Mental Health, and Sensory Organs, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy.
| | - Vittorio Fineschi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy.
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00185 Rome, Italy.
| |
Collapse
|
16
|
KURTOGLU E, NAKADATE H, KIKUTA K, AOMURA S, KAKUTA A. Uniaxial stretch-induced axonal injury thresholds for axonal dysfunction and disruption and strain rate effects on thresholds for mouse neuronal stem cells. ACTA ACUST UNITED AC 2017. [DOI: 10.1299/jbse.16-00598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Evrim KURTOGLU
- Graduate School of System Design, Tokyo Metropolitan University
| | | | - Kazuhiro KIKUTA
- Graduate School of System Design, Tokyo Metropolitan University
| | - Shigeru AOMURA
- Graduate School of System Design, Tokyo Metropolitan University
| | - Akira KAKUTA
- Advanced Course of Mechanical and Computer Systems Engineering, Tokyo National College of Technology
| |
Collapse
|
17
|
Abstract
The application of targeted temperature management has become common practice in the neurocritical care setting. It is important to recognize the pathophysiologic mechanisms by which temperature control impacts acute neurologic injury, as well as the clinical limitations to its application. Nonetheless, when utilizing temperature modulation, an organized approach is required in order to avoid complications and minimize side-effects. The most common clinically relevant complications are related to the impact of cooling on hemodynamics and electrolytes. In both instances, the rate of complications is often related to the depth and rate of cooling or rewarming. Shivering is the most common side-effect of hypothermia and is best managed by adequate monitoring and stepwise administration of medications specifically targeting the shivering response. Due to the impact cooling can have upon pharmacokinetics of commonly used sedatives and analgesics, there can be significant delays in the return of the neurologic examination. As a result, early prognostication posthypothermia should be avoided.
Collapse
Affiliation(s)
- N Badjatia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Dekmak A, Mantash S, Shaito A, Toutonji A, Ramadan N, Ghazale H, Kassem N, Darwish H, Zibara K. Stem cells and combination therapy for the treatment of traumatic brain injury. Behav Brain Res 2016; 340:49-62. [PMID: 28043902 DOI: 10.1016/j.bbr.2016.12.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/30/2016] [Accepted: 12/29/2016] [Indexed: 12/15/2022]
Abstract
TBI is a nondegenerative, noncongenital insult to the brain from an external mechanical force; for instance a violent blow in a car accident. It is a complex injury with a broad spectrum of symptoms and has become a major cause of death and disability in addition to being a burden on public health and societies worldwide. As such, finding a therapy for TBI has become a major health concern for many countries, which has led to the emergence of many monotherapies that have shown promising effects in animal models of TBI, but have not yet proven any significant efficacy in clinical trials. In this paper, we will review existing and novel TBI treatment options. We will first shed light on the complex pathophysiology and molecular mechanisms of this disorder, understanding of which is a necessity for launching any treatment option. We will then review most of the currently available treatments for TBI including the recent approaches in the field of stem cell therapy as an optimal solution to treat TBI. Therapy using endogenous stem cells will be reviewed, followed by therapies utilizing exogenous stem cells from embryonic, induced pluripotent, mesenchymal, and neural origin. Combination therapy is also discussed as an emergent novel approach to treat TBI. Two approaches are highlighted, an approach concerning growth factors and another using ROCK inhibitors. These approaches are highlighted with regard to their benefits in minimizing the outcomes of TBI. Finally, we focus on the consequent improvements in motor and cognitive functions after stem cell therapy. Overall, this review will cover existing treatment options and recent advancements in TBI therapy, with a focus on the potential application of these strategies as a solution to improve the functional outcomes of TBI.
Collapse
Affiliation(s)
- AmiraSan Dekmak
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Sarah Mantash
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Abdullah Shaito
- Department of Biological and Chemical Sciences, Lebanese International University, Beirut, Lebanon
| | - Amer Toutonji
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Naify Ramadan
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussein Ghazale
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Nouhad Kassem
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon
| | - Hala Darwish
- Faculty of Medicine, Hariri School of Nursing, American University of Beirut, Beirut, Lebanon
| | - Kazem Zibara
- ER045, Laboratory of Stem Cells, Faculty of Sciences, DSST, PRASE, Lebanese University, Beirut, Lebanon; Laboratory of Cardiovascular Diseases and Stem Cells, Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
19
|
Dixon CE, Bramlett HM, Dietrich WD, Shear DA, Yan HQ, Deng-Bryant Y, Mondello S, Wang KKW, Hayes RL, Empey PE, Povlishock JT, Tortella FC, Kochanek PM. Cyclosporine Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. J Neurotrauma 2016; 33:553-66. [PMID: 26671075 DOI: 10.1089/neu.2015.4122] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Operation Brain Trauma Therapy (OBTT) is a consortium of investigators using multiple pre-clinical models of traumatic brain injury (TBI) to bring acute therapies to clinical trials. To screen therapies, we used three rat models (parasagittal fluid percussion injury [FPI], controlled cortical impact [CCI], and penetrating ballistic-like brain injury [PBBI]). We report results of the third therapy (cyclosporin-A; cyclosporine; [CsA]) tested by OBTT. At each site, rats were randomized to treatment with an identical regimen (TBI + vehicle, TBI + CsA [10 mg/kg], or TBI + CsA [20 mg/kg] given intravenously at 15 min and 24 h after injury, and sham). We assessed motor and Morris water maze (MWM) tasks over 3 weeks after TBI and lesion volume and hemispheric tissue loss at 21 days. In FPI, CsA (10 mg/kg) produced histological protection, but 20 mg/kg worsened working memory. In CCI, CsA (20 mg/kg) impaired MWM performance; surprisingly, neither dose showed benefit on any outcome. After PBBI, neither dose produced benefit on any outcome, and mortality was increased (20 mg/kg) partly caused by the solvent vehicle. In OBTT, CsA produced complex effects with histological protection at the lowest dose in the least severe model (FPI), but only deleterious effects as model severity increased (CCI and PBBI). Biomarker assessments included measurements of glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1) in blood at 4 or 24 h after injury. No positive treatment effects were seen on biomarker levels in any of the models, whereas significant increases in 24 h UCH-L1 levels were seen with CsA (20 mg/kg) after CCI and 24 h GFAP levels in both CsA treated groups in the PBBI model. Lack of behavioral protection in any model, indicators of toxicity, and a narrow therapeutic index reduce enthusiasm for clinical translation.
Collapse
Affiliation(s)
- C Edward Dixon
- 1 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Helen M Bramlett
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida.,3 Bruce W. Carter Department of Veterans Affairs Medical Center , Miami, Florida
| | - W Dalton Dietrich
- 2 Department of Neurological Surgery, The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami , Miami, Florida
| | - Deborah A Shear
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Hong Q Yan
- 1 Department of Neurological Surgery, Brain Trauma Research Center, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Ying Deng-Bryant
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Stefania Mondello
- 5 Department of Neurosciences, University of Messina , Messina, Italy
| | - Kevin K W Wang
- 6 Center of Neuroproteomics and Biomarkers Research, Department of Psychiatry and Neuroscience, University of Florida , Gainesville, Florida
| | - Ronald L Hayes
- 7 Center for Innovative Research, Center for Neuroproteomics and Biomarkers Research , Banyan Biomarkers, Inc., Alachua, Florida
| | - Philip E Empey
- 8 Center for Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy , Pittsburgh, Pennsylvania
| | - John T Povlishock
- 9 Department of Anatomy and Neurobiology, Virginia Commonwealth University , Richmond, Virginia
| | - Frank C Tortella
- 4 Brain Trauma Neuroprotection/Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Patrick M Kochanek
- 10 Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| |
Collapse
|
20
|
Feldman A, De Benedictis B, Alpan G, La Gamma EF, Kase J. Morbidity and mortality associated with rewarming hypothermic very low birth weight infants. J Neonatal Perinatal Med 2016; 9:295-302. [PMID: 27589554 DOI: 10.3233/npm-16915143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
OBJECTIVES In very low birthweight (VLBW) infants, hypothermia is associated with poor outcomes. The goal of this study is to assess the relationship between the rate of rewarming these babies and their outcomes. METHODS This is a retrospective cohort study of 98 inborn VLBW infants who were hypothermic (<36°C rectally) upon admission to the NICU. A logistic regression model was used to examine the relationship between the rates of rewarming and time to achieve euthermia and the following outcomes: death, intraventricular hemorrhage, severe intraventricular hemorrhage, bronchopulmonary dysplasia, necrotizing enterocolitis and retinopathy of prematurity. RESULTS Prolonged rewarming time was associate with increased odds of mortality (OR 1.273 95% CI 1.032-1.571). No associations between rewarming rates and any of the outcomes were seen. Once birthweight was included in a multiple logistic regression model, the association between mortality and rewarming time was no longer significant. Outcomes that were not associated with either rate or time of rewarming (even in a univariate model) were: bronchopulmonary dysplasia, intraventricular hemorrhage, severe intraventricular hemorrhage, necrotizing enterocolitis and retinopathy of prematurity. CONCLUSION In moderately hypothermic VLBW infants, after accounting for birthweight, no association between rewarming and outcome is seen.
Collapse
Affiliation(s)
- A Feldman
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, New York, USA
- Department of Pediatrics, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - B De Benedictis
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - Gad Alpan
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - E F La Gamma
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| | - J Kase
- Department of Pediatrics, Maria Fareri Children's Hospital at Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
21
|
Birca A, Lortie A, Birca V, Decarie JC, Veilleux A, Gallagher A, Dehaes M, Lodygensky GA, Carmant L. Rewarming affects EEG background in term newborns with hypoxic–ischemic encephalopathy undergoing therapeutic hypothermia. Clin Neurophysiol 2016; 127:2087-94. [DOI: 10.1016/j.clinph.2015.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/09/2015] [Accepted: 12/12/2015] [Indexed: 11/15/2022]
|
22
|
Lu XCM, Shear DA, Deng-Bryant Y, Leung LY, Wei G, Chen Z, Tortella FC. Comprehensive Evaluation of Neuroprotection Achieved by Extended Selective Brain Cooling Therapy in a Rat Model of Penetrating Ballistic-Like Brain Injury. Ther Hypothermia Temp Manag 2015; 6:30-9. [PMID: 26684246 DOI: 10.1089/ther.2015.0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain hypothermia has been considered as a promising alternative to whole-body hypothermia in treating acute neurological disease, for example, traumatic brain injury. Previously, we demonstrated that 2-hours selective brain cooling (SBC) effectively mitigated acute (≤24 hours postinjury) neurophysiological dysfunction induced by a penetrating ballistic-like brain injury (PBBI) in rats. This study evaluated neuroprotective effects of extended SBC (4 or 8 hours in duration) on sub-acute secondary injuries between 3 and 21 days postinjury (DPI). SBC (34°C) was achieved via extraluminal cooling of rats' bilateral common carotid arteries (CCA). Depending on the experimental design, SBC was introduced either immediately or with a 2- or 4-hour delay after PBBI and maintained for 4 or 8 hours. Neuroprotective effects of SBC were evaluated by measuring brain lesion volume, axonal injury, neuroinflammation, motor and cognitive functions, and post-traumatic seizures. Compared to untreated PBBI animals, 4 or 8 hours SBC treatment initiated immediately following PBBI produced comparable neuroprotective benefits against PBBI-induced early histopathology at 3 DPI as evidenced by significant reductions in brain lesion volume, axonal pathology (beta-amyloid precursor protein staining), neuroinflammation (glial fibrillary acetic protein stained-activated astrocytes and rat major histocompatibility complex class I stained activated microglial cell), and post-traumatic nonconvulsive seizures. In the later phase of the injury (7-21 DPI), significant improvement on motor function (rotarod test) was observed under most SBC protocols, including the 2-hour delay in SBC initiation. However, SBC treatment failed to improve cognitive performance (Morris water maze test) measured 13-17 DPI. The protective effects of SBC on delayed axonal injury (silver staining) were evident out to 14 DPI. In conclusion, the CCA cooling method of SBC produced neuroprotection measured across multiple domains that were evident days/weeks beyond the cooling duration and in the absence of overt adverse effects. These "proof-of-concept" results suggest that SBC may provide an attractive neuroprotective approach for clinical considerations.
Collapse
Affiliation(s)
- Xi-Chun May Lu
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Deborah A Shear
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Ying Deng-Bryant
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Lai Yee Leung
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Guo Wei
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Zhiyong Chen
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| | - Frank C Tortella
- Branch of Brain Trauma Neuroprotection and Neurorestoration, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, Maryland
| |
Collapse
|
23
|
Davidson JO, Wassink G, van den Heuij LG, Bennet L, Gunn AJ. Therapeutic Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy - Where to from Here? Front Neurol 2015; 6:198. [PMID: 26441818 PMCID: PMC4568393 DOI: 10.3389/fneur.2015.00198] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/31/2015] [Indexed: 11/13/2022] Open
Abstract
Hypoxia-ischemia before or around the time of birth occurs in approximately 2/1000 live births and is associated with a high risk of death or lifelong disability. Therapeutic hypothermia is now well established as standard treatment for infants with moderate to severe hypoxic-ischemic encephalopathy but is only partially effective. There is compelling preclinical and clinical evidence that hypothermia is most protective when it is started as early as possible after hypoxia-ischemia. Further improvements in outcome from therapeutic hypothermia are very likely to arise from strategies to reduce the delay before starting treatment of affected infants. In this review, we examine evidence that current protocols are reasonably close to the optimal depth and duration of cooling, but that the optimal rate of rewarming after hypothermia is unclear. The potential for combination treatments to augment hypothermic neuroprotection has considerable promise, particularly with endogenous targets such as melatonin and erythropoietin, and noble gases such as xenon. We dissect the critical importance of preclinical studies using realistic delays in treatment and clinically relevant cooling protocols when examining combination treatment, and that for many strategies overlapping mechanisms of action can substantially attenuate any effects.
Collapse
Affiliation(s)
- Joanne O Davidson
- The Department of Physiology, The University of Auckland , Auckland , New Zealand
| | - Guido Wassink
- The Department of Physiology, The University of Auckland , Auckland , New Zealand
| | | | - Laura Bennet
- The Department of Physiology, The University of Auckland , Auckland , New Zealand
| | - Alistair J Gunn
- The Department of Physiology, The University of Auckland , Auckland , New Zealand
| |
Collapse
|
24
|
Abstract
Spinal cord injury (SCI) is a major health problem and is associated with a diversity of neurological symptoms. Pathophysiologically, dysfunction after SCI results from the culmination of tissue damage produced both by the primary insult and a range of secondary injury mechanisms. The application of hypothermia has been demonstrated to be neuroprotective after SCI in both experimental and human studies. The myriad of protective mechanisms of hypothermia include the slowing down of metabolism, decreasing free radical generation, inhibiting excitotoxicity and apoptosis, ameliorating inflammation, preserving the blood spinal cord barrier, inhibiting astrogliosis, promoting angiogenesis, as well as decreasing axonal damage and encouraging neurogenesis. Hypothermia has also been combined with other interventions, such as antioxidants, anesthetics, alkalinization and cell transplantation for additional benefit. Although a large body of work has reported on the effectiveness of hypothermia as a neuroprotective approach after SCI and its application has been translated to the clinic, a number of questions still remain regarding its use, including the identification of hypothermia's therapeutic window, optimal duration and the most appropriate rewarming rate. In addition, it is necessary to investigate the neuroprotective effect of combining therapeutic hypothermia with other treatment strategies for putative synergies, particularly those involving neurorepair.
Collapse
Affiliation(s)
- Jiaqiong Wang
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| | - Damien D Pearse
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Department of Neurological Surgery, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Neuroscience Program, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
- The Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, the Lois Pope Life Center, Locator code (R-48), PO BOX 016960, Miami, FL 33136, USA.
| |
Collapse
|
25
|
Kaneko T, Kasaoka S, Nakahara T, Sawano H, Tahara Y, Hase M, Nishioka K, Shirai S, Hazui H, Arimoto H, Kashiwase K, Motomura T, Kuroda Y, Yasuga Y, Yonemoto N, Yokoyama H, Nagao K, Nonogi H. Effectiveness of lower target temperature therapeutic hypothermia in post-cardiac arrest syndrome patients with a resuscitation interval of ≤30 min. J Intensive Care 2015; 3:28. [PMID: 26097741 PMCID: PMC4474339 DOI: 10.1186/s40560-015-0095-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022] Open
Abstract
Background Therapeutic hypothermia (TH) is a standard strategy to reduce brain damage in post-cardiac arrest syndrome (PCAS) patients. However, it is unknown whether the target temperature should be adjusted for PCAS patients in different states. Methods Participants in the J-PULSE-Hypo study database were divided into lower (32.0–33.5 °C; Group L) or moderate (34.0–35.0 °C; Group M) temperature groups. Primary outcome was a favourable neurological outcome (proportion of patients with a Glasgow-Pittsburgh Cerebral Performance Category [CPC] of 1–2 on day 30). We compared between the two groups and in subgroups of patients divided by age and resuscitation interval (interval from collapse to return of spontaneous circulation) by propensity score (PS) analysis. Results Overall, 467 participants were analysed. The proportions of patients with favourable neurological outcomes were as follows (Group L vs. Group M) (OR; Odds ratio): all patients, 64 % (n = 42) vs. 55 % ((n = 424) (PS; OR 1.381 (0.596–3.197)), P = 0.452) and resuscitation interval ≤ 30 min, 88 % (n = 24) vs. 64 % ((n = 281) (PS; OR 7.438 (1.769–31.272)), P = 0.007). Conclusions PCAS patients with a resuscitation interval of <30 min may be candidates for TH with a target temperature of <34 °C. Trial registration University Hospital Medical Information Network (UMIN) Clinical Trials Registry UMIN000001935; available at: https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type=summary&recptno=R000002348&language=J.
Collapse
Affiliation(s)
- Tadashi Kaneko
- Emergency and General Medicine, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 Japan
| | - Shunji Kasaoka
- Emergency and General Medicine, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556 Japan
| | - Takashi Nakahara
- Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Ube, Japan
| | - Hirotaka Sawano
- Senri Critical Care Medical Center, Saiseikai Senri Hospital, Osaka, Japan
| | - Yoshio Tahara
- Division of Cardiovascular Care Unit, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Mamoru Hase
- Department of Emergency Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Nishioka
- Department of Cardiology, Hiroshima City Hospital, Hiroshima, Japan
| | - Shinichi Shirai
- Division of Cardiology, Kokura Memorial Hospital, Kokura, Japan
| | - Hiroshi Hazui
- Emergency Medicine, Osaka Mishima Emergency and Critical Care Center, Osaka, Japan
| | - Hideki Arimoto
- Emergency and Critical Care Medical Center, Osaka City General Hospital, Osaka, Japan
| | | | - Tomokazu Motomura
- Department of Emergency and Critical Care Medicine, Chiba Hokusoh Hospital, Nippon Medical School, Inzai, Japan
| | - Yasuhiro Kuroda
- Emergency and Critical Care Center, Kagawa University Hospital, Kagawa, Japan
| | - Yuji Yasuga
- Department of Cardiology, Sumitomo Hospital, Osaka, Japan
| | - Naohiro Yonemoto
- Department of Psychopharmacology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroyuki Yokoyama
- Division of Cardiovascular Care Unit, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Ken Nagao
- Department of Cardiology, Cardiopulmonary Resuscitation and Emergency Cardiovascular Care, Surugadai Nihon University Hospital, Tokyo, Japan
| | | | | |
Collapse
|
26
|
Siedler DG, Chuah MI, Kirkcaldie MTK, Vickers JC, King AE. Diffuse axonal injury in brain trauma: insights from alterations in neurofilaments. Front Cell Neurosci 2014; 8:429. [PMID: 25565963 PMCID: PMC4269130 DOI: 10.3389/fncel.2014.00429] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/29/2014] [Indexed: 12/02/2022] Open
Abstract
Traumatic brain injury (TBI) from penetrating or closed forces to the cranium can result in a range of forms of neural damage, which culminate in mortality or impart mild to significant neurological disability. In this regard, diffuse axonal injury (DAI) is a major neuronal pathophenotype of TBI and is associated with a complex set of cytoskeletal changes. The neurofilament triplet proteins are key structural cytoskeletal elements, which may also be important contributors to the tensile strength of axons. This has significant implications with respect to how axons may respond to TBI. It is not known, however, whether neurofilament compaction and the cytoskeletal changes that evolve following axonal injury represent a component of a protective mechanism following damage, or whether they serve to augment degeneration and progression to secondary axotomy. Here we review the structure and role of neurofilament proteins in normal neuronal function. We also discuss the processes that characterize DAI and the resultant alterations in neurofilaments, highlighting potential clues to a possible protective or degenerative influence of specific neurofilament alterations within injured neurons. The potential utility of neurofilament assays as biomarkers for axonal injury is also discussed. Insights into the complex alterations in neurofilaments will contribute to future efforts in developing therapeutic strategies to prevent, ameliorate or reverse neuronal degeneration in the central nervous system (CNS) following traumatic injury.
Collapse
Affiliation(s)
- Declan G Siedler
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Meng Inn Chuah
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Matthew T K Kirkcaldie
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - James C Vickers
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, Medical Sciences Precinct Hobart, TAS, Australia ; School of Medicine, University of Tasmania Hobart, TAS, Australia
| |
Collapse
|
27
|
Zygun DA, Doig CJ, Auer RN, Laupland KB, Sutherland GR. Progress in Clinical Neurosciences: Therapeutic Hypothermia in Severe Traumatic Brain Injury. Can J Neurol Sci 2014; 30:307-13. [PMID: 14672261 DOI: 10.1017/s0317167100003000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Severe traumatic brain injury (sTBI) is a relatively common problem with few therapies proven effective. Despite its use for over 50 years, therapeutic hypothermia has not gained widespread acceptance in the treatment of sTBI due to conflicting results from clinical trials. This review will summarize the current evidence from animal, mechanistic and clinical studies supporting the use of therapeutic hypothermia. In addition, issues of rewarming and optimal temperature will be discussed. Finally, the future of hypothermia in sTBI will be addressed.
Collapse
Affiliation(s)
- David A Zygun
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
28
|
Suehiro E, Koizumi H, Fujiyama Y, Suzuki M. Recent advances and future directions of hypothermia therapy for traumatic brain injury. Neurol Med Chir (Tokyo) 2014; 54:863-9. [PMID: 25367589 PMCID: PMC4533346 DOI: 10.2176/nmc.st.2014-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
For severe traumatic brain injury (TBI) patients, no effective treatment method replacing hypothermia therapy has emerged, and hypothermia therapy still plays the major role. To increase its efficacy, first, early introduction is important. Since there are diverse pathologies of severe TBI, it is necessary to appropriately control the temperature in the hypothermia maintenance and rewarming phases by monitoring relative to the pathology. Currently, hypothermia is considered appropriate for severe TBI patients requiring craniotomy for removal of hematoma, while induced normothermia is appropriate for severe TBI patients with diffuse brain injury. Induced normothermia is expected to exhibit a cerebroprotective effect equivalent to hypothermia, as well as reduce the complexity of whole-body management and systemic complications. According to the Japan Neurotrauma Data Bank of the Japan Society of Neurotraumatology, the brain temperature was controlled in 43.9% of severe TBI patients (induced normothermia: 32.2%, hypothermia: 11.7%) in Japan. Brain temperature management was performed mainly in young patients, and the outcome on discharge was favorable in patients who received brain temperature management. Particularly, patients who need craniotomy for removal of hematoma were a good indication of therapeutic hypothermia. Improvement of therapeutic outcomes with widespread temperature management in TBI patients is expected.
Collapse
Affiliation(s)
- Eiichi Suehiro
- Department of Neurosurgery, Yamaguchi University School of Medicine
| | | | | | | |
Collapse
|
29
|
Diaz-Arrastia R, Kochanek PM, Bergold P, Kenney K, Marx CE, Grimes CJB, Loh LTCY, Adam LTCGE, Oskvig D, Curley KC, Salzer W. Pharmacotherapy of traumatic brain injury: state of the science and the road forward: report of the Department of Defense Neurotrauma Pharmacology Workgroup. J Neurotrauma 2014; 31:135-58. [PMID: 23968241 DOI: 10.1089/neu.2013.3019] [Citation(s) in RCA: 192] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Despite substantial investments by government, philanthropic, and commercial sources over the past several decades, traumatic brain injury (TBI) remains an unmet medical need and a major source of disability and mortality in both developed and developing societies. The U.S. Department of Defense neurotrauma research portfolio contains more than 500 research projects funded at more than $700 million and is aimed at developing interventions that mitigate the effects of trauma to the nervous system and lead to improved quality of life outcomes. A key area of this portfolio focuses on the need for effective pharmacological approaches for treating patients with TBI and its associated symptoms. The Neurotrauma Pharmacology Workgroup was established by the U.S. Army Medical Research and Materiel Command (USAMRMC) with the overarching goal of providing a strategic research plan for developing pharmacological treatments that improve clinical outcomes after TBI. To inform this plan, the Workgroup (a) assessed the current state of the science and ongoing research and (b) identified research gaps to inform future development of research priorities for the neurotrauma research portfolio. The Workgroup identified the six most critical research priority areas in the field of pharmacological treatment for persons with TBI. The priority areas represent parallel efforts needed to advance clinical care; each requires independent effort and sufficient investment. These priority areas will help the USAMRMC and other funding agencies strategically guide their research portfolios to ensure the development of effective pharmacological approaches for treating patients with TBI.
Collapse
Affiliation(s)
- Ramon Diaz-Arrastia
- 1 Department of Neurology, Uniformed Services University of the Health Sciences , Bethesda, Maryland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chalak LF, Tarumi T, Zhang R. The "neurovascular unit approach" to evaluate mechanisms of dysfunctional autoregulation in asphyxiated newborns in the era of hypothermia therapy. Early Hum Dev 2014; 90:687-94. [PMID: 25062804 PMCID: PMC4170014 DOI: 10.1016/j.earlhumdev.2014.06.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 10/25/2022]
Abstract
Despite improvements in obstetrical and neonatal care, and introduction of hypothermia as a neuroprotective therapy, perinatal brain injury remains a frequent cause of cerebral palsy, mental retardation and epilepsy. The recognition of dysfunction of cerebral autoregulation is essential for a real time measure of efficacy to identify those who are at highest risk for brain injury. This article will focus on the "neurovascular unit" approach to the care of asphyxiated neonates and will address 1) potential mechanisms of dysfunctional cerebral blood flow (CBF) regulation, 2) optimal monitoring methodology such as NIRS (near infrared spectroscopy), and TCD (transcutaneous Doppler), and 3) clinical implications of monitoring in the neonatal intensive care setting in asphyxiated newborns undergoing hypothermia and rewarming. Critical knowledge of the functional regulation of the neurovascular unit may lead to improved ability to predict outcomes in real time during hypothermia, as well as differentiate non-responders who might benefit from additional therapies.
Collapse
Affiliation(s)
- Lina F. Chalak
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX,Correspondence: Lina F. Chalak, MD, MSCS, Associate professor at the University of Texas Southwestern Medical Center at Dallas, Department of Pediatrics, Division of Neonatal-Perinatal Medicine, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9063, Phone: (214) 648-3903, Fax: (214) 648-2481,
| | - Takashi Tarumi
- Department of internal medicine at University of Texas Southwestern Medical Center, Dallas, TX
| | - Rong Zhang
- Department of internal medicine at University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
31
|
Thomé C, Schubert GA, Schilling L. Hypothermia as a neuroprotective strategy in subarachnoid hemorrhage: a pathophysiological review focusing on the acute phase. Neurol Res 2013; 27:229-37. [PMID: 15845206 DOI: 10.1179/016164105x25252] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) remains a very prevalent challenge in neurosurgery associated with a high morbidity and mortality due to the lack of specific treatment modalities. The prognosis of SAH patients depends primarily on three factors: (i) the severity of the initial bleed, (ii) the endovascular or neurosurgical procedure to occlude the aneurysm and (iii) the occurrence of late sequelae, namely delayed ischemic neurological deficits due to cerebral vasospasm. While neurosurgeons and interventionalists have put significant efforts in minimizing periprocedural complications and a multitude of investigators have been devoted to the research on chronic vasospasm, the acute phase of SAH has not been studied in comparable detail. In various experimental studies during the past decade, hypothermia has been shown to reduce neuronal damage after ischemia, traumatic brain injury and other cerebrovascular diseases. Clinically, only some of these encouraging results could be reproduced. This review analyses results of studies on the effects of hypothermia on SAH with special respect to the acute phase in an experimental setting. Based on the available data, some considerations for the application of mild to moderate hypothermia in patients with subarachnoid hemorrhage are given.
Collapse
Affiliation(s)
- Claudius Thomé
- Department of Neurosurgery, University Hospital Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1, 68167 Mannheim, Germany.
| | | | | |
Collapse
|
32
|
Su E, Bell MJ, Kochanek PM, Wisniewski SR, Bayir H, Clark RSB, Adelson PD, Tyler-Kabara EC, Janesko-Feldman KL, Berger RP. Increased CSF concentrations of myelin basic protein after TBI in infants and children: absence of significant effect of therapeutic hypothermia. Neurocrit Care 2013; 17:401-7. [PMID: 22890910 DOI: 10.1007/s12028-012-9767-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The objectives of this study were to determine effects of severe traumatic brain injury (TBI) on cerebrospinal fluid (CSF) concentrations of myelin basic protein (MBP) and to assess relationships between clinical variables and CSF MBP concentrations. METHODS We measured serial CSF MBP concentrations in children enrolled in a randomized controlled trial evaluating therapeutic hypothermia (TH) after severe pediatric TBI. Control CSF was obtained from children evaluated, but found not to be having CNS infection. Generalized estimating equation models and Wilcoxon Rank-Sum test were used for comparisons of MBP concentrations. RESULTS There were 27 TBI cases and 57 controls. Overall mean (± SEM) TBI case MBP concentrations for 5 days after injury were markedly greater than controls (50.49 ± 6.97 vs. 0.11 ± 0.01 ng/ml, p < 0.01). Mean MBP concentrations were lower in TBI patients <1 year versus >1 year (9.18 ± 1.67 vs. 60.22 ± 8.26 ng/ml, p = 0.03), as well as in cases with abusive head trauma (AHT) versus non-abusive TBI (14.46 ± 3.15 vs. 61.17 ± 8.65 ng/ml, p = 0.03). TH did not affect MBP concentrations. CONCLUSIONS Mean CSF MBP increases markedly after severe pediatric TBI, but is not affected by TH. Infancy and AHT are associated with low MBP concentrations, suggesting that age-dependent myelination influences MBP concentrations after injury. Given the magnitude of MBP increases, axonal injury likely represents an important therapeutic target in pediatric TBI.
Collapse
Affiliation(s)
- E Su
- Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Hypothermia has long been recognized as an effective therapy for acute neurologic injury. Recent advances in bedside technology and greater understanding of thermoregulatory mechanisms have made this therapy readily available at the bedside. Critical care management of the hypothermic patient can be divided into 3 phases: induction, maintenance, and rewarming. Each phase has known complications that require careful monitoring. At present, hypothermia has only been shown to be an effective neuroprotective therapy in cardiac arrest survivors. The primary use of hypothermia in the neurocritical care unit is to treat increased intracranial pressure.
Collapse
Affiliation(s)
- Neeraj Badjatia
- Section of Neurocritical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA.
| |
Collapse
|
34
|
Fujita M, Wei EP, Povlishock JT. Intensity- and interval-specific repetitive traumatic brain injury can evoke both axonal and microvascular damage. J Neurotrauma 2012; 29:2172-80. [PMID: 22559115 DOI: 10.1089/neu.2012.2357] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the experimental setting several investigators have recently reported exacerbations of the burden of axonal damage and other neuropathological changes following repetitive traumatic brain injuries (TBI) that were sustained at intervals from hours to days following the initial insult. These same studies also revealed that prolonging the interval between the first and second insult led to a reduction in the burden of neuropathological changes and/or their complete elimination. Although demonstrating the capability of repetitive TBI to evoke increased axonal and other neuropathological changes, these studies did not address the potential for concomitant microvascular dysfunction or damage, although vascular dysfunction has been implicated in the second-impact syndrome. In this study we revisit the issue of repetitive injury in a well-controlled animal model in which the TBI intensity was bracketed from subthreshold to threshold insults, while the duration of the intervals between the injuries varied. Employing cranial windows to assess vascular reactivity and post-mortem amyloid precursor protein (APP) analysis to determine the burden of axonal change, we recognized that subthreshold injuries, even when administered in repeated fashion over a short time frame, evoked neither axonal nor vascular change. However, with an elevation of insult intensity, repetitive injuries administered within 3-h time frames caused dramatic axonal damage and significant vascular dysfunction bordering on a complete loss of vasoreactivity. If, however, the interval between the repetitive injury was extended to 5 h, the burden of axonal change was reduced, as was the overall magnitude of the ensuing vascular dysfunction. With the extension of the interval between injuries to 10 h, neither axonal nor vascular changes were found. Collectively, these studies reaffirm the existence of significant axonal damage following repetitive TBI administered within a relatively short time frame. Additionally, they also demonstrate that these axonal changes parallel changes in the cerebral microcirculation, which also may have adverse consequences for the injured brain.
Collapse
Affiliation(s)
- Motoki Fujita
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | | | | |
Collapse
|
35
|
The influence of rewarming after therapeutic hypothermia on outcome after cardiac arrest. Resuscitation 2012; 83:996-1000. [DOI: 10.1016/j.resuscitation.2012.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/26/2012] [Accepted: 04/06/2012] [Indexed: 11/19/2022]
|
36
|
Affiliation(s)
- L A Urbano
- Department of Critical Care Medicine, Lausanne University Hospital and Faculty of Biology and Medicine, Centre Hospitalier Universitaire Vaudois (CHUV), Rue du Bugnon 46, CH-1011 Lausanne, Switzerland.
| | | |
Collapse
|
37
|
Fujita M, Oda Y, Wei EP, Povlishock JT. The combination of either tempol or FK506 with delayed hypothermia: implications for traumatically induced microvascular and axonal protection. J Neurotrauma 2012; 28:1209-18. [PMID: 21521034 DOI: 10.1089/neu.2011.1852] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Following traumatic brain injury (TBI), inhibition of reactive oxygen species and/or calcineurin can exert axonal and vascular protection. This protection proves optimal when these strategies are used early post-injury. Recent work has shown that the combination of delayed drug administration and delayed hypothermia extends this protection. Here we revisit this issue in TBI using the nitroxide antioxidant Tempol, or the immunophilin ligand FK506, together with delayed hypothermia, to determine their effects upon cerebral vascular reactivity and axonal damage. Animals were subjected to TBI and treated with Tempol at 30 or 90 min post-injury, or 90 min post-injury with concomitant mild hypothermia (33°C). Another group of animals were treated in the same fashion with the exception that they received FK506. Cranial windows were placed to assess vascular reactivity over 6 h post-injury, when the animals were assessed for traumatically induced axonal damage. Vasoreactivity was preserved by early Tempol administration; however, this benefit declined with time. The coupling of hypothermia and delayed Tempol, however, exerted significant vascular protection. The use of early and delayed FK506 provided significant vascular protection which was not augmented by hypothermia. The early administration of Tempol provided dramatic axonal protection that was not enhanced with hypothermia. Early and delayed FK506 provided significant axonal protection, although this protection was not enhanced by delayed hypothermia. The current investigation supports the premise that Tempol coupled with hypothermia extends its benefits. While FK506 proved efficacious with early and delayed administration, it did not provide either increased vascular or axonal benefit with hypothermia. These studies illustrate the potential benefits of Tempol coupled to delayed hypothermia. However, these findings do not transfer to the use of FK506, which in previous studies proved beneficial when coupled with hypothermia. These divergent results may be a reflection of the different animal models used and/or their associated injury severity.
Collapse
Affiliation(s)
- Motoki Fujita
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Center, Richmond, VA 23298, USA
| | | | | | | |
Collapse
|
38
|
|
39
|
Schmutzhard E, Fischer M, Dietmann A, Helbok R, Broessner G. Rewarming: facts and myths from the neurological perspectives. Crit Care 2012. [PMCID: PMC3389484 DOI: 10.1186/cc11282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
40
|
Kallakuri S, Li Y, Zhou R, Bandaru S, Zakaria N, Zhang L, Cavanaugh JM. Impaired axoplasmic transport is the dominant injury induced by an impact acceleration injury device: an analysis of traumatic axonal injury in pyramidal tract and corpus callosum of rats. Brain Res 2012; 1452:29-38. [PMID: 22472596 DOI: 10.1016/j.brainres.2012.02.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 11/28/2022]
Abstract
Traumatic axonal injury (TAI) involves neurofilament compaction (NFC) and impaired axoplasmic transport (IAT) in distinct populations of axons. Previous quantification studies of TAI focused on limited areas of pyramidal tract (Py) but not its entire length. Quantification of TAI in corpus callosum (CC) and its comparison to that in Py is also lacking. This study assessed and compared the extent of TAI in the entire Py and CC of rats following TBI. TBI was induced by a modified Marmarou impact acceleration device in 31 adult male Sprague Dawley rats by dropping a 450 gram impactor from either 1.25 m or 2.25 m. Twenty-four hours after TBI, TAI was assessed by beta amyloid precursor protein (β-APP-IAT) and RMO14 (NFC) immunocytochemistry. TAI density (β-APP and RMO14 axonal swellings, retraction balls and axonal profiles) was counted from panoramic images of CC and Py. Significantly high TAI was observed in 2.25 m impacted rats. β-APP immunoreactive axons were significantly higher in number than RMO14 immunoreactive axons in both the structures. TAI density in Py was significantly higher than in CC. Based on our parallel biomechanical studies, it is inferred that TAI in CC may be related to compressive strains and that in Py may be related to tensile strains. Overall, IAT appears to be the dominant injury type induced by this model and injury in Py predominates that in CC.
Collapse
Affiliation(s)
- Srinivasu Kallakuri
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Benz-Woerner J, Delodder F, Benz R, Cueni-Villoz N, Feihl F, Rossetti AO, Liaudet L, Oddo M. Body temperature regulation and outcome after cardiac arrest and therapeutic hypothermia. Resuscitation 2012; 83:338-42. [PMID: 22079947 DOI: 10.1016/j.resuscitation.2011.10.026] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/21/2011] [Accepted: 10/30/2011] [Indexed: 10/15/2022]
|
42
|
Bramlett HM, Dietrich WD. THE EFFECTS OF POSTTRAUMATIC HYPOTHERMIA ON DIFFUSE AXONAL INJURY FOLLOWING PARASAGGITAL FLUID PERCUSSION BRAIN INJURY IN RATS. Ther Hypothermia Temp Manag 2012; 2:14-23. [PMID: 23420536 DOI: 10.1089/ther.2012.0002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous investigations have demonstrated the beneficial effects of mild hypothermia following different types of traumatic brain injury (TBI). In some models, early cooling following TBI has been shown to reduce the frequency of axonal damage, a major consequence of head injury. The purpose of this study was to evaluate the effects of posttraumatic hypothermia in a model that has been shown to be sensitive to temperature manipulations in the early injury setting. Animals underwent moderate parasagittal fluid percussion (FP) brain injury and were then either randomized into normothermic or hypothermic groups. In the hypothermic groups, brain temperature was reduced to either 30 or 33°C 5 minutes after trauma and maintained for a three hour period. Normothermic or sham-operated animals were held under normal temperature conditions. At three days after TBI, animals were perfusion-fixed for quantitative assessment of β-APP immunohistochemistry and silver staining. Traumatic injury led to a significant increase in the frequency of β-APP immunoreactive profiles both within the corpus callosum, external capsule, as well as internal capsule. While early cooling revealed a trend for protection, no significant differences were shown between normothermic and hypothermic animals in terms of the frequency of injured axons at 3 days posttrauma. These results emphasize that axonal pathology is a major consequence of brain injury using this particular model. It is concluded that longer periods of posttraumatic hypothermia may be required to chronically protect axon populations undergoing progressive injury.
Collapse
Affiliation(s)
- Helen M Bramlett
- The Miami Project to Cure Paralysis, The Department of Neurological Surgery University of Miami Miller School of Medicine Miami, Florida 33136
| | | |
Collapse
|
43
|
Sanjith S. Traumatic axonal injury in mild to moderate head injury — an illustrated review. INDIAN JOURNAL OF NEUROTRAUMA 2011. [DOI: 10.1016/s0973-0508(11)80003-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
44
|
Weng Y, Sun S. Therapeutic hypothermia after cardiac arrest in adults: mechanism of neuroprotection, phases of hypothermia, and methods of cooling. Crit Care Clin 2011; 28:231-43. [PMID: 22433485 DOI: 10.1016/j.ccc.2011.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Yinlun Weng
- The Weil Institute of Critical Care Medicine, Rancho Mirage, CA 92270, USA
| | | |
Collapse
|
45
|
Abstract
Traumatic brain injury is the leading cause of death in young people. Induced hypothermia has been used as a therapeutic intervention to improve outcome, based on results of animal studies. This article reviews the mechanisms of brain injury, the results of animal and human studies and the reasons that human studies do not always reflect the success seen in animal studies and why results may be ‘lost in translation’ to treatment of patients. It concludes by suggesting further areas of work to investigate the clinical use of therapeutic hypothermia.
Collapse
Affiliation(s)
- Liming Qiu
- Medical Student, Bart's and the London Medical School
| |
Collapse
|
46
|
Takeuchi S, Nawashiro H, Otani N. Hypothermia in patients with brain injury: the way forward? Lancet Neurol 2011; 10:404; author reply 406-7. [PMID: 21511191 DOI: 10.1016/s1474-4422(11)70083-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Lulic D, Burns J, Bae EC, van Loveren H, Borlongan CV. A Review of Laboratory and Clinical Data Supporting the Safety and Efficacy of Cyclosporin A in Traumatic Brain Injury. Neurosurgery 2011; 68:1172-85; discussion 1185-6. [DOI: 10.1227/neu.0b013e31820c6cdc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
For decades, cyclosporin A (CsA) has proved to be safe and effective for use in transplantation. In the past 10 years, this agent has shown neuroprotective effects in animal models of traumatic brain injury (TBI). This review article provides a critical overview of the literature on CsA neuroprotective effects in animal studies and current findings of clinical trials in the treatment of TBI with an emphasis on the possible CsA molecular mechanism of action. Animal data provide compelling evidence of the therapeutic benefits of CsA in TBI, but the outcome indices are heterogeneous with respect to the animal model of TBI as well as the route, dose, and timing of CsA administration. Similarly, clinical studies (phase II trials) adapting almost identical patient inclusion criteria have demonstrated the safety of CsA use in TBI, but the clinical trials are also heterogeneous based on study design, especially with regard to the variable timing of CsA administration after TBI. In view of the translational shortcomings of the preclinical studies and the rather pilot nature of the limited clinical trials that recently reached phase III, we offer guidance on the future directions of laboratory investigations on CsA that could improve the safety and efficacy of this agent in subsequent larger clinical trials.
Collapse
Affiliation(s)
- Dzenan Lulic
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Jack Burns
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Eunkyung Cate Bae
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Harry van Loveren
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| | - Cesar V. Borlongan
- Center of Excellence in Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, Florida
| |
Collapse
|
48
|
Thompson HJ, Kirkness CJ, Mitchell PH. Hypothermia and rapid rewarming is associated with worse outcome following traumatic brain injury. J Trauma Nurs 2010; 17:173-7. [PMID: 21157248 PMCID: PMC3556902 DOI: 10.1097/jtn.0b013e3181ff272e] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of the present study was to determine (1) the prevalence and degree of hypothermia in patients on emergency department admission and (2) the effect of hypothermia and rate of rewarming on patient outcomes. METHODS Secondary data analysis was conducted on patients admitted to a level I trauma center following severe traumatic brain injury (n = 147). Patients were grouped according to temperature on admission according to hypothermia status and rate of rewarming (rapid or slow). Regression analyses were performed. FINDINGS Hypothermic patients were more likely to have lower postresuscitation Glasgow Coma Scale scores and a higher initial injury severity score. Hypothermia on admission was correlated with longer intensive care unit stays, a lower Glasgow Coma Scale score at discharge, higher mortality rate, and lower Glasgow outcome score-extended scores up to 6 months postinjury (P < .05). When controlling for other factors, rewarming rates more than 0.25°C/h were associated with lower Glasgow Coma Scale scores at discharge, longer intensive care unit length of stay, and higher mortality rate than patients rewarmed more slowly although these did not reach statistical significance. CONCLUSION Hypothermia on admission is correlated with worse outcomes in brain-injured patients. Patients with traumatic brain injury who are rapidly rewarmed may be more likely to have worse outcomes. Trauma protocols may need to be reexamined to include controlled rewarming at rates 0.25°C/h or less.
Collapse
Affiliation(s)
- Hilaire J Thompson
- Biobehavioral Nursing and Health Systems, University of Washington, Seattle, Washington, USA.
| | | | | |
Collapse
|
49
|
The adverse pial arteriolar and axonal consequences of traumatic brain injury complicated by hypoxia and their therapeutic modulation with hypothermia in rat. J Cereb Blood Flow Metab 2010; 30:628-37. [PMID: 19904286 PMCID: PMC2949135 DOI: 10.1038/jcbfm.2009.235] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study examined the effect of posttraumatic hypoxia on cerebral vascular responsivity and axonal damage, while also exploring hypothermia's potential to attenuate these responses. Rats were subjected to impact acceleration injury (IAI) and equipped with cranial windows to assess vascular reactivity to topical acetylcholine, with postmortem analyses using antibodies to amyloid precursor protein to assess axonal damage. Animals were subjected to hypoxia alone, IAI and hypoxia, IAI and hypoxia before induction of moderate hypothermia (33 degrees C), IAI and hypoxia induced during hypothermic intervention, and IAI and hypoxia initiated after hypothermia. Hypoxia alone had no impact on vascular reactivity or axonal damage. Acceleration injury and posttraumatic hypoxia resulted in dramatic axonal damage and altered vascular reactivity. When IAI and hypoxia were followed by hypothermic intervention, no axonal or vascular protection ensued. However, when IAI was followed by hypoxia induced during hypothermia, axonal and vascular protection followed. When this same hypoxic insult followed the use of hypothermia, no benefit ensued. These studies show that early hypoxia and delayed hypoxia exert damaging axonal and vascular consequences. Although this damage is attenuated by hypothermia, this follows only when hypoxia occurs during hypothermia, with no benefit found if the hypoxic insult proceeds or follows hypothermia.
Collapse
|
50
|
Dietrich WD, Bramlett HM. The evidence for hypothermia as a neuroprotectant in traumatic brain injury. Neurotherapeutics 2010; 7:43-50. [PMID: 20129496 PMCID: PMC2819078 DOI: 10.1016/j.nurt.2009.10.015] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 10/21/2009] [Indexed: 11/30/2022] Open
Abstract
This article reviews published experimental and clinical evidence for the benefits of modest hypothermia in the treatment of traumatic brain injury (TBI). Therapeutic hypothermia has been reported to improve outcome in several animal models of CNS injury and has been successfully translated to specific patient populations. A PubMed search for hypothermia and TBI was conducted, and important papers were selected for review. The research summarized was conducted at major academic institutions throughout the world. Experimental studies have emphasized that hypothermia can affect multiple pathophysiological mechanisms thought to participate in the detrimental consequences of TBI. Published data from several relevant clinical trials on the use of hypothermia in severely injured TBI patients are also reviewed. The consequences of mild to moderate levels of hypothermia introduced by different strategies to the head-injured patient for variable periods of time are discussed. Both experimental and clinical data support the beneficial effects of modest hypothermia following TBI in specific patient populations. Following on such single-institution studies, positive findings from multicenter TBI trials will be required before this experimental treatment can be considered standard of care.
Collapse
Affiliation(s)
- W Dalton Dietrich
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136, USA.
| | | |
Collapse
|