1
|
Kotecha R, La Rosa A, Brown PD, Vogelbaum MA, Navarria P, Bodensohn R, Niyazi M, Karschnia P, Minniti G. Multidisciplinary management strategies for recurrent brain metastasis after prior radiotherapy: An overview. Neuro Oncol 2025; 27:597-615. [PMID: 39495010 PMCID: PMC11889725 DOI: 10.1093/neuonc/noae220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
As cancer patients with intracranial metastatic disease experience increasingly prolonged survival, the diagnosis and management of recurrent brain metastasis pose significant challenges in clinical practice. Prior to deciding upon a management strategy, it is necessary to ascertain whether patients have recurrent/progressive disease vs adverse radiation effect, classify the recurrence as local or distant in the brain, evaluate the extent of intracranial disease (size, number and location of lesions, and brain metastasis velocity), the status of extracranial disease, and enumerate the interval from the last intracranially directed intervention to disease recurrence. A spectrum of salvage local treatment options includes surgery (resection and laser interstitial thermal therapy [LITT]) with or without adjuvant radiotherapy in the forms of external beam radiotherapy, intraoperative radiotherapy, or brachytherapy. Nonoperative salvage local treatments also range from single fraction and fractionated stereotactic radiosurgery (SRS/FSRS) to whole brain radiation therapy (WBRT). Optimal integration of systemic therapies, preferably with central nervous system (CNS) activity, may also require reinterrogation of brain metastasis tissue to identify actionable molecular alterations specific to intracranial progressive disease. Ultimately, the selection of the appropriate management approach necessitates a sophisticated understanding of patient, tumor, and prior treatment-related factors and is often multimodal; hence, interdisciplinary evaluation for such patients is indispensable.
Collapse
Affiliation(s)
- Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
- Department of Translational Medicine, Hebert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA
- Department of Radiation Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, Milan, Italy
| | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Friedrich-Alexander-University, Erlangen-Nuremberg, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology, and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli (IS), Italy
| |
Collapse
|
2
|
Sampat PJ, Cortese A, Goodman A, Ghelani GH, Mix MD, Graziano S, Basnet A. Treatment of brain metastases from non-small cell lung cancer: preclinical, clinical, and translational research. Front Oncol 2024; 14:1411432. [PMID: 39534096 PMCID: PMC11554526 DOI: 10.3389/fonc.2024.1411432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Lung cancer is the second most common type of cancer and is the leading cause of cancer-related deaths in the United States. Approximately 10-40% of patients with solid tumors develop brain metastases, with non-small cell lung cancer accounting for approximately 50% of all cases of patients with brain metastases. Many management options are available which can include surgery, radiation, and systemic therapy. A variety of factors go into the selection of management of brain metastases. In this review, we will focus on the treatment strategies and optimizing the management of brain metastases in patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Parth J. Sampat
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alyssa Cortese
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alexandra Goodman
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Ghanshyam H. Ghelani
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Michael D. Mix
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Stephen Graziano
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alina Basnet
- Division of Hematology and Medical Oncology, Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
3
|
Diehl CD, Giordano FA, Grosu AL, Ille S, Kahl KH, Onken J, Rieken S, Sarria GR, Shiban E, Wagner A, Beck J, Brehmer S, Ganslandt O, Hamed M, Meyer B, Münter M, Raabe A, Rohde V, Schaller K, Schilling D, Schneider M, Sperk E, Thomé C, Vajkoczy P, Vatter H, Combs SE. Opportunities and Alternatives of Modern Radiation Oncology and Surgery for the Management of Resectable Brain Metastases. Cancers (Basel) 2023; 15:3670. [PMID: 37509330 PMCID: PMC10377800 DOI: 10.3390/cancers15143670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Postsurgical radiotherapy (RT) has been early proven to prevent local tumor recurrence, initially performed with whole brain RT (WBRT). Subsequent to disadvantageous cognitive sequalae for the patient and the broad distribution of modern linear accelerators, focal irradiation of the tumor has omitted WBRT in most cases. In many studies, the effectiveness of local RT of the resection cavity, either as single-fraction stereotactic radiosurgery (SRS) or hypo-fractionated stereotactic RT (hFSRT), has been demonstrated to be effective and safe. However, whereas prospective high-level incidence is still lacking on which dose and fractionation scheme is the best choice for the patient, further ablative techniques have come into play. Neoadjuvant SRS (N-SRS) prior to resection combines straightforward target delineation with an accelerated post-surgical phase, allowing an earlier start of systemic treatment or rehabilitation as indicated. In addition, low-energy intraoperative RT (IORT) on the surgical bed has been introduced as another alternative to external beam RT, offering sterilization of the cavity surface with steep dose gradients towards the healthy brain. This consensus paper summarizes current local treatment strategies for resectable brain metastases regarding available data and patient-centered decision-making.
Collapse
Affiliation(s)
- Christian D Diehl
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Anca-L Grosu
- Department of Radiation Oncology, University Medical Center, Medical Faculty, 79106 Freiburg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Klaus-Henning Kahl
- Department of Radiation Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiotherapy and Radiation Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
- Comprehensive Cancer Center Niedersachsen (CCC-N), 37075 Göttingen, Germany
| | - Gustavo R Sarria
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Ehab Shiban
- Department of Neurosurgery, University Medical Center Augsburg, 86156 Augsburg, Germany
| | - Arthur Wagner
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Jürgen Beck
- Department of Neurosurgery, University Hospital Freiburg, 79106 Freiburg, Germany
| | - Stefanie Brehmer
- Department of Neurosurgery, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Oliver Ganslandt
- Neurosurgical Clinic, Klinikum Stuttgart, 70174 Stuttgart, Germany
| | - Motaz Hamed
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Faculty of Medicine, Technical University of Munich, 81675 München, Germany
| | - Marc Münter
- Department of Radiation Oncology, Klinikum Stuttgart Katharinenhospital, 70174 Stuttgart, Germany
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Veit Rohde
- Department of Neurosurgery, Universitätsmedizin Göttingen, 37075 Göttingen, Germany
| | - Karl Schaller
- Department of Neurosurgery, University of Geneva Medical Center & Faculty of Medicine, 1211 Geneva, Switzerland
| | - Daniela Schilling
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Elena Sperk
- Mannheim Cancer Center, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 München, Germany
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 München, Germany
| |
Collapse
|
4
|
Re-Irradiation by Stereotactic Radiotherapy of Brain Metastases in the Case of Local Recurrence. Cancers (Basel) 2023; 15:cancers15030996. [PMID: 36765953 PMCID: PMC9913463 DOI: 10.3390/cancers15030996] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
PURPOSE To evaluate the efficacy and safety of a second course of stereotactic radiotherapy (SRT2) treatment for a local recurrence of brain metastases previously treated with SRT (SRT1), using the Hypofractionated Treatment Effects in the Clinic (HyTEC) reporting standards and the European Society for Radiotherapy and Oncology guidelines. METHODS From December 2014 to May 2021, 32 patients with 34 brain metastases received salvage SRT2 after failed SRT1. A total dose of 21 to 27 Gy in 3 fractions or 30 Gy in 5 fractions was prescribed to the periphery of the PTV (99% of the prescribed dose covering 99% of the PTV). After SRT2, multiparametric MRI, sometimes combined with 18F-DOPA PET-CT, was performed every 3 months to determine local control (LC) and radionecrosis (RN). RESULTS After a median follow-up of 12 months (range: 1-37 months), the crude LC and RN rates were 68% and 12%, respectively, and the median overall survival was 25 months. In a multivariate analysis, the performance of surgery was predictive of a significantly better LC (p = 0.002) and survival benefit (p = 0.04). The volume of a normal brain receiving 5 Gy during SRT2 (p = 0.04), a dose delivered to the PTV in SRT1 (p = 0.003), and concomitant systemic therapy (p = 0.04) were associated with an increased risk of RN. CONCLUSION SRT2 is an effective approach for the local recurrence of BM after initial SRT treatment and is a potential salvage therapy option for well-selected people with a good performance status. Surgery was associated with a higher LC.
Collapse
|
5
|
Ene CI, Ferguson SD. Surgical Management of Brain Metastasis: Challenges and Nuances. Front Oncol 2022; 12:847110. [PMID: 35359380 PMCID: PMC8963990 DOI: 10.3389/fonc.2022.847110] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Brain metastasis is the most common type of intracranial tumor. The contemporary management of brain metastasis is a challenging issue and traditionally has carried a poor prognosis as these lesions typically occur in the setting of advanced cancer. However, improvement in systemic therapy, advances in radiation techniques and multimodal therapy tailored to the individual patient, has given hope to this patient population. Surgical resection has a well-established role in the management of brain metastasis. Here we discuss the evolving role of surgery in the treatment of this diverse patient population.
Collapse
Affiliation(s)
- Chibawanye I Ene
- Department of Neurosurgery, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Sherise D Ferguson
- Department of Neurosurgery, University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Heßler N, Jünger ST, Meissner AK, Kocher M, Goldbrunner R, Grau S. Recurrent brain metastases: the role of resection of in a comprehensive multidisciplinary treatment setting. BMC Cancer 2022; 22:275. [PMID: 35291972 PMCID: PMC8922794 DOI: 10.1186/s12885-022-09317-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/19/2022] [Indexed: 11/09/2024] Open
Abstract
Background Treatment decision for recurrent symptomatic brain metastases (BM) is challenging with scarce data regarding surgical resection. We therefore evaluated the efficacy of surgery for pretreated, recurrent BM in a comprehensive multidisciplinary treatment setting. Methods In a retrospective single center study, patients were analyzed, who underwent surgical resection of recurrent BM between 2007 and 2019. Intracranial event-free survival (EFS) and overall survival (OS) were evaluated by Kaplan-Maier and Cox regression analysis. Results We included 107 patients with different primary tumor entities and individual previous treatment for BM. Primary tumors comprised non-small cell lung cancer (NSCLC) (37.4%), breast cancer (19.6%), melanoma (13.1%), gastro-intestinal cancer (10.3%) and other, rare entities (19.6%). The number of previous treatments of BM ranged from one to four; the adjuvant treatment modalities comprised: none, focal or whole brain radiotherapy, brachytherapy and radiosurgery. The median pre-operative Karnofsky Performance Score (KPS) was 70% (range 40–100) and improved to 80% (range 0-100) after surgery. The complication rate was 26.2% and two patients died during the perioperative period. Sixty-seven (62.6%) patients received postoperative local radio-oncologic and/or systemic therapy. Median postoperative EFS and OS were 7.1 (95%CI 5.8–8.2) and 11.1 (95%CI 8.4–13.6) months, respectively. The clinical status (postoperative KPS ≥ 70 (HR 0.27 95%CI 0.16–0.46; p < 0.001) remained the only independent factor for survival in multivariate analysis. Conclusions Surgical resection of recurrent BM may improve the clinical status and thus OS but is associated with a high complication rate; therefore a very careful patient selection is crucial.
Collapse
Affiliation(s)
- Nadine Heßler
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephanie T Jünger
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Centre for Integrated Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna-Katharina Meissner
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Centre for Integrated Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Kocher
- Center for Neurosurgery, Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany.,Centre for Integrated Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stefan Grau
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany. .,Centre for Integrated Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany. .,Department of Neurosurgery, Klinikum Fulda gAG, Academic Hospital of the University of Marburg, Fulda, Germany.
| |
Collapse
|
7
|
Sarmey N, Kaisman-Elbaz T, Mohammadi AM. Management Strategies for Large Brain Metastases. Front Oncol 2022; 12:827304. [PMID: 35251995 PMCID: PMC8894177 DOI: 10.3389/fonc.2022.827304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Brain metastases represent the most common intracranial neoplasm and pose a significant disease burden on the individual and the healthcare system. Although whole brain radiation therapy was historically a first line approach, subsequent research and technological advancements have resulted in a larger armamentarium of strategies for treatment of these patients. While chemotherapeutic options remain limited, surgical resection and stereotactic radiosurgery, as well as their combination therapies, have shifted the paradigms for managing intracranial metastatic disease. Ultimately, no single treatment is shown to be consistently effective across patient groups in terms of overall survival, local and distant control, neurocognitive function, and performance status. However, close consideration of patient and tumor characteristics may help delineate more favorable treatment strategies for individual patients. Here the authors present a review of the recent literature surrounding surgery, whole brain radiation therapy, stereotactic radiosurgery, and combination approaches.
Collapse
|
8
|
Roshchina KE, Bekyashev AK, Gasparyan TG, Aleshin VA, Osinov IK, Savateev AN, Khalafyan DA. Modern possibilities of neurosurgical treatment of brain metastases. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:119-125. [PMID: 36252202 DOI: 10.17116/neiro202286051119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Despite significant progress in neuroimaging and introduction of new combined treatments for solid tumors, brain metastases are still adverse factor for overall survival. Brain metastases are diagnosed in 8-10% of patients and associated with extremely poor prognosis. These lesions result focal and general cerebral symptoms. Literature review highlights the current principles of surgical treatment of metastatic brain lesions in patients with solid tumors.
Collapse
Affiliation(s)
- K E Roshchina
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - A Kh Bekyashev
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Russian Medical Academy for Continuous Professional Education, Moscow, Russia
| | - T G Gasparyan
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
- Scientific Center of Neurology, Moscow, Russia
| | - V A Aleshin
- Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - I K Osinov
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | | |
Collapse
|
9
|
Matsuda R, Morimoto T, Tamamoto T, Inooka N, Ochi T, Miyasaka T, Hontsu S, Yamaki K, Miura S, Takeshima Y, Tamura K, Yamada S, Nishimura F, Nakagawa I, Motoyama Y, Park YS, Hasegawa M, Nakase H. Salvage Surgical Resection after Linac-Based Stereotactic Radiosurgery for Newly Diagnosed Brain Metastasis. Curr Oncol 2021; 28:5255-5265. [PMID: 34940078 PMCID: PMC8699906 DOI: 10.3390/curroncol28060439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022] Open
Abstract
Background: This study aimed to assess the clinical outcomes of salvage surgical resection (SSR) after stereotactic radiosurgery and fractionated stereotactic radiotherapy (SRS/fSRT) for newly diagnosed brain metastasis. Methods: Between November 2009 and May 2020, 318 consecutive patients with 1114 brain metastases were treated with SRS/fSRT for newly diagnosed brain metastasis at our hospital. During this study period, 21 of 318 patients (6.6%) and 21 of 1114 brain metastases (1.9%) went on to receive SSR after SRS/fSRT. Three patients underwent multiple surgical resections. Twenty-one consecutive patients underwent twenty-four SSRs. Results: The median time from initial SRS/fSRT to SSR was 14 months (range: 2–96 months). The median follow-up after SSR was 17 months (range: 2–78 months). The range of tumor volume at initial SRS/fSRT was 0.12–21.46 cm3 (median: 1.02 cm3). Histopathological diagnosis after SSR was recurrence in 15 cases, and radiation necrosis (RN) or cyst formation in 6 cases. The time from SRS/fSRT to SSR was shorter in the recurrence than in the RNs and cyst formation, but these differences did not reach statistical significance (p = 0.067). The median survival time from SSR and from initial SRS/fSRT was 17 and 74 months, respectively. The cases with recurrence had a shorter survival time from initial SRS/fSRT than those without recurrence (p = 0.061). Conclusions: The patients treated with SRS/fSRT for brain metastasis need long-term follow-up. SSR is a safe and effective treatment for the recurrence, RN, and cyst formation after SRS/fSRT for brain metastasis.
Collapse
Affiliation(s)
- Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
- Correspondence: ; Tel.: +81-744-22-3051
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Tetsuro Tamamoto
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
- Department of Medical Informatics, Nara Medical University Hospital, Kashihara 634-8522, Japan
| | - Nobuyoshi Inooka
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
| | - Tomoko Ochi
- Department of Radiology, Nara Medical University Hospital, Kashihara 634-8522, Japan; (T.O.); (T.M.)
| | - Toshiteru Miyasaka
- Department of Radiology, Nara Medical University Hospital, Kashihara 634-8522, Japan; (T.O.); (T.M.)
| | - Shigeto Hontsu
- Department of Respiratory Medicine, Nara Medical University Hospital, Kashihara 634-8522, Japan;
| | - Kaori Yamaki
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
| | - Sachiko Miura
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
| | - Yasuhiro Takeshima
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Kentaro Tamura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Yasushi Motoyama
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| | - Masatoshi Hasegawa
- Department of Radiation Oncology, Nara Medical University, Kashihara 634-8521, Japan; (T.T.); (N.I.); (K.Y.); (S.M.); (M.H.)
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan; (T.M.); (Y.T.); (K.T.); (S.Y.); (F.N.); (I.N.); (Y.M.); (Y.-S.P.); (H.N.)
| |
Collapse
|
10
|
Wilcox JA, Brown S, Reiner AS, Young RJ, Chen J, Bale TA, Rosenblum MK, Newman WC, Brennan CW, Tabar V, Beal K, Panageas KS, Moss NS. Salvage resection of recurrent previously irradiated brain metastases: tumor control and radiation necrosis dependency on adjuvant re-irradiation. J Neurooncol 2021; 155:277-286. [PMID: 34655373 PMCID: PMC11955081 DOI: 10.1007/s11060-021-03872-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/08/2021] [Indexed: 01/25/2023]
Abstract
PURPOSE The efficacy of salvage resection (SR) of recurrent brain metastases (rBrM) following stereotactic radiosurgery (SRS) is undefined. We sought to describe local recurrence (LR) and radiation necrosis (RN) rates in patients undergoing SR, with or without adjuvant post-salvage radiation therapy (PSRT). METHODS A retrospective cohort study evaluated patients undergoing SR of post-SRS rBrM between 3/2003-2/2020 at an NCI-designated cancer center. Cases with histologically-viable malignancy were stratified by receipt of adjuvant PSRT within 60 days of SR. Clinical outcomes were described using cumulative incidences in the clustered competing-risks setting, competing risks regression, and Kaplan-Meier methodology. RESULTS One-hundred fifty-five rBrM in 135 patients were evaluated. The overall rate of LR was 40.2% (95% CI 34.3-47.2%) at 12 months. Thirty-nine (25.2%) rBrM treated with SR + PSRT trended towards lower 12-month LR versus SR alone [28.8% (95% CI 17.0-48.8%) versus 43.9% (95% CI 36.2-53.4%), p = .07 by multivariate analysis]. SR as re-operation (p = .03) and subtotal resection (p = .01) were independently associated with higher rates of LR. On univariate analysis, tumor size (p = .48), primary malignancy (p = .35), and PSRT technique (p = .43) bore no influence on LR. SR + PSRT was associated with an increased risk of radiographic RN at 12 months versus SR alone [13.4% (95% CI 5.5-32.7%) versus 3.5% (95% CI 1.5-8.0%), p = .02], though the percentage with symptomatic RN remained low (5.1% versus 0.9%, respectively). Median overall survival from SR was 13.4 months (95% CI 10.5-17.7). CONCLUSION In this largest-known series evaluating SR outcomes in histopathologically-confirmed rBrM, we identify a significant LR risk that may be reduced with adjuvant PSRT and with minimal symptomatic RN. Prospective analysis is warranted.
Collapse
Affiliation(s)
- Jessica A Wilcox
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samantha Brown
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Young
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin Chen
- Joan and Sanford I. Weill Medical College of Cornell University, New York, NY, USA
| | - Tejus A Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William C Newman
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Louisiana State University Health Shreveport, Shreveport, LA, USA
| | - Cameron W Brennan
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Viviane Tabar
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine S Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelson S Moss
- Multidisciplinary Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Lucia F, Touati R, Crainic N, Dissaux G, Pradier O, Bourbonne V, Schick U. Efficacy and Safety of a Second Course of Stereotactic Radiation Therapy for Locally Recurrent Brain Metastases: A Systematic Review. Cancers (Basel) 2021; 13:4929. [PMID: 34638412 PMCID: PMC8508410 DOI: 10.3390/cancers13194929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022] Open
Abstract
Recent advances in cancer treatments have increased overall survival and consequently, local failures (LFs) after stereotactic radiotherapy/radiosurgery (SRS/SRT) have become more frequent. LF following SRS or SRT may be treated with a second course of SRS (SRS2) or SRT (SRT2). However, there is no consensus on whenever to consider reirradiation. A literature search was conducted according to PRISMA guidelines. Analysis included 13 studies: 329 patients (388 metastases) with a SRS2 and 135 patients (161 metastases) with a SRT2. The 1-year local control rate ranged from 46.5% to 88.3%. Factors leading to poorer LC were histology (melanoma) and lack of prior whole-brain radiation therapy, large tumor size and lower dose at SRS2/SRT2, poorer response at first SRS/SRT, poorer performance status, and no controlled extracranial disease. The rate of radionecrosis (RN) ranged from 2% to 36%. Patients who had a large tumor volume, higher dose and higher value of prescription isodose line at SRS2/SRT2, and large overlap between brain volume irradiated at SRS1/SRT1 and SRS2/SRT2 at doses of 18 and 12 Gy had a higher risk of developing RN. Prospective studies involving a larger number of patients are still needed to determine the best management of patients with local recurrence of brain metastases.
Collapse
Affiliation(s)
- François Lucia
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Ruben Touati
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Nicolae Crainic
- Neurology Department, University Hospital of Brest, 29200 Brest, France;
| | - Gurvan Dissaux
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Olivier Pradier
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Vincent Bourbonne
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital of Brest, 29200 Brest, France; (R.T.); (G.D.); (O.P.); (V.B.); (U.S.)
| |
Collapse
|
12
|
Hulsbergen AFC, Abunimer AM, Ida F, Kavouridis VK, Cho LD, Tewarie IA, Mekary RA, Schucht P, Phillips JG, Verhoeff JJC, Broekman MLD, Smith TR. Neurosurgical resection for locally recurrent brain metastasis. Neuro Oncol 2021; 23:2085-2094. [PMID: 34270740 DOI: 10.1093/neuonc/noab173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In patients with locally recurrent brain metastases (LRBMs), the role of (repeat) craniotomy is controversial. This study aimed to analyze long-term oncological outcomes in this heterogeneous population. METHODS Craniotomies for LRBM were identified from a tertiary neuro-oncological institution. First, we assessed overall survival (OS) and intracranial control (ICC) stratified by molecular profile, prognostic indices, and multimodality treatment. Second, we compared LRBMs to propensity score-matched patients who underwent craniotomy for newly diagnosed brain metastases (NDBM). RESULTS Across 180 patients, median survival after LRBM resection was 13.8 months and varied by molecular profile, with >24 months survival in ALK/EGFR+ lung adenocarcinoma and HER2+ breast cancer. Furthermore, 102 patients (56.7%) experienced intracranial recurrence; median time to recurrence was 5.6 months. Compared to NDBMs (n = 898), LRBM patients were younger, more likely to harbor a targetable mutation and less likely to receive adjuvant radiation (p < 0.05). After 1:3 propensity matching stratified by molecular profile, LRBM patients generally experienced shorter OS (hazard ratio 1.67 and 1.36 for patients with or without a mutation, p < 0.05) but similar ICC (hazard ratio 1.11 in both groups, p > 0.20) compared to NDBM patients with similar baseline. Results across specific molecular subgroups suggested comparable effect directions of varying sizes. CONCLUSIONS In our data, patients with LRBMs undergoing craniotomy comprised a subgroup of brain metastasis patients with relatively favorable clinical characteristics and good survival outcomes. Recurrent status predicted shorter OS but did not impact ICC. Craniotomy could be considered in selected, prognostically favorable patients.
Collapse
Affiliation(s)
- Alexander F C Hulsbergen
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Departments of Neurosurgery, Haaglanden Medical Center and Leiden University Medical Center, Leiden University, The Hague/Leiden, Zuid-Holland, The Netherlands
| | - Abdullah M Abunimer
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Fidelia Ida
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, MCPHS University, Boston, Massachusetts, United States
| | - Vasileios K Kavouridis
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Department of Neurosurgery, St. Olavs Hospital, Trondheim, Norway
| | - Logan D Cho
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Icahn School of Medicine at Mount Sinai, New York City, New York, United States
| | - Ishaan A Tewarie
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Departments of Neurosurgery, Haaglanden Medical Center and Leiden University Medical Center, Leiden University, The Hague/Leiden, Zuid-Holland, The Netherlands
| | - Rania A Mekary
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Department of Pharmaceutical Business and Administrative Sciences, School of Pharmacy, MCPHS University, Boston, Massachusetts, United States
| | - Philippe Schucht
- Department of Neurosurgery, University Hospital Bern, Kanton Bern, Switzerland
| | - John G Phillips
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States.,Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Joost J C Verhoeff
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, Utrecht, The Netherlands
| | - Marike L D Broekman
- Departments of Neurosurgery, Haaglanden Medical Center and Leiden University Medical Center, Leiden University, The Hague/Leiden, Zuid-Holland, The Netherlands.,Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Timothy R Smith
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
13
|
Chen C, Guo Y, Chen Y, Li Y, Chen J. The efficacy of laser interstitial thermal therapy for brain metastases with in-field recurrence following SRS: systemic review and meta-analysis. Int J Hyperthermia 2021; 38:273-281. [PMID: 33612043 DOI: 10.1080/02656736.2021.1889696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To study the efficacy of LITT for BM patients experiencing in-field recurrence following SRS. METHODS A literature search was conducted to identify studies investigating local control (LC) rate and overall survival (OS) of LITT for BMs with IFR following SRS. RESULTS Analysis included 14 studies (470 patients with 542 lesions). The 6-month (LC-6) and 12-month (LC-12) local control rates were 78.5% (95% CI: 70.6-84.8%) and 69.0% (95% CI: 60.0-76.7%) separately. Pooled median OS was 17.15 months (95% CI: 13.27-24.8). The overall OS-6 and OS-12 rates were 76.0% (95% CI: 71.4-80.0%) and 63.4% (95% CI: 52.9-72.7%) separately. LITT provided more favorable local control efficacy in RN than BM recurrence (LC-6: 87.4% vs. 67.9%, p = 0.009; LC-12: 76.3% vs. 59.9%, p = 0.041). CONCLUSIONS LITT is an effective treatment for BM patients experiencing IFR following SRS. For different pathological entities, LITT showed more satisfactory local control efficacy on RN than BM recurrence.
Collapse
Affiliation(s)
- Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yibin Guo
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Yi Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yanan Li
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Proescholdt MA, Schödel P, Doenitz C, Pukrop T, Höhne J, Schmidt NO, Schebesch KM. The Management of Brain Metastases-Systematic Review of Neurosurgical Aspects. Cancers (Basel) 2021; 13:1616. [PMID: 33807384 PMCID: PMC8036330 DOI: 10.3390/cancers13071616] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
The multidisciplinary management of patients with brain metastases (BM) consists of surgical resection, different radiation treatment modalities, cytotoxic chemotherapy, and targeted molecular treatment. This review presents the current state of neurosurgical technology applied to achieve maximal resection with minimal morbidity as a treatment paradigm in patients with BM. In addition, we discuss the contribution of neurosurgical resection on functional outcome, advanced systemic treatment strategies, and enhanced understanding of the tumor biology.
Collapse
Affiliation(s)
- Martin A. Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Petra Schödel
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Christian Doenitz
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Tobias Pukrop
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
- Department of Medical Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Julius Höhne
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Karl-Michael Schebesch
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| |
Collapse
|
15
|
Baker S, Logie N, Paulson K, Duimering A, Murtha A. Radiotherapy for Brain Tumors: Current Practice and Future Directions. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394715666181129105542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Radiotherapy is an important component of the treatment for primary and metastatic
brain tumors. Due to the close proximity of critical structures and normal brain parenchyma, Central
Nervous System (CNS) radiotherapy is associated with adverse effects such as neurocognitive
deficits, which must be weighed against the benefit of improved tumor control. Advanced radiotherapy
technology may help to mitigate toxicity risks, although there is a paucity of high-level
evidence to support its use. Recent advances have been made in the treatment for gliomas, meningiomas,
benign tumors, and metastases, although outcomes remain poor for many high grade
tumors. This review highlights recent developments in CNS radiotherapy, discusses common
treatment toxicities, critically reviews advanced radiotherapy technologies, and highlights promising
treatment strategies to improve clinical outcomes in the future.
Collapse
Affiliation(s)
- Sarah Baker
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Natalie Logie
- University of Florida Proton Therapy Institute, Jacksonville, FL, United States
| | - Kim Paulson
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Adele Duimering
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Albert Murtha
- Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| |
Collapse
|
16
|
Loi M, Caini S, Scoccianti S, Bonomo P, De Vries K, Francolini G, Simontacchi G, Greto D, Desideri I, Meattini I, Nuyttens J, Livi L. Stereotactic reirradiation for local failure of brain metastases following previous radiosurgery: Systematic review and meta-analysis. Crit Rev Oncol Hematol 2020; 153:103043. [PMID: 32650217 DOI: 10.1016/j.critrevonc.2020.103043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Local failure (LF) following stereotactic radiosurgery (SRS) of brain metastases (BM) may be treated with a second course of SRS (SRS2), though this procedure may increase the risk of symptomatic radionecrosis (RN). METHODS A literature search was conducted according to PRISMA to identify studies reporting LF, overall survival (OS) and RN rates following SRS2. Meta-analysis was performed to identify predictors of RN. RESULTS Analysis included 11 studies (335 patients,389 metastases). Pooled 1-year LF was 24 %(CI95 % 19-30 %): heterogeneity was acceptable (I2 = 21.4 %). Median pooled OS was 14 months (Confidence Interval 95 %, CI95 % 8.8-22.0 months). Cumulative crude RN rate was 13 % (95 %CI 8 %-19 %), with acceptable heterogeneity (I2 = 40.3 %). Subgroup analysis showed higher RN incidence in studies with median patient age ≥59 years (13 % [95 %CI 8 %-19 %] vs 7 %[95 %CI 3 %-12 %], p = 0.004) and lower incidence following prior Whole Brain Radiotherapy (WBRT, 19 %[95 %CI 13 %-25 %] vs 7%[95 %CI 3 %-13 %], p = 0.004). CONCLUSIONS SRS2 is an effective strategy for in-site recurrence of BM previously treated with SRS.
Collapse
Affiliation(s)
- Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy.
| | - Saverio Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | | | - Pierluigi Bonomo
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Kim De Vries
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Daniela Greto
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Isacco Desideri
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Icro Meattini
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Joost Nuyttens
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Lorenzo Livi
- Radiotherapy Department, University of Florence, Florence, Italy
| |
Collapse
|
17
|
Tripathi M, Ahuja CK, Mukherjee KK, Kumar N, Dhandapani S, Dutta P, Kaur R, Rekhapalli R, Batish A, Gurnani J, Kamboj P, Agrahari A, Kataria K. The Safety and Efficacy of Bevacizumab for Radiosurgery - Induced Steroid - Resistant Brain Edema; Not the Last Part in the Ship of Theseus. Neurol India 2020; 67:1292-1302. [PMID: 31744962 DOI: 10.4103/0028-3886.271242] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Radiation-induced brain edema (RIBE) is a serious complication of radiation therapy. It may result in dramatic clinico-radiological deterioration. At present, there are no definite guidelines for management of the complication. Corticosteroids are the usual first line of treatment, which frequently fails to provide long-term efficacy in view of its adverse complication profile. Bevacizumab has been reported to show improvement in cases of steroid-resistant radiation injury. The objective of this study is to evaluate the role of Bevacizumab in post-radiosurgery RIBE. Material and Methods Since 2012, 189 out of 1241 patients who underwent radiosurgery at our institution developed post-radiosurgery RIBE, 17 of which did not respond to high-dose corticosteroids. We systematically reviewed these 17 patients of various intracranial pathologies with clinic-radiological evidence of RIBE following gamma knife radiosurgery (GKRS). All patients received protocol-based Bevacizumab therapy. The peer-reviewed literature was evaluated. Results 82 percent of the patients showed improvement after starting Bevacizumab. The majority began to improve after the third cycle started improvement after the third cycle of Bevacizumab. Clinical improvement preceded radiological improvement by an average of eight weeks. The first dose was 5 mg/kg followed by 7.5-10 mg/kg at with two-week intervals. Bevacizumab needs to be administered for an average of seven cycles (range 5-27, median 7) for best response. Steroid therapy could be tapered in most patients by the first follow-up. One patient did not respond to Bevacizumab and needed surgical decompression for palliative care. One noncompliant patient died due to radiation injury. Conclusion Bevacizumab is a effective and safe for treatment of RIBE after GKRS. A protocol-based dose schedule in addition to frequent clinical and radiological evaluations are required. Bevacizumab should be considered as an early treatment option for RIBE.
Collapse
Affiliation(s)
- Manjul Tripathi
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Chirag K Ahuja
- Department of Radiodiagnosis, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanchan K Mukherjee
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Narendra Kumar
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sivashanmugam Dhandapani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pinaki Dutta
- Department of Endocrinology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rupinder Kaur
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajashekhar Rekhapalli
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aman Batish
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jenil Gurnani
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parwinder Kamboj
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhinav Agrahari
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ketan Kataria
- Department of Anaesthesia, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Mitsuya K, Nakasu Y, Hayashi N, Deguchi S, Oishi T, Sugino T, Yasui K, Ogawa H, Onoe T, Asakura H, Harada H. Retrospective analysis of salvage surgery for local progression of brain metastasis previously treated with stereotactic irradiation: diagnostic contribution, functional outcome, and prognostic factors. BMC Cancer 2020; 20:331. [PMID: 32303195 PMCID: PMC7165413 DOI: 10.1186/s12885-020-06800-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/27/2020] [Indexed: 11/20/2022] Open
Abstract
Background Stereotactic irradiation (STI) is a primary treatment for patients with newly diagnosed brain metastases. Some of these patients experience local progression, which is difficult to differentiate from radiation necrosis, and difficult to treat. So far, just a few studies have clarified the prognosis and effectiveness of salvage surgery after STI. We evaluated the diagnostic value and improvement of functional outcomes after salvage surgery. Based on these results, we reconsidered surgical indication for patients with local progression after STI. Methods We evaluated patients with brain metastases treated with salvage surgery for local progression from October 2002 to July 2019. These patients had undergone salvage surgery based on magnetic resonance imaging findings and/or clinical evidence of post-STI local progression and stable systemic disease. We employed two prospective strategies according to the eloquency of the lesions. Lesions in non-eloquent areas had been resected completely with a safety margin, utilizing a fence-post method; while lesions in eloquent areas had been treated with minimal resection and postoperative STI. Kaplan-Meier curves were used for the assessment of overall survival. Prognostic factors for survival were analyzed. Results Fifty-four salvage surgeries had been performed on 48 patients. The median age of patients was 63.5 years (range 36–79). The median interval from STI to surgery was 12 months. The median overall survival was 20.2 months from salvage surgery and 37.5 months from initial STI. Primary cancers were lung 31, breast 9, and others 8. Local recurrence developed in 13 of 54 lesions (24%). Leptomeningeal dissemination occurred after surgery in 3 patients (5.6%). Primary breast cancer (breast vs. lung: HR: 0.17), (breast vs. others: HR: 0.08) and RPA class 1–2 (RPA 1 vs. 3, HR:0.13), (RPA 2 vs 3, HR:0.4) were identified as good prognostic factors for overall survival (OS) in multivariate analyses. The peripheral neutrophil-to-lymphocyte ratio (NLR) of ≤3.65 predicted significantly longer OS (median 25.5 months) than an NLR > 3.65 (median 8 months). Conclusion We insist that salvage surgery leads to rapid improvement of neurological function and clarity of histological diagnosis. Salvage surgery is recommended for large lesions especially with surrounding edema either in eloquent or non-eloquent areas.
Collapse
Affiliation(s)
- Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center, 1007, Shimo-nagakubo, Naga-izumi, Shizuoka, 411-8777, Japan.
| | - Yoko Nakasu
- Division of Neurosurgery, Shizuoka Cancer Center, 1007, Shimo-nagakubo, Naga-izumi, Shizuoka, 411-8777, Japan
| | - Nakamasa Hayashi
- Division of Neurosurgery, Shizuoka Cancer Center, 1007, Shimo-nagakubo, Naga-izumi, Shizuoka, 411-8777, Japan
| | - Shoichi Deguchi
- Division of Neurosurgery, Shizuoka Cancer Center, 1007, Shimo-nagakubo, Naga-izumi, Shizuoka, 411-8777, Japan
| | - Takuma Oishi
- Division of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takashi Sugino
- Division of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazuaki Yasui
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hirofumi Ogawa
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Tsuyoshi Onoe
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hirofumi Asakura
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hideyuki Harada
- Radiation and Proton Therapy Center, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
19
|
Hernandez RN, Carminucci A, Patel P, Hargreaves EL, Danish SF. Magnetic Resonance-Guided Laser-Induced Thermal Therapy for the Treatment of Progressive Enhancing Inflammatory Reactions Following Stereotactic Radiosurgery, or PEIRs, for Metastatic Brain Disease. Neurosurgery 2020; 85:84-90. [PMID: 29860422 DOI: 10.1093/neuros/nyy220] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/28/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In patients who have previously undergone maximum radiation for metastatic brain tumors, a progressive enhancing inflammatory reaction (PEIR) that represents either tumor recurrence or radiation necrosis, or a combination of both, can occur. Magnetic resonance-guided laser-induced thermal therapy (LITT) offers a minimally invasive treatment option for this problem. OBJECTIVE To report our single-center experience using LITT to treat PEIRs after radiosurgery for brain metastases. METHODS Patients with progressive, enhancing reactions at the site of prior radiosurgery for metastatic brain tumors and who had a Karnofsky performance status of ≥70 were eligible for LITT. The primary endpoint was local control. Secondary end points included dexamethasone use and procedure-related complications. RESULTS Between 2010 and 2017, 59 patients who underwent 74 LITT procedures for 74 PEIRs met inclusion criteria. The mean pre-LITT PEIR size measured 3.4 ± 0.4 cm3. At a median follow-up of 44.6 wk post-LITT, the local control rate was 83.1%. Most patients were weaned off steroids post-LITT. Patients experiencing a post-LITT complication were more likely to remain on steroids indefinitely. The rate of new permanent neurological deficit was 3.4%. CONCLUSION LITT is an effective treatment for local control of PEIRs after radiosurgery for metastatic brain disease. When possible, we recommend offering LITT once PEIRs are identified and prior to the initiation of high-dose steroids for symptom relief.
Collapse
Affiliation(s)
- R Nick Hernandez
- Department of Neurological Surgery, Rutgers University, New Brunswick, New Jersey
| | - Arthur Carminucci
- Department of Neurological Surgery, Rutgers University, New Brunswick, New Jersey
| | - Purvee Patel
- Department of Neurological Surgery, Rutgers University, New Brunswick, New Jersey
| | - Eric L Hargreaves
- Department of Neurological Surgery, Rutgers University, New Brunswick, New Jersey
| | - Shabbar F Danish
- Department of Neurological Surgery, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
20
|
Sankey EW, Tsvankin V, Grabowski MM, Nayar G, Batich KA, Risman A, Champion CD, Salama AKS, Goodwin CR, Fecci PE. Operative and peri-operative considerations in the management of brain metastasis. Cancer Med 2019; 8:6809-6831. [PMID: 31568689 PMCID: PMC6853809 DOI: 10.1002/cam4.2577] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
The number of patients who develop metastatic brain lesions is increasing as the diagnosis and treatment of systemic cancers continues to improve, resulting in longer patient survival. The role of surgery in the management of brain metastasis (BM), particularly multiple and recurrent metastases, remains controversial and continues to evolve. However, with appropriate patient selection, outcomes after surgery are typically favorable. In addition, surgery is the only means to obtain a tissue diagnosis and is the only effective treatment modality to quickly relieve neurological complications or life-threatening symptoms related to significant mass effect, CSF obstruction, and peritumoral edema. As such, a thorough understanding of the role of surgery in patients with metastatic brain lesions, as well as the factors associated with surgical outcomes, is essential for the effective management of this unique and growing patient population.
Collapse
Affiliation(s)
- Eric W. Sankey
- Department of NeurosurgeryDuke University Medical CenterDurhamNCUSA
| | - Vadim Tsvankin
- Department of NeurosurgeryDuke University Medical CenterDurhamNCUSA
| | | | - Gautam Nayar
- Department of NeurosurgeryUniversity of Pittsburgh Medical CenterPittsburghPAUSA
| | | | - Aida Risman
- School of MedicineMedical College of GeorgiaAugustaGAUSA
| | | | | | - C. Rory Goodwin
- Department of NeurosurgeryDuke University Medical CenterDurhamNCUSA
| | - Peter E. Fecci
- Department of NeurosurgeryDuke University Medical CenterDurhamNCUSA
| |
Collapse
|
21
|
Vellayappan B, Tan CL, Yong C, Khor LK, Koh WY, Yeo TT, Detsky J, Lo S, Sahgal A. Diagnosis and Management of Radiation Necrosis in Patients With Brain Metastases. Front Oncol 2018; 8:395. [PMID: 30324090 PMCID: PMC6172328 DOI: 10.3389/fonc.2018.00395] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/31/2018] [Indexed: 12/25/2022] Open
Abstract
The use of radiotherapy, either in the form of stereotactic radiosurgery (SRS) or whole-brain radiotherapy (WBRT), remains the cornerstone for the treatment of brain metastases (BM). As the survival of patients with BM is being prolonged, due to improved systemic therapy (i.e., for better extra-cranial control) and increased use of SRS (i.e., for improved intra-cranial control), patients are clinically manifesting late effects of radiotherapy. One of these late effects is radiation necrosis (RN). Unfortunately, symptomatic RN is notoriously hard to diagnose and manage. The features of RN overlap considerably with tumor recurrence, and misdiagnosing RN as tumor recurrence may lead to deleterious treatment which may cause detrimental effects to the patient. In this review, we will explore the pathophysiology of RN, risk factors for its development, and the strategies to evaluate and manage RN.
Collapse
Affiliation(s)
- Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Char Loo Tan
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Clement Yong
- Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore
| | - Lih Kin Khor
- Nuclear Medicine, Advanced Medicine Imaging, Singapore Institute of Advanced Medicine Holdings, Singapore, Singapore
| | - Wee Yao Koh
- Department of Radiation Oncology, National University Cancer Institute, National University Health System, Singapore, Singapore
| | - Tseng Tsai Yeo
- Department of Neurosurgery, National University Hospital, Singapore, Singapore
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| | - Simon Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, United States
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Center, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Balermpas P, Stera S, Müller von der Grün J, Loutfi-Krauss B, Forster MT, Wagner M, Keller C, Rödel C, Seifert V, Blanck O, Wolff R. Repeated in-field radiosurgery for locally recurrent brain metastases: Feasibility, results and survival in a heavily treated patient cohort. PLoS One 2018; 13:e0198692. [PMID: 29874299 PMCID: PMC5991396 DOI: 10.1371/journal.pone.0198692] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/23/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose Stereotactic radiosurgery (SRS) is an established primary treatment for newly diagnosed brain metastases with high local control rates. However, data about local re-irradiation in case of local failure after SRS (re-SRS) are rare. We evaluated the feasibility, efficacy and patient selection characteristics in treating locally recurrent metastases with a second course of SRS. Methods We retrospectively evaluated patients with brain metastases treated with re-SRS for local tumor progression between 2011 and 2017. Patient and treatment characteristics as well as rates of tumor control, survival and toxicity were analyzed. Results Overall, 32 locally recurrent brain metastases in 31 patients were irradiated with re-SRS. Median age at re-SRS was 64.9 years. The primary histology was breast cancer and non-small-cellular lung cancer (NSCLC) in respectively 10 cases (31.3%), in 5 cases malignant melanoma (15.6%). In the first SRS-course 19 metastases (59.4%) and in the re-SRS-course 29 metastases (90.6%) were treated with CyberKnife® and the others with Gamma Knife. Median planning target volume (PTV) for re-SRS was 2.5 cm3 (range, 0.1–37.5 cm3) and median dose prescribed to the PTV was 19 Gy (range, 12–28 Gy) in 1–5 fractions to the median 69% isodose (range, 53–80%). The 1-year overall survival rate was 61.7% and the 1-year local control rate was 79.5%. The overall rate of radiological radio-necrosis was 16.1% and four patients (12.9%) experienced grade ≥ 3 toxicities. Conclusions A second course of SRS for locally recurrent brain metastases after prior local SRS appears to be feasible with acceptable toxicity and can be considered as salvage treatment option for selected patients with high performance status. Furthermore, this is the first study utilizing robotic radiosurgery for this indication, as an additional option for frameless fractionated treatment.
Collapse
Affiliation(s)
- Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
- Saphir Radiosurgery Center, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) partner site: Frankfurt am Main, Germany
- * E-mail:
| | - Susanne Stera
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Jens Müller von der Grün
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Britta Loutfi-Krauss
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Marie-Thérèse Forster
- Department of Neurosurgery, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Marlies Wagner
- Institute for Neuroradiology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Christian Keller
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
- Saphir Radiosurgery Center, Frankfurt, Germany
| | - Claus Rödel
- Department of Radiation Oncology, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK) partner site: Frankfurt am Main, Germany
| | - Volker Seifert
- Department of Neurosurgery, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| | - Oliver Blanck
- Saphir Radiosurgery Center, Frankfurt, Germany
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Robert Wolff
- Saphir Radiosurgery Center, Frankfurt, Germany
- Department of Neurosurgery, University Hospital Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
23
|
Franchino F, Rudà R, Soffietti R. Mechanisms and Therapy for Cancer Metastasis to the Brain. Front Oncol 2018; 8:161. [PMID: 29881714 PMCID: PMC5976742 DOI: 10.3389/fonc.2018.00161] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Advances in chemotherapy and targeted therapies have improved survival in cancer patients with an increase of the incidence of newly diagnosed brain metastases (BMs). Intracranial metastases are symptomatic in 60–70% of patients. Magnetic resonance imaging (MRI) with gadolinium is more sensitive than computed tomography and advanced neuroimaging techniques have been increasingly used in the detection, treatment planning, and follow-up of BM. Apart from the morphological analysis, the most effective tool for characterizing BM is immunohistochemistry. Molecular alterations not always reflect those of the primary tumor. More sophisticated methods of tumor analysis detecting circulating biomarkers in fluids (liquid biopsy), including circulating DNA, circulating tumor cells, and extracellular vesicles, containing tumor DNA and macromolecules (microRNA), have shown promise regarding tumor treatment response and progression. The choice of therapeutic approaches is guided by prognostic scores (Recursive Partitioning Analysis and diagnostic-specific Graded Prognostic Assessment-DS-GPA). The survival benefit of surgical resection seems limited to the subgroup of patients with controlled systemic disease and good performance status. Leptomeningeal disease (LMD) can be a complication, especially in posterior fossa metastases undergoing a “piecemeal” resection. Radiosurgery of the resection cavity may offer comparable survival and local control as postoperative whole-brain radiotherapy (WBRT). WBRT alone is now the treatment of choice only for patients with single or multiple BMs not amenable to surgery or radiosurgery, or with poor prognostic factors. To reduce the neurocognitive sequelae of WBRT intensity modulated radiotherapy with hippocampal sparing, and pharmacological approaches (memantine and donepezil) have been investigated. In the last decade, a multitude of molecular abnormalities have been discovered. Approximately 33% of patients with non-small cell lung cancer (NSCLC) tumors and epidermal growth factor receptor mutations develop BMs, which are targetable with different generations of tyrosine kinase inhibitors (TKIs: gefitinib, erlotinib, afatinib, icotinib, and osimertinib). Other “druggable” alterations seen in up to 5% of NSCLC patients are the rearrangements of the “anaplastic lymphoma kinase” gene TKI (crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib). In human epidermal growth factor receptor 2-positive, breast cancer targeted therapies have been widely used (trastuzumab, trastuzumab-emtansine, lapatinib-capecitabine, and neratinib). Novel targeted and immunotherapeutic agents have also revolutionized the systemic management of melanoma (ipilimumab, nivolumab, pembrolizumab, and BRAF inhibitors dabrafenib and vemurafenib).
Collapse
Affiliation(s)
- Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
24
|
Moreau J, Khalil T, Dupic G, Chautard E, Lemaire JJ, Magnier F, Dedieu V, Lapeyre M, Verrelle P, Biau J. Second course of stereotactic radiosurgery for locally recurrent brain metastases: Safety and efficacy. PLoS One 2018; 13:e0195608. [PMID: 29621341 PMCID: PMC5886580 DOI: 10.1371/journal.pone.0195608] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/26/2018] [Indexed: 12/03/2022] Open
Abstract
In the present study, we have evaluated the efficacy and toxicity of repeated brain metastases (BM) stereotactic radiosurgery (SRS2) following local failure of a prior radiosurgical procedure (SRS1). Between December 1996 and August 2015, 30 patients with 36 BM underwent SRS2 with a median dose of 18Gy. All BM were located outside critical structures. Following SRS2, local control at 6 months and one year were respectively 82.9% (IC 95%: 67.6–91.9) and 67.8% (IC 95%: 51–81). On multivariate analysis, planning target volume (PTV) < 3cc (HR: 0.19 (0.1–0.52)) and whole brain radiotherapy (WBRT) prior to SRS2 (HR: 0.25 (0.1–0.64)) were significantly associated with a better local control. One- and two-year overall survival rates after SRS2 were respectively 65.5% (IC 95%: 47.3–80%) and 27.6% (IC 95%: 14.7–45.7). Median overall survival following SRS2 was 14.2 months (range 1–106). Nineteen (63%) patients died from progressive systemic disease. Three (10%) patients died from out-field progressive brain disease and 8 (27%) in-field. Concerning toxicities, edema, radionecrosis, and hemorrhages were identified in 5 (12.8%), 4 (10.2%), and 5 (12.8%) patients respectively. No toxicity resulted in a neurological deficit. On univariate analysis, toxicities were significantly associated with PTV > 7cc (p = 0.02) and all patients had a WBRT before SRS2. A second course of SRS for locally recurrent brain metastases showed encouraging rates of local control. This treatment led to acceptable toxicities, especially for brain metastases smaller than 7cc, in our selected cohort of patients with BM located outside critical structures. Further studies are needed.
Collapse
Affiliation(s)
- Juliette Moreau
- Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Toufic Khalil
- Neurosurgery Department, Clermont-Ferrand Hospital, Clermont-Ferrand, France
| | - Guillaume Dupic
- Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont-Ferrand, France
| | - Jean-Jacques Lemaire
- Neurosurgery Department, Clermont-Ferrand Hospital, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, UMR 6602, Institut Pascal, Clermont-Ferrand, France
| | - Florian Magnier
- Medical Physics Department, Centre Jean Perrin, Clermont-Ferrand, France
| | - Véronique Dedieu
- Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont-Ferrand, France.,Medical Physics Department, Centre Jean Perrin, Clermont-Ferrand, France
| | - Michel Lapeyre
- Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France
| | - Pierre Verrelle
- Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France.,Radiation Oncology Department, Institut Curie, Paris, France
| | - Julian Biau
- Radiotherapy Department, Université Clermont Auvergne, Centre Jean Perrin, Clermont-Ferrand, France.,Université Clermont Auvergne, INSERM, U1240 IMoST, Clermont-Ferrand, France
| |
Collapse
|
25
|
Differentiating radiation necrosis from tumor progression in brain metastases treated with stereotactic radiotherapy: utility of intravoxel incoherent motion perfusion MRI and correlation with histopathology. J Neurooncol 2017; 134:433-441. [PMID: 28674974 DOI: 10.1007/s11060-017-2545-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022]
Abstract
Radiation necrosis is a serious potential adverse event of stereotactic radiosurgery that cannot be reliably differentiated from recurrent tumor using conventional imaging techniques. Intravoxel incoherent motion (IVIM) is a magnetic resonance imaging (MRI) based method that uses a diffusion-weighted sequence to estimate quantitative perfusion and diffusion parameters. This study evaluated the IVIM-derived apparent diffusion coefficient (ADC) and perfusion fraction (f), and compared the results to the gold standard histopathological-defined outcomes of radiation necrosis or recurrent tumor. Nine patients with ten lesions were included in this study; all lesions exhibited radiographic progression after stereotactic radiosurgery for brain metastases that subsequently underwent surgical resection due to uncertainty regarding the presence of radiation necrosis versus recurrent tumor. Pre-surgical IVIM was performed to obtain f and ADC values and the results were compared to histopathology. Five lesions exhibited pathological radiation necrosis and five had predominantly recurrent tumor. The IVIM perfusion fraction reliably differentiated tumor recurrence from radiation necrosis (fmean = 10.1 ± 0.7 vs. 8.3 ± 1.2, p = 0.02; cutoff value of 9.0 yielding a sensitivity/specificity of 100%/80%) while the ADC did not distinguish between the two (ADCmean = 1.1 ± 0.2 vs. 1.2 ± 0.4, p = 0.6). IVIM shows promise in differentiating recurrent tumor from radiation necrosis for brain metastases treated with radiosurgery, but needs to be validated in a larger cohort.
Collapse
|
26
|
Affiliation(s)
- Oliver Kennion
- School of Medical Education, Newcastle University, Newcastle Upon Tyne, UK
| | - Damian Holliman
- Department of Neurosurgery, Royal Victoria Infirmary, Newcastle Upon Tyne, UK
| |
Collapse
|
27
|
Matzenauer M, Vrana D, Melichar B. Treatment of brain metastases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:484-490. [PMID: 27876898 DOI: 10.5507/bp.2016.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/10/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Brain metastases are a very common neurological sequela in cancer patients. The ability of current anti-cancer therapies to prolong overall survival is beleaguered by this development in the case of a number of different cancers. This review provides a general overview of relevant treatment modalities, highlights major decision strategies used in selecting the optimal treatment algorithm and summarizes important steps necessary before initiating therapy. METHODS A PubMed database search was done to identify publications describing the treatment of brain metastases including surgery, radiotherapy and symptomatic care. RESULTS AND CONCLUSION Patient performance status and extent of disease play the most important roles in selecting between an aggressive or more conservative approach. As several other options are available, treatment decisions should be made in cooperation with multiple medical specialties and the involvement of multidisciplinary teams. In the future, brain metastases could become less of a treatment obstacle than they are today.
Collapse
Affiliation(s)
- Marcel Matzenauer
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - David Vrana
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic.,Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Czech Republic
| |
Collapse
|
28
|
Shen CJ, Lim M, Kleinberg LR. Controversies in the Therapy of Brain Metastases: Shifting Paradigms in an Era of Effective Systemic Therapy and Longer-Term Survivorship. Curr Treat Options Oncol 2016; 17:46. [DOI: 10.1007/s11864-016-0423-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Le Rhun E, Dhermain F, Vogin G, Reyns N, Metellus P. Radionecrosis after stereotactic radiotherapy for brain metastases. Expert Rev Neurother 2016; 16:903-14. [DOI: 10.1080/14737175.2016.1184572] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Yomo S, Hayashi M. Salvage stereotactic radiosurgery with adjuvant use of bevacizumab for heavily treated recurrent brain metastases: a preliminary report. J Neurooncol 2015; 127:119-26. [DOI: 10.1007/s11060-015-2019-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
|
31
|
Minniti G, Scaringi C, Paolini S, Clarke E, Cicone F, Esposito V, Romano A, Osti M, Enrici RM. Repeated stereotactic radiosurgery for patients with progressive brain metastases. J Neurooncol 2015; 126:91-97. [DOI: 10.1007/s11060-015-1937-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/08/2015] [Indexed: 11/25/2022]
|
32
|
|
33
|
Kirkpatrick JP, Wang Z, Sampson JH, McSherry F, Herndon JE, Allen KJ, Duffy E, Hoang JK, Chang Z, Yoo DS, Kelsey CR, Yin FF. Defining the optimal planning target volume in image-guided stereotactic radiosurgery of brain metastases: results of a randomized trial. Int J Radiat Oncol Biol Phys 2014; 91:100-8. [PMID: 25442342 DOI: 10.1016/j.ijrobp.2014.09.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/27/2014] [Accepted: 09/02/2014] [Indexed: 11/15/2022]
Abstract
PURPOSE To identify an optimal margin about the gross target volume (GTV) for stereotactic radiosurgery (SRS) of brain metastases, minimizing toxicity and local recurrence. METHODS AND MATERIALS Adult patients with 1 to 3 brain metastases less than 4 cm in greatest dimension, no previous brain radiation therapy, and Karnofsky performance status (KPS) above 70 were eligible for this institutional review board-approved trial. Individual lesions were randomized to 1- or 3- mm uniform expansion of the GTV defined on contrast-enhanced magnetic resonance imaging (MRI). The resulting planning target volume (PTV) was treated to 24, 18, or 15 Gy marginal dose for maximum PTV diameters less than 2, 2 to 2.9, and 3 to 3.9 cm, respectively, using a linear accelerator-based image-guided system. The primary endpoint was local recurrence (LR). Secondary endpoints included neurocognition Mini-Mental State Examination, Trail Making Test Parts A and B, quality of life (Functional Assessment of Cancer Therapy-Brain), radionecrosis (RN), need for salvage radiation therapy, distant failure (DF) in the brain, and overall survival (OS). RESULTS Between February 2010 and November 2012, 49 patients with 80 brain metastases were treated. The median age was 61 years, the median KPS was 90, and the predominant histologies were non-small cell lung cancer (25 patients) and melanoma (8). Fifty-five, 19, and 6 lesions were treated to 24, 18, and 15 Gy, respectively. The PTV/GTV ratio, volume receiving 12 Gy or more, and minimum dose to PTV were significantly higher in the 3-mm group (all P<.01), and GTV was similar (P=.76). At a median follow-up time of 32.2 months, 11 patients were alive, with median OS 10.6 months. LR was observed in only 3 lesions (2 in the 1 mm group, P=.51), with 6.7% LR 12 months after SRS. Biopsy-proven RN alone was observed in 6 lesions (5 in the 3-mm group, P=.10). The 12-month DF rate was 45.7%. Three months after SRS, no significant change in neurocognition or quality of life was observed. CONCLUSIONS SRS was well tolerated, with low rates of LR and RN in both cohorts. However, given the higher potential risk of RN with a 3-mm margin, a 1-mm GTV expansion is more appropriate.
Collapse
Affiliation(s)
- John P Kirkpatrick
- Department of Radiation Oncology, Duke University, Durham, North Carolina; Department of Surgery, Duke University, Durham, North Carolina.
| | - Zhiheng Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - John H Sampson
- Department of Radiation Oncology, Duke University, Durham, North Carolina; Department of Surgery, Duke University, Durham, North Carolina
| | - Frances McSherry
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina
| | - James E Herndon
- Department of Biostatistics & Bioinformatics, Duke University, Durham, North Carolina
| | - Karen J Allen
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Eileen Duffy
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Jenny K Hoang
- Department of Radiology, Duke University, Durham, North Carolina
| | - Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - David S Yoo
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Chris R Kelsey
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| | - Fang-Fang Yin
- Department of Radiation Oncology, Duke University, Durham, North Carolina
| |
Collapse
|
34
|
Abstract
Neurologic complications of lung cancer are a frequent cause of morbidity and mortality. Tumor metastasis to the brain parenchyma is the single most common neurologic complication of lung cancer, of any histologic subtype. The goal of radiation therapy and in some cases surgical resection for patients with brain metastases is to improve or maintain neurologic function, and to achieve local control of the brain lesion(s). Metastasis of lung cancer to the spinal epidural space requires urgent evaluation and treatment. Early diagnosis and modern surgical and radiotherapy techniques improve neurologic outcome for most patients. Leptomeningeal metastasis is a less common but ominous occurrence in patients with lung cancer. Lung carcinomas can also occasionally metastasize to the brachial plexus, skull base, dura, or pituitary. Paraneoplastic neurologic disorders are uncommon but important complications of lung carcinoma, and are generally the presenting feature of the tumor. Paraneoplastic disorders are believed to be caused by an autoimmune humoral or cellular attack against shared "onconeural" antigens. The most frequent paraneoplastic disorders in patients with lung cancer are Lambert-Eaton myasthenic syndrome, and multifocal paraneoplastic encephalomyelitis, both mainly occurring in association with small-cell lung carcinoma. There is a variety of other paraneoplastic disorders affecting the central and peripheral nervous systems. Some affected patients have a good neurologic outcome, while others are left with severe permanent neurologic disability.
Collapse
Affiliation(s)
- Edward J Dropcho
- Department of Neurology, Indiana University Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
35
|
Klironomos G, Bernstein M. Salvage stereotactic radiosurgery for brain metastases. Expert Rev Neurother 2013; 13:1285-95. [PMID: 24175726 DOI: 10.1586/14737175.2013.853445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recurrent or progressive brain metastases after initial treatment represent a common clinical entity mainly due to increased survival of cancer patients. From the various available treatment modalities, salvage stereotactic radiosurgery seems to be the most commonly used. Many clinical studies of class of evidence III have demonstrated satisfied results concerning the local brain control and survival of patients with relapsing brain disease. Also stereotactic radiosurgery is considered a relatively safe modality with low incidence of brain toxicity side effects. It is obvious that well-designed, randomized, prospective studies are necessary for the evaluation of the stereotactic radiosurgery as salvage treatment and for the establishment of guidelines for the selection of patients most suitable for this treatment option. The increasing number of patients with relapsing brain metastatic disease will act as a pressure to this direction.
Collapse
Affiliation(s)
- George Klironomos
- Department of surgery, University of Toronto, Clinical Fellow in Neuroncology and Skull Base Neurosurgery, 339 Bathurst Street, Toronto, ON M5T2S8, Canada
| | | |
Collapse
|
36
|
Identifying better surgical candidates among recursive partitioning analysis class 2 patients who underwent surgery for intracranial metastases. World Neurosurg 2013; 82:e267-75. [PMID: 24076052 DOI: 10.1016/j.wneu.2013.08.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 05/24/2013] [Accepted: 08/15/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The management of patients with brain metastases is typically dependent on their prognosis. Recursive partitioning analysis (RPA) is the most commonly used method for prognosticating survival, but has limitations for patients in the intermediate class. The aims of this study were to ascertain preoperative risk factors associated with survival, develop a preoperative prognostic grading system, and evaluate the utility of this system in predicting survival for RPA class 2 patients. METHODS Adult patient who underwent intracranial metastatic tumor surgery at an academic tertiary care institution from 1997 to 2011 were retrospectively reviewed. Multivariate proportional hazards regression analysis was used to identify preoperative factors associated with survival. The identified associations were then used to develop a grading system. Survival as a function of time was plotted using the Kaplan-Meier method, and survival rates were compared using log-rank analyses. RESULTS A total of 421 (59%) of 708 patients were RPA class 2. The preoperative factors found to be associated with poorer survival were: male gender (P < 0.0001), motor deficit (P = 0.0007), cognitive deficit (P = 0.0004), nonsolitary metastases (P = 0.002), and tumor size >2 cm (P = 0.003). Patients having 0-1, 2, and 3-5 of these variables were assigned a preoperative grade of A, B, and C, respectively. Patients with a preoperative grade of A, B, and C had a median survival of 17.0, 10.3, and 7.3 months, respectively. These grades had distinct survival times (P < 0.05). CONCLUSIONS The present study devised a preoperative grading system that may provide prognostic information for RPA class 2 patients, which may also guide medical and surgical therapies before any intervention is pursued.
Collapse
|
37
|
Telera S, Fabi A, Pace A, Vidiri A, Anelli V, Carapella CM, Marucci L, Crispo F, Sperduti I, Pompili A. Radionecrosis induced by stereotactic radiosurgery of brain metastases: results of surgery and outcome of disease. J Neurooncol 2013; 113:313-25. [PMID: 23525948 DOI: 10.1007/s11060-013-1120-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 03/16/2013] [Indexed: 11/24/2022]
Abstract
Sterotactic radiosurgery (SRS) is an effective and commonly employed therapy for metastatic brain tumors. Among complication of this treatment, symptomatic focal cerebral radionecrosis (RN) occurs in 2-10 % of cases. The large diffusion of combined therapies as SRS followed by WBRT and/or CHT, has significantly amplified the number of patients who potentially might be affected by this pathology and neurosurgeons are increasingly called to treat suspected area of RN. Results of surgery of RN in patients with brain metastases are rarely reported in literature, a standardization of diagnostic work-up to correctly identify RN is still lacking and the timing and indications in favour of surgical therapy over medical treatments are not clear as well. In this retrospective study, we review current concept related to RN and analyze the outcome of surgical treatment in a series of 15 patients previously submitted to SRS for brain metastases and affected by suspected radionecrotic lesions. After surgery, all patients except one neurologically improved. No intra-operative complications occurred. Brain edema improved in all patients allowing a reduction or even suspension of corticosteroid therapy. Pure RN was histologically determined in 7 cases; RN and tumor recurrence in the other 8. Overall median survival was 19 months. An aggressive surgical attitude may be advisable in symptomatic patients with suspected cerebral RN, to have histologic confirmation of the lesion, to obtain a long-lasting relief from the mass effect and brain edema and to improve the overall quality of life, sparing a prolonged corticosteroid therapy.
Collapse
Affiliation(s)
- Stefano Telera
- Division of Neurosurgery, Istituto Nazionale Tumori Regina Elena, via Elio Chianesi 53, 00144, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Multiple options for retreatment are available, which include whole-brain radiation therapy, stereotactic radiosurgery, surgery, chemotherapy, and supportive care. Size, number, timing, location, histology, performance status, and extracranial disease status all need to be carefully considered when choosing a treatment modality. There are no randomized trials examining the retreatment of brain metastases. Repeat whole-brain radiation has been examined in a single-institution experience, showing the potential for clinical responses in selected patients. Local control rates as high as 91% using stereotactic radiosurgery for relapses after whole-brain radiation are reported. Surgery can be indicated in progressive and/or hemorrhagic lesions causing mass effect. The role of chemotherapy in the recurrent setting is limited but some agents may have activity on the basis of experiences on a smaller scale. Supportive care continues to be an important option, especially in those with a poor prognosis. Follow-up for brain metastases patients is discussed, examining the modality, frequency of imaging, and imaging options in differentiating treatment effect from recurrence. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of the current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.
Collapse
|
39
|
Stockham AL, Tievsky AL, Koyfman SA, Reddy CA, Suh JH, Vogelbaum MA, Barnett GH, Chao ST. Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J Neurooncol 2012; 109:149-58. [PMID: 22638727 DOI: 10.1007/s11060-012-0881-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/16/2012] [Indexed: 11/24/2022]
Abstract
Distinguishing radiation necrosis (RN) from tumor recurrence after stereotactic radiosurgery (SRS) for brain metastases is challenging. This study assesses the sensitivity (SN) and specificity (SP) of an MRI-based parameter, the "lesion quotient" (LQ), in characterizing tumor progression from RN. Records of patients treated with SRS for brain metastases between 01/01/1999 and 12/31/2009 and with histopathologic analysis of a subsequent contrast enhancing enlarging lesion at the treated site at a single institution were examined. The LQ, the ratio of maximal nodular cross sectional area on T2-weighted imaging to the corresponding maximal cross sectional area of T1-contrast enhancement, was calculated by a neuroradiologist blinded to the histopathological outcome. Cutoffs of <0.3, 0.3-0.6, and >0.6 have been previously suggested to have correlated with RN, mixed findings and tumor recurrence, respectively. These cutoff values were evaluated for SN, SP, positive predictive value (PPV) and negative predictive value (NPV). Logistic regression analysis evaluated for associated clinical factors. For the 51 patients evaluated, the SN, SP, PPV and NPV for identifying RN (LQ < 0.3) were 8, 91, 25 and 73 %, respectively. For the combination of recurrent tumor and RN (LQ 0.3-0.6) the SN, SP, PPV and NPV were 0, 64, 0 and 83 %. The SN, SP, PPV and NPV of the LQ for recurrent tumor (LQ > 0.6) were 59, 41, 62 and 39 %, respectively. Standard MRI techniques do not reliably discriminate between tumor progression and RN after treatment with SRS for brain metastases. Additional imaging modalities are warranted to aid in distinguishing between these diagnoses.
Collapse
Affiliation(s)
- Abigail L Stockham
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk T28, Cleveland, OH, 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Vuong DA, Rades D, Le AN, Busse R. The Cost-Effectiveness of Stereotactic Radiosurgery versus Surgical Resection in the Treatment of Brain Metastasis in Vietnam from the Perspective of Patients and Families. World Neurosurg 2012; 77:321-8. [DOI: 10.1016/j.wneu.2011.05.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 05/13/2011] [Accepted: 05/19/2011] [Indexed: 11/17/2022]
|
41
|
Mut M. Surgical treatment of brain metastasis: A review. Clin Neurol Neurosurg 2012; 114:1-8. [PMID: 22047649 DOI: 10.1016/j.clineuro.2011.10.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 10/08/2011] [Accepted: 10/10/2011] [Indexed: 11/15/2022]
Affiliation(s)
- Melike Mut
- Hacettepe University, Department of Neurosurgery, Ankara, Turkey.
| |
Collapse
|
42
|
[Brain metastasis from breast cancer: who?, when? and special considerations about the role of technology in neurosurgery]. Bull Cancer 2011; 98:433-44. [PMID: 21540145 DOI: 10.1684/bdc.2011.1337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Questions about both the place and the role of surgery on brain metastasis from breast cancer are arising more and more frequently in practice due to the increase of brain metastasis in patients suffering from a form of cancer recognized as one of the most recurrent cancers in adults but also one of the most sensitive to general treatments of the systemic disease. With improvements in anaesthesia, in surgical instruments, and in global care, neurosurgery has taken advantage of new techniques such as pre- and even per-operative imagery and also neuronavigation. These techniques enable radical and effective surgical intervention with a high level of safety for the patient, making neurosurgery perfectly competitive with other therapeutic modalities, particularly on functional grounds. As for symptomatic treatments or other anti-metastasis treatments, most situations allow a reflection on the global therapeutic strategy which can be adapted to individual cases depending on the patient's general prognosis. In developing this global therapeutic strategy, surgical treatment is still as relevant as ever.
Collapse
|
43
|
Bailon O, Kallel A, Chouahnia K, Billot S, Ferrari D, Carpentier AF. [Management of brain metastases from non-small cell lung carcinoma]. Rev Neurol (Paris) 2011; 167:579-91. [PMID: 21546046 DOI: 10.1016/j.neurol.2011.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 01/03/2011] [Accepted: 01/17/2011] [Indexed: 01/08/2023]
Abstract
INTRODUCTION In France, approximately 30,000 new patients per year develop brain metastases (BM), most of them resulting from a lung cancer. STATE OF THE ART Surgery and radiosurgery of all the BM must be considered when possible. In other cases, whole brain radiotherapy remains the standard of care. PERSPECTIVES The role of chemotherapy, poorly investigated so far, should be revisited. CONCLUSION This review focused on BM secondary to a non-small cell lung carcinoma.
Collapse
Affiliation(s)
- O Bailon
- Service de neurologie, hôpital Avicenne, AP-HP, 125, route de Stalingrad, 93000 Bobigny, France
| | | | | | | | | | | |
Collapse
|
44
|
Peev NA, Hirose Y, Hirai T, Nishiyama Y, Nagahisa S, Kanno T, Sano H. Delayed surgical resections of brain metastases after gamma knife radiosurgery. Neurosurg Rev 2010; 33:349-57; discussion 357. [PMID: 20490885 DOI: 10.1007/s10143-010-0264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 01/30/2010] [Accepted: 05/01/2010] [Indexed: 11/30/2022]
Abstract
Although brain metastases are one of the most frequently diagnosed sequelae of systemic malignancy, their optimal management still is not well defined. In that respect, the different diagnostic and therapeutic approaches of BMs patients is an issue for serious discussions. The treatment options include surgical excision, WBRT, radiosurgery, chemotherapy, immunotherapy, etc. Nowadays, the aforementioned treatment modalities are usually combined in different treatment schemes. More than one option is used for the same patient and combining these treatment modalities gives better results than when separately use them. The value of surgical excision of progressing brain metastases treated with gamma knife surgery (GKS) is not well investigated.With the present study, we aim to investigate the value of surgical excision of symptomatic brain lesions that have been previously treated with GKS.
Collapse
Affiliation(s)
- Nikolay A Peev
- Department of Neurosurgery, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake 470-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Brain Tumors. Neurosurgery 2010. [DOI: 10.1007/978-3-540-79565-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
46
|
Ammirati M, Cobbs CS, Linskey ME, Paleologos NA, Ryken TC, Burri SH, Asher AL, Loeffler JS, Robinson PD, Andrews DW, Gaspar LE, Kondziolka D, McDermott M, Mehta MP, Mikkelsen T, Olson JJ, Patchell RA, Kalkanis SN. The role of retreatment in the management of recurrent/progressive brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 2009; 96:85-96. [PMID: 19957016 PMCID: PMC2808530 DOI: 10.1007/s11060-009-0055-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 11/08/2009] [Indexed: 12/19/2022]
Abstract
QUESTION What evidence is available regarding the use of whole brain radiation therapy (WBRT), stereotactic radiosurgery (SRS), surgical resection or chemotherapy for the treatment of recurrent/progressive brain metastases? TARGET POPULATION This recommendation applies to adults with recurrent/progressive brain metastases who have previously been treated with WBRT, surgical resection and/or radiosurgery. Recurrent/progressive brain metastases are defined as metastases that recur/progress anywhere in the brain (original and/or non-original sites) after initial therapy. RECOMMENDATION Level 3 Since there is insufficient evidence to make definitive treatment recommendations in patients with recurrent/progressive brain metastases, treatment should be individualized based on a patient's functional status, extent of disease, volume/number of metastases, recurrence or progression at original versus non-original site, previous treatment and type of primary cancer, and enrollment in clinical trials is encouraged. In this context, the following can be recommended depending on a patient's specific condition: no further treatment (supportive care), re-irradiation (either WBRT and/or SRS), surgical excision or, to a lesser extent, chemotherapy. Question If WBRT is used in the setting of recurrent/progressive brain metastases, what impact does tumor histopathology have on treatment outcomes? No studies were identified that met the eligibility criteria for this question.
Collapse
Affiliation(s)
- Mario Ammirati
- Department of Neurosurgery, Ohio State University Medical Center, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Stereotactic Interstitial Radiosurgery With the Photon Radiosurgery System (PRS) for Metastatic Brain Tumors: A Prospective Single-Center Clinical Trial. Int J Radiat Oncol Biol Phys 2009; 75:1392-400. [DOI: 10.1016/j.ijrobp.2009.01.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 01/09/2009] [Accepted: 01/13/2009] [Indexed: 11/18/2022]
|
48
|
Kano H, Kondziolka D, Zorro O, Lobato-Polo J, Flickinger JC, Lunsford LD. The results of resection after stereotactic radiosurgery for brain metastases. J Neurosurg 2009; 111:825-31. [DOI: 10.3171/2009.4.jns09246] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Radiosurgery for brain metastasis fails in some patients, who require further surgical care. In this paper the authors' goal was to evaluate prognostic factors that correlate with the survival of patients who require a resection of a brain metastasis after stereotactic radiosurgery (SRS).
Methods
During the last 14 years when surgical navigation systems were routinely available, the authors identified 58 patients who required resection for various brain metastases after SRS. The median patient age was 54 years. Prior adjuvant treatment included whole-brain radiation therapy alone (17 patients), chemotherapy alone (9 patients), both radiotherapy and chemotherapy (10 patients), and prior resection before SRS (8 patients). The median target volumes at the time of SRS and resection were 7.7 cm3 (range 0.5–24.9 cm3) and 15.5 cm3 (range 1.3–81.2 cm3), respectively.
Results
At a median follow-up of 7.6 months, 8 patients (14%) were living and 50 patients (86%) had died. The survival after surgical removal was 65, 30, and 16% at 6, 12, and 24 months, respectively (median survival after resection 7.7 months). The local tumor control rate after resection was 71, 62, and 43% at 6, 12, and 24 months, respectively. A univariate analysis revealed that patient preoperative recursive partitioning analysis classification, Karnofsky Performance Scale status, systemic disease status, and the interval between SRS and resection were factors associated with patient survival. The mortality and morbidity rates of resection were 1.7 and 6.9%, respectively.
Conclusions
In patients with symptomatic mass effect after radiosurgery, resection may be warranted. Patients who had delayed local progression after SRS (> 3 months) had the best outcomes after resection.
Collapse
Affiliation(s)
- Hideyuki Kano
- 1Departments of Neurological Surgery,
- 3Center for Image-Guided Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Douglas Kondziolka
- 1Departments of Neurological Surgery,
- 3Center for Image-Guided Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Oscar Zorro
- 1Departments of Neurological Surgery,
- 3Center for Image-Guided Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Javier Lobato-Polo
- 1Departments of Neurological Surgery,
- 3Center for Image-Guided Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John C. Flickinger
- 2Radiation Oncology, and the
- 3Center for Image-Guided Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - L. Dade Lunsford
- 1Departments of Neurological Surgery,
- 3Center for Image-Guided Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
49
|
Narita Y, Shibui S. Strategy of surgery and radiation therapy for brain metastases. Int J Clin Oncol 2009; 14:275-80. [PMID: 19705236 DOI: 10.1007/s10147-009-0917-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Indexed: 11/30/2022]
Abstract
Cancer patients with brain metastases have poor prognoses and their median survival time is about 1 year. Surgery with whole-brain radiation therapy (WBRT) has been used in the treatment of single brain metastasis measuring 3 cm or more. Stereotactic radiosurgery (SRS) including the use of the Gamma knife and Cyberknife is widely used for the treatment of small and multiple brain metastases; however, recent clinical studies have revealed that SRS + WBRT is superior to WBRT or SRS alone in terms of survival time and local tumor control rates. Here, surgical indications and the strategy of surgery and radiation therapy are discussed, based on many clinical trials of treatments for brain metastases. To improve the survival rate and quality of life for these cancer patients with brain metastases, it is necessary to choose the most suitable mode of surgery and radiotherapy with the close cooperation of physicians, surgeons, radiologists, and neurosurgeons, based on accumulated evidence.
Collapse
Affiliation(s)
- Yoshitaka Narita
- Neurosurgery Division, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, Japan.
| | | |
Collapse
|
50
|
Maldaun MVC, Aguiar PHP, Lang F, Suki D, Wildrick D, Sawaya R. Radiosurgery in the treatment of brain metastases: critical review regarding complications. Neurosurg Rev 2007; 31:1-8; discussion 8-9. [PMID: 17957397 DOI: 10.1007/s10143-007-0110-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 06/20/2007] [Accepted: 08/26/2007] [Indexed: 10/22/2022]
Abstract
Stereotactic radiosurgery (SRS) has been described as an effective treatment option for brain metastases. In general, SRS has been indicated for the treatment of lesions smaller than 3 cm in maximum diameter and for lesions considered not surgically treatable, owing to the patient's clinical status or because the lesion was located in or near eloquent brain areas. In several studies, SRS has been associated with clinical and radiographic improvement of the lesions and has been compared with surgery as the modality of choice for brain metastases. Beyond the high rate of local disease control with SRS, the few complications that have been described occurred mainly in the acute post treatment period. Most publications have addressed the outcome and effectiveness of this treatment modality but have not critically analyzed long-term complications, steroid dependency, or results relating to specific brain locations. It is important to understand the radiobiologic effects of a well-demarcated high dose of radiation on the brain lesion, controlling the tumor growth and not causing significant alteration of the related brain region, especially in an area controlling eloquent function.
Collapse
Affiliation(s)
- Marcos Vinícius Calfat Maldaun
- Division of Neurosurgery, Department of Neurology, São Paulo Medical School, Rua Barata Ribeiro, 414-Cj 63, 01308-000 São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|