1
|
Souweidane MM, Bander ED, Zanzonico P, Reiner AS, Manino N, Haque S, Carrasquillo JA, Lyashchenko SK, Thakur SB, Lewis JS, Donzelli M, Cheung NKV, Larson SM, Kramer K, Pandit-Taskar N, Dunkel IJ. Phase 1 dose-escalation trial using convection-enhanced delivery (CED) of radio-immunotheranostic 124I-Omburtamab for diffuse intrinsic pontine glioma (DIPG). Neuro Oncol 2025:noaf039. [PMID: 39969230 DOI: 10.1093/neuonc/noaf039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Median survival for patients with Diffuse Intrinsic Pontine Glioma (DIPG) is 8-12 months. METHODS A phase 1, open label, 3 + 3 dose escalation trial delivered radiolabeled 124I-Omburtamab, targeting B7-H3, using MR-guided stereotactic convection enhanced delivery (CED) into the brainstem of pediatric DIPG patients. CED was performed after completion of standard-of-care external-beam radiation therapy (EBRT). Fifty children were treated and evaluable. 124I-Omburtamab activity was escalated from 0.25-10.0 mCi (9.25-370 MBq) and volume escalated from 0.25 ml-10.0 ml with serial PET/MRI post-administration. Safety was the primary outcome. National Cancer Institute Common Terminology Criteria for Adverse Events were assessed for 30 days following CED of 124I-Omburtamab. Secondary outcomes included overall survival and lesion-to-whole-body absorbed dose ratio. RESULTS The maximum tolerated activity per study protocol was determined to be 6mCi (222 MBq). The overall mean (±SD) total absorbed dose in the lesion per unit injected activity was 35.2 ± 18 cGy/MBq with a high lesion-to-whole-body absorbed dose ratio averaging 816, across all activity levels. Eleven patients had treatment-related grade 3 CNS toxicities with no grade-4 or -5 CNS toxicities. Five dose-limiting toxicity events occurred. Median survival was 15.29 months from diagnosis (95% CI: 12.20 - 16.83 months). Survival rate estimates at 1, 2, and 3 years were 65.4% (CI 53.3-80.1%), 18.4% (CI: 10.2-33.2%), and 11.7% (CI: 5.3-25.7%), respectively. CONCLUSIONS Administration of 124I-Omburtamab via CED is a safe treatment option for DIPG, with a maximum tolerated activity level identified. This study represents the first in-human theranostic use of a 124I radiopharmaceutical, simultaneously, as an imaging and therapeutic agent.
Collapse
Affiliation(s)
- Mark M Souweidane
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA
| | - Evan D Bander
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
- Department of Neurological Surgery, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA
| | - Pat Zanzonico
- Department of Nuclear Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Anne S Reiner
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Nicole Manino
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sofia Haque
- Department of Neuroradiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jorge A Carrasquillo
- Department of Nuclear Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Serge K Lyashchenko
- Department of Radiochemisty, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Sunitha B Thakur
- Department of Medical Physics and Radiology; Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Jason S Lewis
- Department of Radiochemisty, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Donzelli
- Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Steven M Larson
- Department of Nuclear Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Kim Kramer
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Neeta Pandit-Taskar
- Department of Nuclear Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Ira J Dunkel
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
2
|
Dhanawat M, Garima, Wilson K, Gupta S, Chalotra R, Gupta N. Convection-enhanced Diffusion: A Novel Tactics to Crack the BBB. Curr Drug Deliv 2024; 21:1515-1528. [PMID: 38275045 DOI: 10.2174/0115672018266501231207095127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/20/2023] [Accepted: 11/20/2023] [Indexed: 01/27/2024]
Abstract
Although the brain is very accessible to nutrition and oxygen, it can be difficult to deliver medications to malignant brain tumours. To get around some of these issues and enable the use of therapeutic pharmacological substances that wouldn't typically cross the blood-brain barrier (BBB), convection-enhanced delivery (CED) has been developed. It is a cutting-edge strategy that gets beyond the blood-brain barrier and enables targeted drug administration to treat different neurological conditions such as brain tumours, Parkinson's disease, and epilepsy. Utilizing pressure gradients to spread the medicine across the target area is the main idea behind this diffusion mechanism. Through one to several catheters positioned stereotactically directly within the tumour mass, around the tumour, or in the cavity created by the resection, drugs are given. This method can be used in a variety of drug classes, including traditional chemotherapeutics and cutting-edge investigational targeted medications by using positive-pressure techniques. The drug delivery volume must be optimized for an effective infusion while minimizing backflow, which causes side effects and lowers therapeutic efficacy. Therefore, this technique provides a promising approach for treating disorders of the central nervous system (CNS).
Collapse
Affiliation(s)
- Meenakshi Dhanawat
- Amity Institute of Pharmacy, Amity University Haryana, Amity Education Valley, Panchgaon, Manesar, Gurugram, Haryana, 122413, India
| | - Garima
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Kashish Wilson
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Sumeet Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| | - Rishabh Chalotra
- Department of Pharmacology, Central University of Punjab, Bathinda, India
| | - Nidhi Gupta
- M.M College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana- Ambala, Haryana, 133207, India
| |
Collapse
|
3
|
Rocco MT, Akhter AS, Ehrlich DJ, Scott GC, Lungu C, Munjal V, Aquino A, Lonser RR, Fiandaca MS, Hallett M, Heiss JD, Bankiewicz KS. Long-term safety of MRI-guided administration of AAV2-GDNF and gadoteridol in the putamen of individuals with Parkinson's disease. Mol Ther 2022; 30:3632-3638. [PMID: 35957524 PMCID: PMC9734022 DOI: 10.1016/j.ymthe.2022.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/21/2022] [Accepted: 08/05/2022] [Indexed: 12/15/2022] Open
Abstract
Direct putaminal infusion of adeno-associated virus vector (serotype 2) (AAV2) containing the human glial cell line-derived neurotrophic factor (GDNF) transgene was studied in a phase I clinical trial of participants with advanced Parkinson's disease (PD). Convection-enhanced delivery of AAV2-GDNF with a surrogate imaging tracer (gadoteridol) was used to track infusate distribution during real-time intraoperative magnetic resonance imaging (iMRI). Pre-, intra-, and serial postoperative (up to 5 years after infusion) MRI were analyzed in 13 participants with PD treated with bilateral putaminal co-infusions (52 infusions in total) of AAV2-GDNF and gadoteridol (infusion volume, 450 mL per putamen). Real-time iMRI confirmed infusion cannula placement, anatomic quantification of volumetric perfusion within the putamen, and direct visualization of off-target leakage or cannula reflux (which permitted corresponding infusion rate/cannula adjustments). Serial post-treatment MRI assessment (n = 13) demonstrated no evidence of cerebral parenchyma toxicity in the corresponding regions of AAV2-GDNF and gadoteridol co-infusion or surrounding regions over long-term follow-up. Direct confirmation of key intraoperative safety and efficacy parameters underscores the safety and tissue targeting value of real-time imaging with co-infused gadoteridol and putative therapeutic agents (i.e., AAV2-GDNF). This delivery-imaging platform enhances safety, permits delivery personalization, improves therapeutic distribution, and facilitates assessment of efficacy and dosing effect.
Collapse
Affiliation(s)
- Matthew T Rocco
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Asad S Akhter
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Debra J Ehrlich
- Parkinson's Disease Clinic, NINDS, National Institutes of Health Division of Clinical Research, Bethesda, MD 20896, USA
| | - Gretchen C Scott
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20896, USA
| | - Codrin Lungu
- Division of Clinical Research, NINDS, National Institutes of Health, Bethesda, MD 20896, USA
| | - Vikas Munjal
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Anthony Aquino
- Department of Radiology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Russell R Lonser
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Massimo S Fiandaca
- Asklepios BioPharmaceutical, Inc., 2447 North Star Road, Upper Arlington, OH 43221, USA
| | - Mark Hallett
- Division of Clinical Research, NINDS, National Institutes of Health, Bethesda, MD 20896, USA; Human Motor Control Section, Medical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20896, USA
| | - John D Heiss
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20896, USA
| | - Krystof S Bankiewicz
- Department of Neurological Surgery, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
4
|
Waldherr L, Seitanidou M, Jakešová M, Handl V, Honeder S, Nowakowska M, Tomin T, Karami Rad M, Schmidt T, Distl J, Birner‐Gruenberger R, von Campe G, Schäfer U, Berggren M, Rinner B, Asslaber M, Ghaffari‐Tabrizi‐Wizsy N, Patz S, Simon DT, Schindl R. Targeted Chemotherapy of Glioblastoma Spheroids with an Iontronic Pump. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2001302. [PMID: 34195355 PMCID: PMC8218220 DOI: 10.1002/admt.202001302] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/15/2021] [Indexed: 05/13/2023]
Abstract
Successful treatment of glioblastoma multiforme (GBM), the most lethal tumor of the brain, is presently hampered by (i) the limits of safe surgical resection and (ii) "shielding" of residual tumor cells from promising chemotherapeutic drugs such as Gemcitabine (Gem) by the blood brain barrier (BBB). Here, the vastly greater GBM cell-killing potency of Gem compared to the gold standard temozolomide is confirmed, moreover, it shows neuronal cells to be at least 104-fold less sensitive to Gem than GBM cells. The study also demonstrates the potential of an electronically-driven organic ion pump ("GemIP") to achieve controlled, targeted Gem delivery to GBM cells. Thus, GemIP-mediated Gem delivery is confirmed to be temporally and electrically controllable with pmol min-1 precision and electric addressing is linked to the efficient killing of GBM cell monolayers. Most strikingly, GemIP-mediated GEM delivery leads to the overt disintegration of targeted GBM tumor spheroids. Electrically-driven chemotherapy, here exemplified, has the potential to radically improve the efficacy of GBM adjuvant chemotherapy by enabling exquisitely-targeted and controllable delivery of drugs irrespective of whether these can cross the BBB.
Collapse
Affiliation(s)
- Linda Waldherr
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| | - Maria Seitanidou
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Marie Jakešová
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Verena Handl
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Sophie Honeder
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
| | - Marta Nowakowska
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Tamara Tomin
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
- Institute of Chemical Technologies and AnalyticsTechnische Universität WienVienna1060Austria
| | - Meysam Karami Rad
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Tony Schmidt
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| | - Joachim Distl
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| | - Ruth Birner‐Gruenberger
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
- Institute of Chemical Technologies and AnalyticsTechnische Universität WienVienna1060Austria
| | - Gord von Campe
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Ute Schäfer
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Magnus Berggren
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Beate Rinner
- Division of Biomedical ResearchMedical University of GrazGraz8036Austria
| | - Martin Asslaber
- Diagnostic and Research Institute of PathologyMedical University of GrazGraz8010Austria
| | | | - Silke Patz
- Department of NeurosurgeryMedical University of GrazGraz8010Austria
| | - Daniel T. Simon
- Laboratory of Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköping60174Sweden
| | - Rainer Schindl
- Gottfried Schatz Research Center – BiophysicsMedical University of GrazGraz8010Austria
| |
Collapse
|
5
|
Bander ED, Tizi K, Wembacher-Schroeder E, Thomson R, Donzelli M, Vasconcellos E, Souweidane MM. Deformational changes after convection-enhanced delivery in the pediatric brainstem. Neurosurg Focus 2021; 48:E3. [PMID: 31896089 DOI: 10.3171/2019.10.focus19679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/07/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In the brainstem, there are concerns regarding volumetric alterations following convection-enhanced delivery (CED). The relationship between distribution volume and infusion volume is predictably greater than one. Whether this translates into deformational changes and influences clinical management is unknown. As part of a trial using CED for diffuse intrinsic pontine glioma (DIPG), the authors measured treatment-related volumetric alterations in the brainstem and ventricles. METHODS Enrolled patients underwent a single infusion of radioimmunotherapy. Between 2012 and 2019, 23 patients with volumetric pre- and postoperative day 1 (POD1) and day 30 (POD30) MRI scans were analyzed using iPlan® Flow software for semiautomated volumetric measurements of the ventricles and pontine segment of the brainstem. RESULTS Children in the study had a mean age of 7.7 years (range 2-18 years). The mean infusion volume was 3.9 ± 1.7 ml (range 0.8-8.8 ml). Paired t-tests demonstrated a significant increase in pontine volume immediately following infusion (p < 0.0001), which trended back toward baseline by POD30 (p = 0.046; preoperative 27.6 ± 8.4 ml, POD1 30.2 ± 9.0 ml, POD30 29.5 ± 9.4 ml). Lateral ventricle volume increased (p = 0.02) and remained elevated on POD30 (p = 0.04; preoperative 23.5 ± 15.4 ml, POD1 26.3 ± 16.0, POD30 28.6 ± 21.2). Infusion volume had a weak, positive correlation with pontine and lateral ventricle volume change (r2 = 0.22 and 0.27, respectively). Four of the 23 patients had an increase in preoperative neurological deficits at POD30. No patients required shunt placement within 90 days. CONCLUSIONS CED infusion into the brainstem correlates with immediate but self-limited deformation changes in the pons. The persistence of increased ventricular volume and no need for CSF diversion post-CED are inconsistent with obstructive hydrocephalus. Defining the degree and time course of these deformational changes can assist in the interpretation of neuroimaging along the DIPG disease continuum when CED is incorporated into the treatment algorithm.
Collapse
Affiliation(s)
- Evan D Bander
- 1Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York.,2Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Karima Tizi
- 3Department of Neurosurgery, Hôpitaux Universitaires de Genève, Geneva, Switzerland; and
| | | | | | - Maria Donzelli
- 2Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Mark M Souweidane
- 1Department of Neurological Surgery, Weill Medical College of Cornell University, New York, New York.,2Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
6
|
Saito R, Kanamori M, Sonoda Y, Yamashita Y, Nagamatsu K, Murata T, Mugikura S, Kumabe T, Wembacher-Schröder E, Thomson R, Tominaga T. Phase I trial of convection-enhanced delivery of nimustine hydrochloride (ACNU) for brainstem recurrent glioma. Neurooncol Adv 2020; 2:vdaa033. [PMID: 32642691 PMCID: PMC7212853 DOI: 10.1093/noajnl/vdaa033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Treatment options for patients suffering brainstem gliomas are quite limited as surgery is not an option against intrinsic tumors at brainstem and chemotherapy generally failed to demonstrate its efficacy. Intracerebral convection-enhanced delivery (CED) is a novel approach for administering chemotherapy to patients with brain tumors. We present the results of phase I trial of CED of nimustine hydrochloride (ACNU), designed to determine the maximum tolerable concentration of ACNU, for patients with recurrent brainstem gliomas. Methods Sixteen patients, aged 3–81 years old, suffering from recurrent brainstem gliomas, including diffuse intrinsic pontine glioma patients as well as patients with recurrent gliomas that originated from non‐brainstem sites, were enrolled in this trial between February 2011 and April 2016. The dose/concentration escalation trial included 3 dose/concentration groups (0.25, 0.5, and 0.75 mg/mL, all at 7 mL) to determine the safety and tolerability of CED of ACNU. Real-time monitoring of drug distribution was performed by mixing gadolinium-tetraazacyclododecanetetraacetic acid (Gd-DOTA) in the infusion solution. CED of ACNU was given in combination with oral or intravenous temozolomide chemotherapy. Results CED of ACNU demonstrated antitumor activity, as assessed by radiographic changes and prolonged overall survival. The recommended dosage was 0.75 mg/mL. Drug-associated toxicity was minimal. Conclusions Intracerebral CED of ACNU under real-time monitoring of drug distribution, in combination with systemic temozolomide, was well tolerated among patients with recurrent brainstem gliomas. The safety and efficacy observed suggest the clinical benefits of this strategy against this devastating disease. Based on this phase I study, further clinical development of ACNU is warranted.
Collapse
Affiliation(s)
- Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoji Yamashita
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kenichi Nagamatsu
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaki Murata
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunji Mugikura
- Department of Diagnostic Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
7
|
Stephen ZR, Chiarelli PA, Revia RA, Wang K, Kievit F, Dayringer C, Jeon M, Ellenbogen R, Zhang M. Time-Resolved MRI Assessment of Convection-Enhanced Delivery by Targeted and Nontargeted Nanoparticles in a Human Glioblastoma Mouse Model. Cancer Res 2019; 79:4776-4786. [PMID: 31331912 PMCID: PMC6744959 DOI: 10.1158/0008-5472.can-18-2998] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/08/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022]
Abstract
Convection-enhanced delivery (CED) provides direct access of infusates to brain tumors; however, clinical translation of this technology has not been realized because of the inability to accurately visualize infusates in real-time and lack of targeting modalities against diffuse cancer cells. In this study, we use time-resolved MRI to reveal the kinetics of CED processes in a glioblastoma (GBM) model using iron oxide nanoparticles (NP) modified with a glioma-targeting ligand, chlorotoxin (CTX). Mice bearing orthotopic human GBM tumors were administered a single dose of targeted CTX-conjugated NP (NPCP-CTX) or nontargeted NP (NPCP) via CED. High-resolution T2-weighted, T2*-weighted, and quantitative T2 MRI were utilized to image NP delivery in real time and determined the volume of distribution (VD) of NPs at multiple time points over the first 48 hours post-CED. GBM-specific targeting was evaluated by flow cytometry and intracellular NP localization by histologic assessment. NPCP-CTX produced a VD of 121 ± 39 mm3 at 24 hours, a significant increase compared with NPCP, while exhibiting GBM specificity and localization to cell nuclei. Notably, CED of NPCP-CTX resulted in a sustained expansion of VD well after infusion, suggesting a possible active transport mechanism, which was further supported by the presence of NPs in endothelial and red blood cells. In summary, we show that time-resolved MRI is a suitable modality to study CED kinetics, and CTX-mediated CED facilitates extensive distribution of infusate and specific targeting of tumor cells. SIGNIFICANCE: MRI is used to monitor convection-enhanced delivery in real time using a nanoparticle-based contrast agent, and glioma-specific targeting significantly improves the volume of distribution in tumors.
Collapse
Affiliation(s)
- Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Peter A Chiarelli
- Department of Neurological Surgery, University of Washington, Seattle, Washington
- Department of Neurosurgery, Children's Hospital Los Angeles, Los Angeles, California
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Kui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Forrest Kievit
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Chris Dayringer
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Mike Jeon
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington
| | - Richard Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington.
- Department of Radiology, University of Washington, Seattle, Washington
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington.
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Himes BT, Zhang L, Daniels DJ. Treatment Strategies in Diffuse Midline Gliomas With the H3K27M Mutation: The Role of Convection-Enhanced Delivery in Overcoming Anatomic Challenges. Front Oncol 2019; 9:31. [PMID: 30800634 PMCID: PMC6375835 DOI: 10.3389/fonc.2019.00031] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/11/2019] [Indexed: 12/30/2022] Open
Abstract
Diffuse midline gliomas harboring the H3 K27M mutation—including the previously named diffuse intrinsic pontine glioma (DIPG)—are lethal high-grade pediatric brain tumors that are inoperable and without cure. Despite numerous clinical trials, the prognosis remains poor, with a median survival of ~1 year from diagnosis. Systemic administration of chemotherapeutic agents is often hindered by the blood brain barrier (BBB), and even drugs that successfully cross the barrier may suffer from unpredictable distributions. The challenge in treating this deadly disease relies on effective delivery of a therapeutic agent to the bulk tumor as well as infiltrating cells. Therefore, methods that can enhance drug delivery to the brain are of great interest. Convection-enhanced delivery (CED) is a strategy that bypasses the BBB entirely and enhances drug distribution by applying hydraulic pressure to deliver agents directly and evenly into a target region. This technique reliably distributes infusate homogenously through the interstitial space of the target region and achieves high local drug concentrations in the brain. Moreover, recent studies have also shown that continuous delivery of drug over an extended period of time is safe, feasible, and more efficacious than standard single session CED. Therefore, CED represents a promising technique for treating midline tumors with the H3K27M mutation.
Collapse
Affiliation(s)
- Benjamin T Himes
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - Liang Zhang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States
| | - David J Daniels
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States.,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Magdoom KN, Delgado F, Bohórquez AC, Brown AC, Carney PR, Rinaldi C, Mareci TH, Ewing JR, Sarntinoranont M. Longitudinal evaluation of tumor microenvironment in rat focal brainstem glioma using diffusion and perfusion MRI. J Magn Reson Imaging 2018; 49:1322-1332. [PMID: 30318760 DOI: 10.1002/jmri.26315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Brainstem gliomas are aggressive and difficult to treat. Growth of these tumors may be characterized with MRI methods. PURPOSE To visualize longitudinal changes in tumor volume, vascular leakiness, and tissue microstructure in an animal model of brainstem glioma. STUDY TYPE Prospective animal model. ANIMAL MODEL Male Sprague-Dawley rats (n = 9) were imaged with 9L gliosarcoma cells infused into the pontine reticular formation of the brainstem. The MRI tumor microenvironment was studied at 3 and 10 days postimplantation of tumor cells. FIELD STRENGTH/SEQUENCE Diffusion tensor imaging (DTI) and dynamic contrast-enhanced (DCE)-MRI were performed at 4.7T using spin-echo multislice echo planar imaging and gradient echo multislice imaging, respectively. ASSESSMENT Tumor leakiness was assessed by the forward volumetric transfer constant, Ktrans , estimated from DCE-MRI data. Tumor structure was evaluated with fractional anisotropy (FA) obtained from DTI. Tumor volumes, delineated by a T1 map, T2 -weighted image, FA, and DCE signal enhancement were compared. STATISTICAL TESTS Changes in the assessed parameters within and across the groups (ie, rats 3 and 10 days post tumor cell implantation) were evaluated with Wilcoxon rank-sum tests. RESULTS Day 3 tumors were visible mainly on contrast-enhanced images, while day 10 tumors were visible in both contrast-enhanced and diffusion-weighted images. Mean Ktrans at day 10 was 41% lower than at day 3 (P = 0.23). In day 10 tumors, FA was regionally lower in the tumor compared to normal tissue (P = 0.0004), and tumor volume, segmented based on FA map, was significantly smaller (P ≤ 0.05) than that obtained from other contrasts. DATA CONCLUSION Contrast-enhanced MRI was found to be more sensitive in detecting early-stage tumor boundaries than other contrasts. Areas of the tumor outlined by DCE-MRI and DTI were significantly different. Over the observed period of tumor growth, average vessel leakiness decreased with tumor progression. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;49:1322-1332.
Collapse
Affiliation(s)
- Kulam Najmudeen Magdoom
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Francisco Delgado
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, Florida, USA
| | - Ana C Bohórquez
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, Florida, USA
| | - Alec C Brown
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Paul R Carney
- Department of Neurology and Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Carlos Rinaldi
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, Florida, USA.,Department of Chemical Engineering University of Florida, Gainesville, Florida, USA
| | - Thomas H Mareci
- J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, Florida, USA.,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - James R Ewing
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Malisa Sarntinoranont
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA.,J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, Florida, USA
| |
Collapse
|
10
|
T2-weighted images are superior to other MR image types for the determination of diffuse intrinsic pontine glioma intratumoral heterogeneity. Childs Nerv Syst 2018; 34:449-455. [PMID: 29151166 DOI: 10.1007/s00381-017-3659-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/09/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE Diffuse intrinsic pontine glioma (DIPG) remains the main cause of death in children with brain tumors. Given the inefficacy of numerous peripherally delivered agents to treat DIPG, convection enhanced delivery (CED) of therapeutic agents is a promising treatment modality. The purpose of this study was to determine which MR imaging type provides the best discrimination of intratumoral heterogeneity to guide future stereotactic implantation of CED catheters into the most cellular tumor regions. METHODS Patients ages 18 years or younger with a diagnosis of DIPG from 2000 to 2015 were included. Radiographic heterogeneity index (HI) of the tumor was calculated by measuring the standard deviation of signal intensity of the tumor (SDTumor) normalized to the genu of the corpus callosum (SDCorpus Callosum). Four MR image types (T2-weighted, contrast-enhanced T1-weighted, FLAIR, and ADC) were analyzed at several time points both before and after radiotherapy and chemotherapy. HI values across these MR image types were compared and correlated with patient survival. RESULTS MR images from 18 patients with DIPG were evaluated. The mean survival ± standard deviation was 13.8 ± 13.7 months. T2-weighted images had the highest HI (mean ± SD, 5.1 ± 2.5) followed by contrast-enhanced T1-weighted images (3.7 ± 1.5), FLAIR images (3.0 ± 1.1), and ADC maps (1.6 ± 0.4). ANOVA demonstrated that HI values were significantly higher for T2-weighted images than FLAIR (p < 0.01) and ADC (p < 0.0001). Following radiotherapy, T2-weighted and contrast-enhanced T1-weighted image HI values increased, while FLAIR and ADC HI values decreased. Univariate and multivariate analyses did not reveal a relationship between HI values and patient survival (p > 0.05). CONCLUSIONS For children with DIPG, T2-weighted MRI demonstrates the greatest signal intensity variance suggesting tumor heterogeneity. Within this heterogeneity, T2-weighted signal hypointensity is known to correlate with increased cellularity and thus may represent a putative target for CED catheter placement in future clinical trials.
Collapse
|
11
|
Systems engineers’ role in biomedical research. Convection-enhanced drug delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/b978-0-444-63964-6.00009-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
12
|
Ram Z, Lonser RR. In Memoriam: Edward H. Oldfield, MD, 1947 to 2017. Neurosurgery 2017. [DOI: 10.1093/neuros/nyx562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Seo YE, Bu T, Saltzman WM. Nanomaterials for convection-enhanced delivery of agents to treat brain tumors. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2017; 4:1-12. [PMID: 29333521 DOI: 10.1016/j.cobme.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanomaterials represent a promising and versatile platform for the delivery of therapeutics to the brain. Treatment of brain tumors has been a long-standing challenge in the field of neuro-oncology. The current standard of care - a multimodal approach of surgery, radiation and chemotherapy - yields only a modest therapeutic benefit for patients with malignant gliomas. A major obstacle for treatment is the failure to achieve sufficient delivery of therapeutics at the tumor site. Recent advances in local drug delivery techniques, along with the development of highly effective brain-penetrating nanocarriers, have significantly improved treatment and imaging of brain tumors in preclinical studies. The major advantage of this combined strategy is the ability to optimize local therapy, by maintaining an effective and sustained concentration of therapeutics in the brain with minimal systemic toxicity. This review highlights some of the latest developments, significant advancements and current challenges in local delivery of nanomaterials for the treatment of brain tumors.
Collapse
Affiliation(s)
- Young-Eun Seo
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - Tom Bu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
14
|
Abstract
Convection-enhanced delivery permits the direct homogeneous delivery of small- and large-molecular-weight putative therapeutics to the nervous system in a manner that bypasses the blood-nervous system barrier. The development of co-infused surrogate imaging tracers (for computed tomography and MRI) allows for the real-time, noninvasive monitoring of infusate distribution during convective delivery. Real-time image monitoring of convective distribution of therapeutic agents insures that targeted structures/nervous system regions are adequately perfused, enhances safety, informs efficacy (or lack thereof) of putative agents, and provides critical information regarding the properties of convection-enhanced delivery in normal and various pathologic tissue states.
Collapse
Affiliation(s)
- Russell R Lonser
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, 410 West 10th Avenue, Doan 1047, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Abstract
Convection-enhanced delivery (CED) is a promising technique that generates a pressure gradient at the tip of an infusion catheter to deliver therapeutics directly through the interstitial spaces of the central nervous system. It addresses and offers solutions to many limitations of conventional techniques, allowing for delivery past the blood-brain barrier in a targeted and safe manner that can achieve therapeutic drug concentrations. CED is a broadly applicable technique that can be used to deliver a variety of therapeutic compounds for a diversity of diseases, including malignant gliomas, Parkinson's disease, and Alzheimer's disease. While a number of technological advances have been made since its development in the early 1990s, clinical trials with CED have been largely unsuccessful, and have illuminated a number of parameters that still need to be addressed for successful clinical application. This review addresses the physical principles behind CED, limitations in the technique, as well as means to overcome these limitations, clinical trials that have been performed, and future developments.
Collapse
Affiliation(s)
- A M Mehta
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - A M Sonabend
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, 10032, USA
| | - J N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Tavner A, Roy TD, Hor K, Majimbi M, Joldes G, Wittek A, Bunt S, Miller K. On the appropriateness of modelling brain parenchyma as a biphasic continuum. J Mech Behav Biomed Mater 2016; 61:511-518. [DOI: 10.1016/j.jmbbm.2016.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 10/21/2022]
|
17
|
Distribution of polymer nanoparticles by convection-enhanced delivery to brain tumors. J Control Release 2016; 232:103-12. [PMID: 27063424 DOI: 10.1016/j.jconrel.2016.04.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 01/19/2023]
Abstract
Glioblastoma multiforme (GBM) is a fatal brain tumor characterized by infiltration beyond the margins of the main tumor mass and local recurrence after surgery. The blood-brain barrier (BBB) poses the most significant hurdle to brain tumor treatment. Convection-enhanced delivery (CED) allows for local administration of agents, overcoming the restrictions of the BBB. Recently, polymer nanoparticles have been demonstrated to penetrate readily through the healthy brain when delivered by CED, and size has been shown to be a critical factor for nanoparticle penetration. Because these brain-penetrating nanoparticles (BPNPs) have high potential for treatment of intracranial tumors since they offer the potential for cell targeting and controlled drug release after administration, here we investigated the intratumoral CED infusions of PLGA BPNPs in animals bearing either U87 or RG2 intracranial tumors. We demonstrate that the overall volume of distribution of these BPNPs was similar to that observed in healthy brains; however, the presence of tumors resulted in asymmetric and heterogeneous distribution patterns, with substantial leakage into the peritumoral tissue. Together, our results suggest that CED of BPNPs should be optimized by accounting for tumor geometry, in terms of location, size and presence of necrotic regions, to determine the ideal infusion site and parameters for individual tumors.
Collapse
|
18
|
Goodwin CR, Xu R, Iyer R, Sankey EW, Liu A, Abu-Bonsrah N, Sarabia-Estrada R, Frazier JL, Sciubba DM, Jallo GI. Local delivery methods of therapeutic agents in the treatment of diffuse intrinsic brainstem gliomas. Clin Neurol Neurosurg 2016; 142:120-127. [PMID: 26849840 DOI: 10.1016/j.clineuro.2016.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/05/2016] [Indexed: 10/22/2022]
Abstract
Brainstem gliomas comprise 10-20% of all pediatric central nervous system (CNS) tumors and diffuse intrinsic pontine gliomas (DIPGs) account for the majority of these lesions. DIPG is a rapidly progressive disease with almost universally fatal outcomes and a median survival less than 12 months. Current standard-of-care treatment for DIPG includes radiation therapy, but its long-term survival effects are still under debate. Clinical trials investigating the efficacy of systemic administration of various therapeutic agents have been associated with disappointing outcomes. Recent efforts have focused on improvements in chemotherapeutic agents employed and in methods of localized and targeted drug delivery. This review provides an update on current preclinical and clinical studies investigating treatment options for brainstem gliomas.
Collapse
Affiliation(s)
- C Rory Goodwin
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Risheng Xu
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Rajiv Iyer
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Eric W Sankey
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Ann Liu
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Nancy Abu-Bonsrah
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Rachel Sarabia-Estrada
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - James L Frazier
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - Daniel M Sciubba
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA
| | - George I Jallo
- The Johns Hopkins University School of Medicine, Department of Neurosurgery, Baltimore, MD, USA.
| |
Collapse
|
19
|
Vogelbaum MA, Aghi MK. Convection-enhanced delivery for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii3-ii8. [PMID: 25746090 DOI: 10.1093/neuonc/nou354] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Effective treatment of glioblastoma (GBM) remains a formidable challenge. Survival rates remain poor despite decades of clinical trials of conventional and novel, biologically targeted therapeutics. There is considerable evidence that most of these therapeutics do not reach their targets in the brain when administered via conventional routes (intravenous or oral). Hence, direct delivery of therapeutics to the brain and to brain tumors is an active area of investigation. One of these techniques, convection-enhanced delivery (CED), involves the implantation of catheters through which conventional and novel therapeutic formulations can be delivered using continuous, low-positive-pressure bulk flow. Investigation in preclinical and clinical settings has demonstrated that CED can produce effective delivery of therapeutics to substantial volumes of brain and brain tumor. However, limitations in catheter technology and imaging of delivery have prevented this technique from being reliable and reproducible, and the only completed phase III study in GBM did not show a survival benefit for patients treated with an investigational therapeutic delivered via CED. Further development of CED is ongoing, with novel catheter designs and imaging approaches that may allow CED to become a more effective therapeutic delivery technique.
Collapse
Affiliation(s)
- Michael A Vogelbaum
- Brain Tumor & Neuro-Oncology Center and Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurological Surgery, University of California, San Francisco, California (M.K.A.)
| | - Manish K Aghi
- Brain Tumor & Neuro-Oncology Center and Department of Neurosurgery, Cleveland Clinic, Cleveland, Ohio (M.A.V.); Department of Neurological Surgery, University of California, San Francisco, California (M.K.A.)
| |
Collapse
|
20
|
Promising approaches to circumvent the blood-brain barrier: progress, pitfalls and clinical prospects in brain cancer. Ther Deliv 2015; 6:989-1016. [PMID: 26488496 DOI: 10.4155/tde.15.48] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain drug delivery is a major challenge for therapy of central nervous system (CNS) diseases. Biochemical modifications of drugs or drug nanocarriers, methods of local delivery, and blood-brain barrier (BBB) disruption with focused ultrasound and microbubbles are promising approaches which enhance transport or bypass the BBB. These approaches are discussed in the context of brain cancer as an example in CNS drug development. Targeting to receptors enabling transport across the BBB offers noninvasive delivery of small molecule and biological cancer therapeutics. Local delivery methods enable high dose delivery while avoiding systemic exposure. BBB disruption with focused ultrasound and microbubbles offers local and noninvasive treatment. Clinical trials show the prospects of these technologies and point to challenges for the future.
Collapse
|
21
|
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are a fairly common pediatric brain tumor, and children with these tumors have a dismal prognosis. They generally are diagnosed within the first decade of life, and due to their location within the pons, these tumors are not surgically resectable. The median survival for children with DIPGs is less than 1 year, in spite of decades of clinical trial development of unique approaches to radiation therapy and chemotherapy. Novel therapies are under investigation for these deadly tumors. As clinicians and researchers make a concerted effort to obtain tumor tissue, the molecular signals of these tumors are being investigated in an attempt to uncover targetable therapies for DIPGs. In addition, direct application of chemotherapies into the tumor (convection-enhanced delivery) is being investigated as a novel delivery system for treatment of DIPGs. Overall, DIPGs require creative thinking and a disciplined approach for development of a therapy that can improve the prognosis for these unfortunate children.
Collapse
Affiliation(s)
- Amy Lee Bredlau
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, USA.
| | - David N Korones
- Department of Pediatrics, University of Rochester, Rochester, New York, USA; Department of Palliative Care, University of Rochester, Rochester, New York, USA
| |
Collapse
|
22
|
Hargrave D. Pediatric diffuse intrinsic pontine glioma: can optimism replace pessimism? CNS Oncol 2015; 1:137-48. [PMID: 25057864 DOI: 10.2217/cns.12.15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pediatric diffuse intrinsic pontine glioma (DIPG) has a dismal prognosis that has not seen a change in outcome despite multiple clinical trials. Possible reasons for failure to make progress in this aggressive childhood brain tumor include: poor understanding of the underlying molecular biology due to lack of access to tumor material; absence of accurate and relevant DIPG preclinical models for drug development; ill-defined therapeutic targets for novel agents; and inadequate drug delivery to the brainstem. This review will demonstrate that systematic studies to identify solutions for each of these barriers is starting to deliver progress that can turn pessimism to optimism in DIPG.
Collapse
Affiliation(s)
- Darren Hargrave
- Department of Pediatric Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London, WC1N 3JH, UK.
| |
Collapse
|
23
|
Lonser RR, Sarntinoranont M, Morrison PF, Oldfield EH. Convection-enhanced delivery to the central nervous system. J Neurosurg 2015; 122:697-706. [DOI: 10.3171/2014.10.jns14229] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Convection-enhanced delivery (CED) is a bulk flow–driven process. Its properties permit direct, homogeneous, targeted perfusion of CNS regions with putative therapeutics while bypassing the blood-brain barrier. Development of surrogate imaging tracers that are co-infused during drug delivery now permit accurate, noninvasive real-time tracking of convective infusate flow in nervous system tissues. The potential advantages of CED in the CNS over other currently available drug delivery techniques, including systemic delivery, intrathecal and/or intraventricular distribution, and polymer implantation, have led to its application in research studies and clinical trials. The authors review the biophysical principles of convective flow and the technology, properties, and clinical applications of convective delivery in the CNS.
Collapse
Affiliation(s)
- Russell R. Lonser
- 1Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, Ohio
- 2Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
| | - Malisa Sarntinoranont
- 3Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida; and
| | - Paul F. Morrison
- 4Biomedical Engineering and Physical Science Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland
| | - Edward H. Oldfield
- 2Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
- 5Department of Neurological Surgery, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
24
|
Silvestrini MT, Yin D, Martin AJ, Coppes VG, Mann P, Larson PS, Starr PA, Zeng X, Gupta N, Panter SS, Desai TA, Lim DA. Interventional magnetic resonance imaging-guided cell transplantation into the brain with radially branched deployment. Mol Ther 2015; 23:119-29. [PMID: 25138755 PMCID: PMC4426791 DOI: 10.1038/mt.2014.155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/09/2014] [Indexed: 01/06/2023] Open
Abstract
Intracerebral cell transplantation is being pursued as a treatment for many neurological diseases, and effective cell delivery is critical for clinical success. To facilitate intracerebral cell transplantation at the scale and complexity of the human brain, we developed a platform technology that enables radially branched deployment (RBD) of cells to multiple target locations at variable radial distances and depths along the initial brain penetration tract with real-time interventional magnetic resonance image (iMRI) guidance. iMRI-guided RBD functioned as an "add-on" to standard neurosurgical and imaging workflows, and procedures were performed in a commonly available clinical MRI scanner. Multiple deposits of super paramagnetic iron oxide beads were safely delivered to the striatum of live swine, and distribution to the entire putamen was achieved via a single cannula insertion in human cadaveric heads. Human embryonic stem cell-derived dopaminergic neurons were biocompatible with the iMRI-guided RBD platform and successfully delivered with iMRI guidance into the swine striatum. Thus, iMRI-guided RBD overcomes some of the technical limitations inherent to the use of straight cannulas and standard stereotactic targeting. This platform technology could have a major impact on the clinical translation of a wide range of cell therapeutics for the treatment of many neurological diseases.
Collapse
Affiliation(s)
- Matthew T Silvestrini
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Present address: Department of Bioengineering, University of California, Davis, Davis, California, USA
| | - Dali Yin
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Alastair J Martin
- Department of Radiology, University of California, San Francisco, San Francisco, California, USA
| | - Valerie G Coppes
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Preeti Mann
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Paul S Larson
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Xianmin Zeng
- Buck Institute for Research on Aging, Novato, California, USA
| | - Nalin Gupta
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - S S Panter
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
| | - Tejal A Desai
- Department of Bioengineering, University of California, San Francisco, San Francisco, California, USA
| | - Daniel A Lim
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
- Department of Surgery, Veteran's Affairs Medical Center, San Francisco, California, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at UCSF, San Francisco, California, USA
| |
Collapse
|
25
|
Rossmeisl JH. New treatment modalities for brain tumors in dogs and cats. Vet Clin North Am Small Anim Pract 2014; 44:1013-38. [PMID: 25441624 DOI: 10.1016/j.cvsm.2014.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite advancements in standard therapies, intracranial tumors remain a significant source of morbidity and mortality in veterinary and human medicine. Several newer approaches are gaining more widespread acceptance or are currently being prepared for translation from experimental to routine therapeutic use. Clinical trials in dogs with spontaneous brain tumors have contributed to the development and human translation of several novel therapeutic brain tumor approaches.
Collapse
Affiliation(s)
- John H Rossmeisl
- Neurology and Neurosurgery, Department of Small Animal Clinical Sciences, VA-MD Regional College of Veterinary Medicine, Virginia Tech, 215 Duckpond Drive, Mail Code 0442, Blacksburg, VA 24061, USA.
| |
Collapse
|
26
|
Sewing ACP, Caretti V, Lagerweij T, Schellen P, Jansen MHA, van Vuurden DG, Idema S, Molthoff CFM, Vandertop WP, Kaspers GJL, Noske DP, Hulleman E. Convection enhanced delivery of carmustine to the murine brainstem: a feasibility study. J Neurosci Methods 2014; 238:88-94. [PMID: 25263805 DOI: 10.1016/j.jneumeth.2014.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Systemic delivery of therapeutic agents remains ineffective against diffuse intrinsic pontine glioma (DIPG), possibly due to an intact blood-brain-barrier (BBB) and to dose-limiting toxicity of systemic chemotherapeutic agents. Convection-enhanced delivery (CED) into the brainstem may provide an effective local delivery alternative for DIPG patients. NEW METHOD The aim of this study is to develop a method to perform CED into the murine brainstem and to test this method using the chemotherapeutic agent carmustine (BiCNU). To this end, a newly designed murine CED catheter was tested in vitro and in vivo. After determination of safety and distribution, mice bearing VUMC-DIPG-3 and E98FM-DIPG brainstem tumors were treated with carmustine dissolved in DW 5% or carmustine dissolved in 10% ethanol. RESULTS Our results show that CED into the murine brainstem is feasible and well tolerated by mice with and without brainstem tumors. CED of carmustine dissolved in 5% DW increased median survival of mice with VUMC-DIPG-3 and E98FM-DIPG tumors with 35% and 25% respectively. Dissolving carmustine in 10% ethanol further improved survival to 45% in mice with E98FM-DIPG tumors. COMPARISON WITH EXISTING METHODS Since genetically engineered and primary DIPG models are currently only available in mice, murine CED studies have clear advantages over CED studies in other animals. CONCLUSION CED in the murine brainstem can be performed safely, is well tolerated and can be used to study efficacy of chemotherapeutic agents orthotopically. These results set the foundation for more CED studies in murine DIPG models.
Collapse
Affiliation(s)
- A Charlotte P Sewing
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Viola Caretti
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Tonny Lagerweij
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Pepijn Schellen
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Marc H A Jansen
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Dannis G van Vuurden
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Carla F M Molthoff
- Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, The Netherlands
| | - W Peter Vandertop
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands
| | - Esther Hulleman
- Department of Pediatric Oncology, VU University Medical Center, Amsterdam, The Netherlands; Neuro-oncology Research Group, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Affiliation(s)
- Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medical College; and Memorial Sloan-Kettering Cancer Center, New York, New York
| |
Collapse
|
28
|
Sugiyama SI, Saito R, Funamoto K, Nakayama T, Sonoda Y, Yamashita Y, Inoue T, Kumabe T, Hayase T, Tominaga T. Computational simulation of convection-enhanced drug delivery in the non-human primate brainstem: a simple model predicting the drug distribution. Neurol Res 2013; 35:773-81. [DOI: 10.1179/1743132813y.0000000215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Shin-ichiro Sugiyama
- Department of NeurosurgeryTohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuta Saito
- Department of NeurosurgeryTohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Toshio Nakayama
- Graduate School of Biomedical EngineeringTohoku University, Sendai, Japan
| | - Yukihiko Sonoda
- Department of NeurosurgeryTohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoji Yamashita
- Department of NeurosurgeryTohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoo Inoue
- Department of NeurosurgeryTohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshihiro Kumabe
- Department of NeurosurgeryTohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Teiji Tominaga
- Department of NeurosurgeryTohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
29
|
Hardy PA, Keeley D, Schorn G, Forman E, Ai Y, Venugopalan R, Zhang Z, Bradley LH. Convection enhanced delivery of different molecular weight tracers of gadolinium-tagged polylysine. J Neurosci Methods 2013; 219:169-75. [PMID: 23912025 DOI: 10.1016/j.jneumeth.2013.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/17/2022]
Abstract
Convection enhanced delivery (CED) is a powerful method of circumventing the blood-brain barrier (BBB) to deliver therapeutic compounds directly to the CNS. While inferring the CED distribution of a therapeutic compound by imaging a magnetic resonance (MR)-sensitive tracer has many advantages, however how the compound distribution is affected by the features of the delivery system, its target tissue, and its molecular properties, such as its binding characteristics, charge, and molecular weight (MW) are not fully understood. We used MR imaging of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA)-tagged polylysine compounds of various MW, in vitro and in vivo, to measure the dependence of compounds MW on CED distribution. For the in vitro studies, the correlation between volume of distribution (Vd) as a function of MW was determined by measuring the T1 of the infused tracers, into 0.6% agarose gels through a multiport catheter. The compounds distributed in the gels inversely proportional to their MW, consistent with convection and unobstructed diffusion through a porous media. For the in vivo studies, Gd-DTPA tagged compounds were infused into the non-human primate putamen, via an implanted multiport catheter connected to a MedStream™ pump, programmed to deliver a predetermined volume with alternating on-off periods to take advantage of the convective and diffusive contributions to Vd. Unlike the gel studies, the higher MW polylysine-tracer infusions did not freely distribute from the multiport catheter in the putamen, suggesting that distribution was impeded by other properties that should also be considered in future tracer design and CED infusion protocols.
Collapse
Affiliation(s)
- Peter A Hardy
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, Lexington, KY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
This study presents a computational tool for auto-segmenting the distribution of brain infusions observed by magnetic resonance imaging. Clinical usage of direct infusion is increasing as physicians recognize the need to attain high drug concentrations in the target structure with minimal off-target exposure. By co-infusing a Gadolinium-based contrast agent and visualizing the distribution using real-time using magnetic resonance imaging, physicians can make informed decisions about when to stop or adjust the infusion. However, manual segmentation of the images is tedious and affected by subjective preferences for window levels, image interpolation and personal biases about where to delineate the edge of the sloped shoulder of the infusion. This study presents a computational technique that uses a Gaussian Mixture Model to efficiently classify pixels as belonging to either the high-intensity infusate or low-intensity background. The algorithm was implemented as a distributable plug-in for the widely used imaging platform OsiriX®. Four independent operators segmented fourteen anonymized datasets to validate the tool’s performance. The datasets were intra-operative magnetic resonance images of infusions into the thalamus or putamen of non-human primates. The tool effectively reproduced the manual segmentation volumes, while significantly reducing intra-operator variability by 67±18%. The tool will be used to increase efficiency and reduce variability in upcoming clinical trials in neuro-oncology and gene therapy.
Collapse
|
31
|
Mehta AI, Choi BD, Ajay D, Raghavan R, Brady M, Friedman AH, Pastan I, Bigner DD, Sampson JH. Convection enhanced delivery of macromolecules for brain tumors. Curr Drug Discov Technol 2013; 9:305-10. [PMID: 22339074 DOI: 10.2174/157016312803305951] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/01/2011] [Accepted: 09/09/2011] [Indexed: 11/22/2022]
Abstract
The blood brain barrier (BBB) poses a significant challenge for drug delivery of macromolecules into the brain. Convection-enhanced delivery (CED) circumvents the BBB through direct intracerebral infusion using a hydrostatic pressure gradient to transfer therapeutic compounds. The efficacy of CED is dependent on the distribution of the therapeutic agent to the targeted region. Here we present a review of convection enhanced delivery of macromolecules, emphasizing the role of tracers in enabling effective delivery anddiscuss current challenges in the field.
Collapse
Affiliation(s)
- Ankit I Mehta
- Division of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Saito R, Tominaga T. Convection-enhanced delivery: from mechanisms to clinical drug delivery for diseases of the central nervous system. Neurol Med Chir (Tokyo) 2013; 52:531-8. [PMID: 22976134 DOI: 10.2176/nmc.52.531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The evolution of cancer chemotherapy has been a major advance in medical science in the late 20th century. However, patients with malignant gliomas have not benefitted much. The blood-brain barrier (BBB), which always hinders the entry of therapeutic agents into the central nervous system (CNS), may at least partly be responsible. Convection-enhanced delivery (CED), a method for distributing large and small molecular weight compounds bypassing the BBB, enables robust distribution of the infused molecules at the site of infusion. CED is promising as an effective treatment not only for malignant gliomas but also for multiple CNS disorders because this method can effectively distribute multiple molecules that are potentially effective against different diseases. Although the method is quite simple, several problems require solution in developing novel CED-based strategies, including what, where, when, and how to infuse. This review discusses basic considerations when developing CED-based strategies for CNS diseases, focusing mainly on brain tumors.
Collapse
Affiliation(s)
- Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | |
Collapse
|
33
|
AndersoN RCE, Kennedy B, Yanes CL, Garvin J, Needle M, Canoll P, Feldstein NA, Bruce JN. Convection-enhanced delivery of topotecan into diffuse intrinsic brainstem tumors in children. J Neurosurg Pediatr 2013; 11:289-95. [PMID: 23240851 PMCID: PMC7227321 DOI: 10.3171/2012.10.peds12142] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Convection-enhanced delivery (CED) for the treatment of malignant gliomas is a technique that can deliver chemotherapeutic agents directly into the tumor and the surrounding interstitium through sustained, low-grade positive-pressure infusion. This allows for high local concentrations of drug within the tumor while minimizing systemic levels that often lead to dose-limiting toxicity. Diffuse intrinsic pontine gliomas (DIPGs) are universally fatal childhood tumors for which there is currently no effective treatment. In this report the authors describe CED of the topoisomerase inhibitor topotecan for the treatment of DIPG in 2 children. As part of a pilot feasibility study, the authors treated 2 pediatric patients with DIPG. Stereotactic biopsy with frozen section confirmation of glial tumor was followed by placement of bilateral catheters for CED of topotecan during the same procedure. The first patient underwent CED 210 days after initial diagnosis, after radiation therapy and at the time of tumor recurrence, with a total dose of 0.403 mg in 6.04 ml over 100 hours. Her Karnofsky Performance Status (KPS) score was 60 before CED and 50 posttreatment. Serial MRI initially demonstrated a modest reduction in tumor size and edema, but the tumor progressed and the patient died 49 days after treatment. The second patient was treated 24 days after the initial diagnosis prior to radiation with a total dose of 0.284 mg in 5.30 ml over 100 hours. Her KPS score was 70 before CED and 50 posttreatment. Serial MRI similarly demonstrated an initial modest reduction in tumor size. The patient subsequently underwent fractionated radiation therapy, but the tumor progressed and she died 120 days after treatment. Topotecan delivered by prolonged CED into the brainstem in children with DIPG is technically feasible. In both patients, high infusion rates (> 0.12 ml/hr) and high infusion volumes (> 2.8 ml) resulted in new neurological deficits and reduction in the KPS score, but lower infusion rates (< 0.04 ml/hr) were well tolerated. While serial MRI showed moderate treatment effect, CED did not prolong survival in these 2 patients. More studies are needed to improve patient selection and determine the optimal flow rates for CED of chemotherapeutic agents into DIPG to maximize safety and efficacy. Clinical trial registration no.: NCT00324844.
Collapse
Affiliation(s)
- Richard C. E. AndersoN
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Benjamin Kennedy
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Candix L. Yanes
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - James Garvin
- Departments of Oncology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Michael Needle
- Departments of Oncology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Peter Canoll
- Departments of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Neil A. Feldstein
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| | - Jeffrey N. Bruce
- Departments of Neurosurgery, Columbia University, College of Physicians and Surgeons, New York, New York
| |
Collapse
|
34
|
Sugiyama SI, Saito R, Nakamura T, Yamashita Y, Yokosawa M, Sonoda Y, Kumabe T, Watanabe M, Tominaga T. Safety and feasibility of convection-enhanced delivery of nimustine hydrochloride co-infused with free gadolinium for real-time monitoring in the primate brain. Neurol Res 2012; 34:581-7. [PMID: 22709625 DOI: 10.1179/1743132812y.0000000050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Convection-enhanced delivery (CED) has been developed as an effective drug-delivery strategy for brain tumors. Ideally, direct visualization of the tissue distribution of drugs infused by CED would assure successful delivery of therapeutic agents to the brain tumor while minimizing exposure of the normal brain tissue. We previously showed the anti-tumor efficacy of nimustine hydrochloride (ACNU) delivered via CED against a rodent intracranial xenografted tumor model. Here, we developed a method to monitor the drug distribution using a non-human primate brain. METHODS CED of a mixture of ACNU with gadodiamide was performed using three non-human primates under real-time magnetic resonance imaging monitoring. Animals were clinically observed for any toxicity after infusion. Two months later, their brains were subjected to histological examination for the evaluation of local toxicity. Another one animal was euthanized immediately after CED of a mixture of ACNU, gadodiamide, and Evans blue dye to evaluate the concordance between ACNU and gadodiamide distributions. The harvested brain was cut into blocks and the ACNU content was measured. RESULTS AND DISCUSSION Real-time magnetic resonance imaging monitoring of co-infused gadodiamide confirmed the success of the infusion maneuver. In the monkey that also received Evans blue, the distribution of Evans blue was similar to that of gadodiamide and paralleled the measured ACNU content, suggesting concordance between ACNU and gadodiamide distributions. Histological examination revealed minimum tissue damage with the infusion of ACNU at 1 mg/ml, determined as a safe dose in our previous rodent study. CED of ACNU can be co-administered with gadodiamide to ensure successful infusion and monitor the distribution volume.
Collapse
Affiliation(s)
- Shin-ichiro Sugiyama
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Fiandaca MS, Bankiewicz KS, Federoff HJ. Gene therapy for the treatment of Parkinson's disease: the nature of the biologics expands the future indications. Pharmaceuticals (Basel) 2012; 5:553-90. [PMID: 24281662 PMCID: PMC3763661 DOI: 10.3390/ph5060553] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 12/20/2022] Open
Abstract
The pharmaceutical industry's development of therapeutic medications for the treatment of Parkinson's disease (PD) endures, as a result of the continuing need for better agents, and the increased clinical demand due to the aging population. Each new drug offers advantages and disadvantages to patients when compared to other medical offerings or surgical options. Deep brain stimulation (DBS) has become a standard surgical remedy for the effective treatment of select patients with PD, for whom most drug regimens have failed or become refractory. Similar to DBS as a surgical option, gene therapy for the treatment of PD is evolving as a future option. In the four different PD gene therapy approaches that have reached clinical trials investigators have documented an excellent safety profile associated with the stereotactic delivery, viral vectors and doses utilized, and transgenes expressed. In this article, we review the clinically relevant gene therapy strategies for the treatment of PD, concentrating on the published preclinical and clinical results, and the likely mechanisms involved. Based on these presentations, we advance an analysis of how the nature of the gene therapy used may eventually expand the scope and utility for the management of PD.
Collapse
Affiliation(s)
- Massimo S. Fiandaca
- Translational NeuroTherapy Center, Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Mission Center Building, San Francisco, CA 94103, USA; (K.S.B.)
| | - Krystof S. Bankiewicz
- Translational NeuroTherapy Center, Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Mission Center Building, San Francisco, CA 94103, USA; (K.S.B.)
| | - Howard J. Federoff
- Departments of Neurology and Neuroscience, Georgetown University Medical Center, 4000 Reservoir Road, Washington, DC 20007, USA; (H.J.F.)
| |
Collapse
|
36
|
van der Bom IMJ, Moser RP, Gao G, Sena-Esteves M, Aronin N, Gounis MJ. Frameless multimodal image guidance of localized convection-enhanced delivery of therapeutics in the brain. J Neurointerv Surg 2011; 5:69-72. [PMID: 22193239 PMCID: PMC3533401 DOI: 10.1136/neurintsurg-2011-010170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Convection-enhanced delivery (CED) has been shown to be an effective method of administering macromolecular compounds into the brain that are unable to cross the blood-brain barrier. Because the administration is highly localized, accurate cannula placement by minimally invasive surgery is an important requisite. This paper reports on the use of an angiographic c-arm system which enables truly frameless multimodal image guidance during CED surgery. METHODS A microcannula was placed into the striatum of five sheep under real-time fluoroscopic guidance using imaging data previously acquired by cone beam computed tomography (CBCT) and MRI, enabling three-dimensional navigation. After introduction of the cannula, high resolution CBCT was performed and registered with MRI to confirm the position of the cannula tip and to make adjustments as necessary. Adeno-associated viral vector-10, designed to deliver small-hairpin micro RNA (shRNAmir), was mixed with 2.0 mM gadolinium (Gd) and infused at a rate of 3 μl/min for a total of 100 μl. Upon completion, the animals were transferred to an MR scanner to assess the approximate distribution by measuring the volume of spread of Gd. RESULTS The cannula was successfully introduced under multimodal image guidance. High resolution CBCT enabled validation of the cannula position and Gd-enhanced MRI after CED confirmed localized administration of the therapy. CONCLUSION A microcannula for CED was introduced into the striatum of five sheep under multimodal image guidance. The non-alloy 300 μm diameter cannula tip was well visualized using CBCT, enabling confirmation of the position of the end of the tip in the area of interest.
Collapse
|
37
|
Asthagiri AR, Walbridge S, Heiss JD, Lonser RR. Effect of concentration on the accuracy of convective imaging distribution of a gadolinium-based surrogate tracer. J Neurosurg 2011; 115:467-73. [PMID: 21619409 PMCID: PMC4294191 DOI: 10.3171/2011.3.jns101381] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Accurate real-time imaging of coinfused surrogate tracers can be used to determine the convective distribution of therapeutic agents. To assess the effect that a concentration of a Gd-based surrogate tracer has on the accuracy of determining the convective distribution, the authors infused different concentrations of Gd-diethylenetriamine pentaacetic acid (DTPA) in primates during MR imaging. METHODS Five nonhuman primates underwent convective infusion (1 or 5 mM, 21-65 μl) of Gd-DTPA alone, Gd-DTPA and (14)C-sucrose, or Gd-DTPA and (14)C-dextran into the bilateral striata. Animals underwent real-time MR imaging during infusion (5 animals) and autoradiographic analysis (2 animals). RESULTS Gadolinium-DTPA could be seen filling the striata at either concentration (1 or 5 mM) on real-time MR imaging. While the volume of distribution (Vd) increased linearly with the volume of infusion (Vi) for both concentrations of tracer (1 mM: R(2) = 0.83; 5 mM: R(2) = 0.96), the Vd/Vi ratio was significantly (p < 0.0001) less for the 1-mM (2.3 ± 1.0) as compared with the 5-mM (7.4 ± 1.9) concentration. Autoradiographic and MR volumetric analysis revealed that the 5-mM concentration most accurately estimated the Vd for both small (sucrose [359 D], 12% difference between imaging and autoradiographic distribution) and large (dextran [70 kD], 0.2% difference) molecules compared with the 1-mM concentration (sucrose, 65% difference; dextran, 68% difference). CONCLUSIONS The concentration of infused Gd-DTPA plays a critical role in accurately assessing the distribution of molecules delivered by CED. A 5-mM concentration of Gd-DTPA most accurately estimated the Vd over a wide range of molecular sizes.
Collapse
Affiliation(s)
- Ashok R Asthagiri
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1414, USA.
| | | | | | | |
Collapse
|
38
|
Sampson JH, Raghavan R, Brady M, Friedman AH, Bigner D. Convection-enhanced delivery. J Neurosurg 2011; 115:463-4; discussion 465-6. [PMID: 21619413 DOI: 10.3171/2010.11.jns101801] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Saito R, Sonoda Y, Kumabe T, Nagamatsu KI, Watanabe M, Tominaga T. Regression of recurrent glioblastoma infiltrating the brainstem after convection-enhanced delivery of nimustine hydrochloride. J Neurosurg Pediatr 2011; 7:522-6. [PMID: 21529193 DOI: 10.3171/2011.2.peds10407] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This 13-year-old boy with a history of cranial irradiation for the CNS recurrence of acute lymphocytic leukemia developed a glioblastoma in the right cerebellum. Resection and chemo- and radiotherapy induced remission of the disease. However, recurrence was noted in the brainstem region 8 months later. Because no effective treatment was available for this recurrent lesion, the authors decided to use convection-enhanced delivery (CED) to infuse nimustine hydrochloride. On stereotactic insertion of the infusion cannula into the brainstem lesion, CED of nimustine hydrochloride was performed with real-time MR imaging to monitor the co-infused chelated gadolinium. The patient's preinfusion symptom of diplopia disappeared after treatment. Follow-up MR imaging revealed the response of the tumor. The authors report on a case of recurrent glioblastoma infiltrating the brainstem that regressed after CED of nimustine hydrochloride.
Collapse
Affiliation(s)
- Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Sah DWY, Aronin N. Oligonucleotide therapeutic approaches for Huntington disease. J Clin Invest 2011; 121:500-7. [PMID: 21285523 DOI: 10.1172/jci45130] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Huntington disease is an autosomal dominant neurodegenerative disorder caused by a toxic expansion in the CAG repeat region of the huntingtin gene. Oligonucleotide approaches based on RNAi and antisense oligonucleotides provide promising new therapeutic strategies for direct intervention through reduced production of the causative mutant protein. Allele-specific and simultaneous mutant and wild-type allele-lowering strategies are being pursued with local delivery to the brain, each with relative merits. Delivery remains a key challenge for translational success, especially with chronic therapy. The potential of disease-modifying oligonucleotide approaches for Huntington disease will be revealed as they progress into clinical trials.
Collapse
Affiliation(s)
- Dinah W Y Sah
- Alnylam Pharmaceuticals Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
41
|
Yin D, Richardson RM, Fiandaca MS, Bringas J, Forsayeth J, Berger MS, Bankiewicz KS. Cannula placement for effective convection-enhanced delivery in the nonhuman primate thalamus and brainstem: implications for clinical delivery of therapeutics. J Neurosurg 2010; 113:240-8. [PMID: 20367078 DOI: 10.3171/2010.2.jns091744] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this study was to optimize stereotactic coordinates for delivery of therapeutic agents into the thalamus and brainstem, using convection-enhanced delivery (CED) to avoid leakage into surrounding anatomical structures while maximizing CED of therapeutics within the target volume. METHODS The authors recently published targeting data for the nonhuman primate putamen in which they defined infusion parameters, referred to as "red," "blue," and "green" zones, that describe cannula placements resulting in poor, suboptimal, and optimal volumes of distribution, respectively. In the present study, the authors retrospectively analyzed 22 MR images with gadoteridol as a contrast reagent, which were obtained during CED infusions into the thalamus (14 cases) and brainstem (8 cases) of nonhuman primates. RESULTS Excellent distribution of gadoteridol within the thalamus was obtained in 8 cases and these were used to define an optimal target locus (or green zone). Good distribution in the thalamus, with variable leakage into adjacent anatomical structures, was noted in 6 cases, defining a blue zone. Quantitative containment (99.7 +/- 0.2%) of gadoteridol within the thalamus was obtained when the cannula was placed in the green zone, and less containment (85.4 +/- 3.8%) was achieved with cannula placement in the blue zone. Similarly, a green zone was also defined in the brainstem, and quantitative containment of infused gadoteridol within the brainstem was 99.4 +/- 0.6% when the cannula was placed in the green zone. These results were used to determine a set of 3D stereotactic coordinates that define an optimal site for infusions intended to cover the thalamus and brainstem of nonhuman primates. CONCLUSIONS The present study provides quantitative analysis of cannula placement and infusate distribution using real-time MR imaging and defines an optimal zone for infusion in the nonhuman primate thalamus and brainstem. Cannula placement recommendations developed from such translational nonhuman primate studies have significant implications for the design of anticipated clinical trials featuring CED therapy into the thalamus and brainstem for CNS diseases.
Collapse
Affiliation(s)
- Dali Yin
- Department of Neurosurgery, University of California, San Francisco, California 94103, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Souweidane MM, Fraser JF, Arkin LM, Sondhi D, Hackett NR, Kaminsky SM, Heier L, Kosofsky BE, Worgall S, Crystal RG, Kaplitt MG. Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr 2010; 6:115-22. [PMID: 20672930 PMCID: PMC3763702 DOI: 10.3171/2010.4.peds09507] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECT The authors conducted a phase I study of late infantile neuronal ceroid lipofuscinosis using an adenoassociated virus serotype 2 (AAV2) vector containing the deficient CLN2 gene (AAV2(CU)hCLN2). The operative technique, radiographic changes, and surgical complications are presented. METHODS Ten patients with late infantile neuronal ceroid lipofuscinosis disease each underwent infusion of AAV2(CU)hCLN2 (3 x 10(12) particle units) into 12 distinct cerebral locations (2 depths/bur hole, 75 minutes/infusion, and 2 microl/minute). Innovative surgical techniques were developed to overcome several obstacles for which little or no established techniques were available. Successful infusion relied on preoperative stereotactic planning to optimize a parenchymal target and diffuse administration. Six entry sites, each having 2 depths of injections, were used to reduce operative time and enhance distribution. A low-profile rigid fixation system with 6 integrated holding arms was utilized to perform simultaneous infusions within a practical time frame. Dural sealant with generous irrigation was used to avoid CSF egress with possible subdural hemorrhage or altered stereotactic registration. RESULTS Radiographically demonstrated changes were seen in 39 (65%) of 60 injection sites, confirming localization and infusion. There were no radiographically or clinically defined complications. CONCLUSIONS The neurosurgical considerations and results of this study are presented to offer guidance and a basis for the design of future gene therapy or other clinical trials in children that utilize direct therapeutic delivery.
Collapse
Affiliation(s)
- Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medical College, Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Ding D, Kanaly CW, Cummings TJ, Herndon JE, Raghavan R, Sampson JH. Long-term safety of combined intracerebral delivery of free gadolinium and targeted chemotherapeutic agent PRX321. Neurol Res 2009; 32:810-5. [PMID: 20021739 DOI: 10.1179/174367509x12581069052090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES While convection enhanced delivery (CED) is an effective delivery method that bypasses the blood-brain barrier, its utility is limited by infusate leakage due to catheter misplacement. Therefore, it is critical to evaluate drug distribution during CED infusion. Gadolinium conjugated to diethylenetriamine penta-acetic acid (Gd-DTPA) is a common, readily available MRI contrast agent, which may be able to predict and actively monitor drug distribution. In this study, we assess the long-term safety and toxicity of intracerebrally infused Gd-DTPA along with an experimental targeted agent PRX321. METHODS Fifty-four immunocompetent rats were implanted with intracerebral cannulas linked to subcutaneously placed osmotic pumps. After pump implantation, the rats were randomized into six groups of nine rats each in order to assess the toxicities of six different concentrations of human serum albumin (HSA) with and without Gd-DTPA and PRX321. The rats were monitored clinically for 6 weeks before they were autopsied and assessed for histological toxicity to their central nervous system (CNS). RESULTS There was one unexplained death in a group infusing low concentration HSA, Gd-DTPA and PRX321. Upon microscopic examination of the CNS in that animal, no unexpected histological toxicity was found. Additionally, there were no signs of clinical or histological toxicity in any of the remaining rats, which all survived until the end of the 6 week observation period. DISCUSSION Free Gd-DTPA can be safely infused via CED in a pre-clinical animal model. Future studies should include its use in predicting and actively monitoring CED drug infusions in early phase human clinical trials.
Collapse
Affiliation(s)
- Dale Ding
- School of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Convection-enhanced delivery of free gadolinium with the recombinant immunotoxin MR1-1. J Neurooncol 2009; 98:1-7. [PMID: 19898744 DOI: 10.1007/s11060-009-0046-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 10/26/2009] [Indexed: 10/20/2022]
Abstract
A major obstacle in glioblastoma (GBM) therapy is the restrictive nature of the blood-brain barrier (BBB). Convection-enhanced delivery (CED) is a novel method of drug administration which allows direct parenchymal infusion of therapeutics, bypassing the BBB. MR1-1 is a novel recombinant immunotoxin that targets the GBM tumor-specific antigen EGFRvIII and can be delivered via CED infusion. However, drug distribution via CED varies dramatically, which necessitates active monitoring. Gadolinium conjugated to diethylenetriamine penta-acetic acid (Gd-DTPA) is a commonly used MRI contrast agent which can be co-infused with therapies using CED and may be useful in monitoring infusion leak and early distribution. Forty immunocompetent rats were implanted with intracerebral cannulas that were connected to osmotic pumps and subsequently randomized into four groups that each received 0.2% human serum albumin (HSA) mixed with a different experimental infusion: (1) 25 ng/ml MR1-1; (2) 0.1 micromol/ml Gd-DTPA; (3) 25 ng/ml MR1-1 and 0.1 micromol/ml Gd-DTPA; (4) 250 ng/ml MR1-1 and 0.1 micromol/ml Gd-DTPA. The rats were monitored clinically for 6 weeks then necropsied and histologically assessed for CNS toxicity. All rats survived the entirety of the study without clinical or histological toxicity attributable to the study drugs. There was no statistically significant difference in weight change over time among groups (P > 0.999). MR1-1 co-infused with Gd-DTPA via CED is safe in the long-term setting in a pre-clinical animal model. Our data supports the use of Gd-DTPA, as a surrogate tracer, co-infused with MR1-1 for drug distribution monitoring in patients with GBM.
Collapse
|
47
|
Abstract
Surgery is an integral component and typically the first line of therapy for children with central nervous system tumors. The outcome with regard to surgical morbidity and disease control can be greatly influenced by the initial care that these children receive. Conventional aims of neurosurgery including tumor removal, management of hydrocephalus, and diagnostic sampling have been radically modified with innovative technologies such as navigational guidance, functional mapping, endoscopic surgery, second-look surgery, and physiologic imaging. The overall role of the pediatric neurosurgeon in caring for children with nervous system tumors is also expanding to include unconventional responsibilities including disease staging, tissue procurement, and drug delivery. It is thus anticipated that the pediatric neurosurgeon will be increasingly relied upon for oncologic therapeutic strategies and should thus remain abreast of forthcoming information and technologies.
Collapse
Affiliation(s)
- Mark M Souweidane
- Departments of Neurological Surgery and Pediatrics, Weill Cornell Medical College and Memorial Sloan-Kettering Cancer Center, NY 10021, USA.
| |
Collapse
|
48
|
Yin D, Valles FE, Fiandaca MS, Bringas J, Gimenez F, Berger MS, Forsayeth J, Bankiewicz KS. Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage 2009; 54 Suppl 1:S196-203. [PMID: 19761848 DOI: 10.1016/j.neuroimage.2009.08.069] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 07/21/2009] [Accepted: 08/05/2009] [Indexed: 11/30/2022] Open
Abstract
Optimal results in the direct brain delivery of brain therapeutics such as growth factors or viral vector into primate brain depend on reproducible distribution throughout the target region. In the present study, we retrospectively analyzed MRI of 25 convection-enhanced delivery (CED) infusions with MRI contrast into the putamen of non-human primates (NHP). Infused volume (V(i)) was compared to total volume of distribution (V(d)) versus V(d) within the target putamen. Excellent distribution of contrast agent within the putamen was obtained in eight cases that were used to define an optimal target volume or "green" zone. Partial or poor distribution with leakage into adjacent anatomical structures was noted in 17 cases, defining "blue" and "red" zones, respectively. Quantitative containment (99±1%) of infused gadoteridol within the putamen was obtained when the cannula was placed in the green zone, 87±3% in the blue zone and 49±0.05% in the red zone. These results were used to determine a set of 3D stereotactic coordinates that define an optimal site for putaminal infusions in NHP and human putamen. We conclude that cannula placement and definition of optimal (green zone) stereotactic coordinates have important implications in ensuring effective delivery of therapeutics into the putamen utilizing routine stereotactic MRI localization procedures and should be considered when local therapies such as gene transfer or protein administration are being translated into clinical therapy.
Collapse
Affiliation(s)
- Dali Yin
- Department of Neurosurgery, University of California San Francisco, 1855 Folsom Street, MCB 226, San Francisco, CA 94103, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Fiandaca MS, Varenika V, Eberling J, McKnight T, Bringas J, Pivirotto P, Beyer J, Hadaczek P, Bowers W, Park J, Federoff H, Forsayeth J, Bankiewicz KS. Real-time MR imaging of adeno-associated viral vector delivery to the primate brain. Neuroimage 2009; 47 Suppl 2:T27-35. [PMID: 19095069 PMCID: PMC2730220 DOI: 10.1016/j.neuroimage.2008.11.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 10/08/2008] [Accepted: 11/12/2008] [Indexed: 01/11/2023] Open
Abstract
We are developing a method for real-time magnetic resonance imaging (MRI) visualization of convection-enhanced delivery (CED) of adeno-associated viral vectors (AAV) to the primate brain. By including gadolinium-loaded liposomes (GDL) with AAV, we can track the convective movement of viral particles by continuous monitoring of distribution of surrogate GDL. In order to validate this approach, we infused two AAV (AAV1-GFP and AAV2-hAADC) into three different regions of non-human primate brain (corona radiata, putamen, and thalamus). The procedure was tolerated well by all three animals in the study. The distribution of GFP determined by immunohistochemistry in both brain regions correlated closely with distribution of GDL determined by MRI. Co-distribution was weaker with AAV2-hAADC, although in vivo PET scanning with FMT for AADC activity correlated well with immunohistochemistry of AADC. Although this is a relatively small study, it appears that AAV1 correlates better with MRI-monitored delivery than does AAV2. It seems likely that the difference in distribution may be due to differences in tissue specificity of the two serotypes.
Collapse
Affiliation(s)
- Massimo S. Fiandaca
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
| | - Vanja Varenika
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
| | - Jamie Eberling
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
- Center For Functional Imaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Tracy McKnight
- Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - John Bringas
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
| | - Phillip Pivirotto
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
| | - Janine Beyer
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
| | - Piotr Hadaczek
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
| | | | - John Park
- Hematology/Oncology Department, University of California San Francisco, San Francisco, CA, USA
| | | | - John Forsayeth
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
| | - Krystof S. Bankiewicz
- Department of Neurological Surgery, University of California San Francisco, 1855 Folsom Street, Room 226, San Francisco, CA 94103, USA
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to determine if recent advances in diagnostic and treatment modalities result in improvement in the pattern of care of brainstem gliomas. RECENT FINDINGS New MRI techniques may contribute to differential diagnosis and aid neurosurgeons in removing resectable brainstem tumors. A better radiological analysis of these heterogeneous tumors improves their classification and helps to better distinguish prognosis subgroups. However, biopsy remains indicated in many contrast enhancing brainstem masses in adults because of the great variety of differential diagnosis. SUMMARY Diffuse brainstem glioma is the most common subtype of brainstem tumor and remains a devastating malignancy in children. Conventional radiotherapy is the standard of care and chemotherapy has been disappointing to date. Given the lack of efficacy of conventional drugs, a better understanding of the biology of this tumor is the key to more targeted therapy.
Collapse
|