1
|
Jearjaroen P, Thangwong P, Tocharus C, Chaichompoo W, Suksamrarn A, Tocharus J. Hexahydrocurcumin attenuated demyelination and improved cognitive impairment in chronic cerebral hypoperfusion rats. Inflammopharmacology 2024; 32:1531-1544. [PMID: 38153537 DOI: 10.1007/s10787-023-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Age-related white matter lesions (WML) frequently present vascular problems by decreasing cerebral blood supply, resulting in the condition known as chronic cerebral hypoperfusion (CCH). This study aimed to investigate the effect of hexahydrocurcumin (HHC) on the processes of demyelination and remyelination induced by the model of the Bilateral Common Carotid Artery Occlusion (BCCAO) for 29 days to mimic the CCH condition. The pathological appearance of myelin integrity was significantly altered by CCH, as evidenced by Transmission Electron Microscopy (TEM) and Luxol Fast Blue (LFB) staining. In addition, CCH activated A1-astrocytes and reactive-microglia by increasing the expression of Glial fibrillary acidic protein (GFAP), complement 3 (C3d) and pro-inflammatory cytokines. However, S100a10 expression, a marker of neuroprotective astrocytes, was suppressed, as were regenerative factors including (IGF-1) and Transglutaminase 2 (TGM2). Therefore, the maturation step was obstructed as shown by decreases in the levels of myelin basic protein (MBP) and the proteins related with lipid synthesis. Cognitive function was therefore impaired in the CCH model, as evidenced by the Morris water maze test. By contrast, HHC treatment significantly improved myelin integrity, and inhibited A1-astrocytes and reactive-microglial activity. Consequently, pro-inflammatory cytokines and A1-astrocytes were attenuated, and regenerative factors increased assisting myelin maturation and hence improving cognitive performance. In conclusion, HHC improves cognitive function and also the integrity of white matter in CCH rats by reducing demyelination, and pro-inflammatory cytokine production and promoting the process of remyelination.
Collapse
Affiliation(s)
- Pranglada Jearjaroen
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Phakkawat Thangwong
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chianqg Mai, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Baaklini CS, Ho MFS, Lange T, Hammond BP, Panda SP, Zirngibl M, Zia S, Himmelsbach K, Rana H, Phillips B, Antoszko D, Ibanga J, Lopez M, Lee KV, Keough MB, Caprariello AV, Kerr BJ, Plemel JR. Microglia promote remyelination independent of their role in clearing myelin debris. Cell Rep 2023; 42:113574. [PMID: 38100356 DOI: 10.1016/j.celrep.2023.113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease characterized by myelin loss. While therapies exist to slow MS progression, no treatment currently exists for remyelination. Remyelination, linked to reduced disability in MS, relies on microglia and monocyte-derived macrophages (MDMs). This study aims to understand the role of microglia during remyelination by lineage tracing and depleting them. Microglial lineage tracing reveals that both microglia and MDMs initially accumulate, but microglia later dominate the lesion. Microglia and MDMs engulf equal amounts of inhibitory myelin debris, but after microglial depletion, MDMs compensate by engulfing more myelin debris. Microglial depletion does, however, reduce the recruitment and proliferation of oligodendrocyte progenitor cells (OPCs) and impairs their subsequent differentiation and remyelination. These findings underscore the essential role of microglia during remyelination and offer insights for enhancing this process by understanding microglial regulation of remyelination.
Collapse
Affiliation(s)
- Charbel S Baaklini
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Madelene F S Ho
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tristan Lange
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Brady P Hammond
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sharmistha P Panda
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Martin Zirngibl
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kassandre Himmelsbach
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Heli Rana
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Braxton Phillips
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daria Antoszko
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jeremies Ibanga
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Mizuki Lopez
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Kelly V Lee
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Michael B Keough
- Division of Neurosurgery, Department of Surgery, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, AB T2N 1N4, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
3
|
Sheng X, Zhao J, Li M, Xu Y, Zhou Y, Xu J, He R, Lu H, Wu T, Duan C, Cao Y, Hu J. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Accelerate Functional Recovery After Spinal Cord Injury by Promoting the Phagocytosis of Macrophages to Clean Myelin Debris. Front Cell Dev Biol 2021; 9:772205. [PMID: 34820385 PMCID: PMC8606563 DOI: 10.3389/fcell.2021.772205] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/11/2021] [Indexed: 01/18/2023] Open
Abstract
Macrophage phagocytosis contributes predominantly to processing central nervous system (CNS) debris and further facilitates neurological function restoration after CNS injury. The aims of this study were to evaluate the effect of bone marrow mesenchymal stem cells (BMSC)-derived exosomes (BMSC-Exos) on the phagocytic capability of macrophages to clear myelin debris and to investigate the underlying molecular mechanism during the spinal cord injury (SCI) process. This work reveals that monocyte-derived macrophages (MDMs) infiltrating into the SCI site could efficiently engulf myelin debris and process phagocytic material. However, the phagocytic ability of macrophages to clear tissue debris is compromised after SCI. The administration of BMSC-Exos as an approach for SCI treatment could rescue macrophage normal function by improving the phagocytic capability of myelin debris internalization, which is beneficial for SCI repair, as evidenced by better axon regrowth and increased hindlimb locomotor functional recovery in a rodent model. Examination of macrophage treatment with BMSC-Exos revealed that BMSC-Exos could promote the capacity of macrophages to phagocytose myelin debris in vitro and could create a regenerative microenvironment for axon regrowth. In addition, we confirmed that BMSC-Exo treatment resulted in improved phagocytosis of engulfed myelin debris by promoting the expression of macrophage receptor with collagenous structure (MARCO) in macrophages. The inhibition of MARCO with PolyG (a MARCO antagonist) impaired the effect of BMSC-Exos on the phagocytic capacity of macrophages and resulted in compromised myelin clearance at the lesion site, leading to further tissue damage and impaired functional healing after SCI. In conclusion, these data indicated that targeting the phagocytic ability of macrophages may have therapeutic potential for the improvement in functional healing after SCI. The administration of BMSC-Exos as a cell-free immune therapy strategy has wide application prospects for SCI treatment.
Collapse
Affiliation(s)
- Xiaolong Sheng
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinyun Zhao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Miao Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Orthopedics, Hunan Children's Hospital, Changsha, China
| | - Yan Xu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhou
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Pain, Institute of Pain Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jiaqi Xu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rundong He
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hongbin Lu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Tianding Wu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunyue Duan
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yong Cao
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jianzhong Hu
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Hunan Engineering Research Center of Sports and Health, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Aschauer-Wallner S, Leis S, Bogdahn U, Johannesen S, Couillard-Despres S, Aigner L. Granulocyte colony-stimulating factor in traumatic spinal cord injury. Drug Discov Today 2021; 26:1642-1655. [PMID: 33781952 DOI: 10.1016/j.drudis.2021.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/23/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022]
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine used in pharmaceutical preparations for the treatment of chemotherapy-induced neutropenia. Evidence from experimental studies indicates that G-CSF exerts relevant activities in the central nervous system (CNS) in particular after lesions. In acute, subacute, and chronic CNS lesions, G-CSF appears to have strong anti-inflammatory, antiapoptotic, antioxidative, myelin-protective, and axon-regenerative activities. Additional effects result in the stimulation of angiogenesis and neurogenesis as well as in bone marrow stem cell mobilization to the CNS. There are emerging preclinical and clinical data indicating that G-CSF is a safe and effective drug for the treatment of acute and chronic traumatic spinal cord injury (tSCI), which we summarize in this review.
Collapse
Affiliation(s)
- Stephanie Aschauer-Wallner
- Department of Orthopedics and Traumatology, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria; Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria.
| | - Stefan Leis
- Department of Neurology, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Ulrich Bogdahn
- Velvio GmbH, Regensburg, Germany; Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Siw Johannesen
- Department of Neurology, University Hospital Regensburg, Regensburg, Germany; Department of Neurology, BG Trauma Center Murnau, Murnau, Germany
| | - Sebastien Couillard-Despres
- Institute of Experimental Neuroregeneration, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University Salzburg, Salzburg, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
5
|
Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis 2021; 36:375-406. [PMID: 33404937 DOI: 10.1007/s11011-020-00648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) as a chronic inflammatory disorder of the central nervous system (CNS) is thought to be caused by the abnormal induction of immune responses. Chemokines as molecules that can engage leukocytes into the location of inflammation, actively participate in the pathogenesis of MS. Several members of this family of chemo attractants have been shown to be dysregulated in the peripheral blood, cerebrospinal fluid or CNS lesions of MS patients. Studies in animal models of MS particularly experimental autoimmune encephalomyelitis have indicated the critical roles of chemokines in the pathophysiology of MS. In the current review, we summarize the data regarding the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of MS.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Enos N, Takenaka H, Scott S, Salfity HVN, Kirk M, Egar MW, Sarria DA, Slayback-Barry D, Belecky-Adams T, Chernoff EAG. Meningeal Foam Cells and Ependymal Cells in Axolotl Spinal Cord Regeneration. Front Immunol 2019; 10:2558. [PMID: 31736973 PMCID: PMC6838144 DOI: 10.3389/fimmu.2019.02558] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/15/2019] [Indexed: 12/01/2022] Open
Abstract
A previously unreported population of foam cells (foamy macrophages) accumulates in the invasive fibrotic meninges during gap regeneration of transected adult Axolotl spinal cord (salamander Ambystoma mexicanum) and may act beneficially. Multinucleated giant cells (MNGCs) also occurred in the fibrotic meninges. Actin-label localization and transmission electron microscopy showed characteristic foam cell and MNGC podosome and ruffled border-containing sealing ring structures involved in substratum attachment, with characteristic intermediate filament accumulations surrounding nuclei. These cells co-localized with regenerating cord ependymal cell (ependymoglial) outgrowth. Phase contrast-bright droplets labeled with Oil Red O, DiI, and DyRect polar lipid live cell label showed accumulated foamy macrophages to be heavily lipid-laden, while reactive ependymoglia contained smaller lipid droplets. Both cell types contained both neutral and polar lipids in lipid droplets. Foamy macrophages and ependymoglia expressed the lipid scavenger receptor CD36 (fatty acid translocase) and the co-transporter toll-like receptor-4 (TLR4). Competitive inhibitor treatment using the modified fatty acid Sulfo-N-succinimidyl Oleate verified the role of the lipid scavenger receptor CD36 in lipid uptake studies in vitro. Fluoromyelin staining showed both cell types took up myelin fragments in situ during the regeneration process. Foam cells took up DiI-Ox-LDL and DiI-myelin fragments in vitro while ependymoglia took up only DiI-myelin in vitro. Both cell types expressed the cysteine proteinase cathepsin K, with foam cells sequestering cathepsin K within the sealing ring adjacent to the culture substratum. The two cell types act as sinks for Ox-LDL and myelin fragments within the lesion site, with foamy macrophages showing more Ox-LDL uptake activity. Cathepsin K activity and cellular localization suggested that foamy macrophages digest ECM within reactive meninges, while ependymal cells act from within the spinal cord tissue during outgrowth into the lesion site, acting in complementary fashion. Small MNGCs also expressed lipid transporters and showed cathepsin K activity. Comparison of 3H-glucosamine uptake in ependymal cells and foam cells showed that only ependymal cells produce glycosaminoglycan and proteoglycan-containing ECM, while the cathepsin studies showed both cell types remove ECM. Interaction of foam cells and ependymoglia in vitro supported the dispersion of ependymal outgrowth associated with tissue reconstruction in Axolotl spinal cord regeneration.
Collapse
Affiliation(s)
- Nathaniel Enos
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Hidehito Takenaka
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Sarah Scott
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Hai V N Salfity
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Maia Kirk
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Margaret W Egar
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Deborah A Sarria
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Denise Slayback-Barry
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Teri Belecky-Adams
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Ellen A G Chernoff
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
7
|
Chen Q, Deng B, Gao J, Zhao Z, Chen Z, Song S, Wang L, Zhao L, Xu W, Zhang C, Wang S, Ma C. Comparative Analysis of miRNA Abundance Revealed the Function of Vvi-miR828 in Fruit Coloring in Root Restriction Cultivation Grapevine ( Vitis vinifera L.). Int J Mol Sci 2019; 20:ijms20164058. [PMID: 31434233 PMCID: PMC6720769 DOI: 10.3390/ijms20164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 11/22/2022] Open
Abstract
Root restriction cultivation leads to early maturation and quality improvement, especially in the anthocyanin content in grapevine. However, the molecular mechanisms that underlie these changes have not been thoroughly elucidated. In this study, four small RNA libraries were constructed, which included the green soft stage (GS) and ripe stage (RS) of ‘Muscat’ (Vitis vinifera L.) grape berries that were grown under root restriction (RR) and in traditional cultivation (no root restriction, CK). A total of 162 known miRNAs and 14 putative novel miRNAs were detected from the four small RNA libraries by high-throughput sequencing. An analysis of differentially expressed miRNAs (DEMs) revealed that 13 miRNAs exhibited significant differences in expression between RR and CK at the GS and RS stages, respectively. For different developmental stages of fruit, 23 and 34 miRNAs showed expression differences between the GS and RS stages in RR and CK, respectively. The expression patterns of the eight DEMs and their targets were verified by qRT-PCR, and the expression profiles of target genes were confirmed to be complementary to the corresponding miRNAs in RR and CK. The function of Vvi-miR828, which showed the down regulated expression in the RS stage under root restriction, was identified by gene transformation in Arabidopsis. The anthocyanin content significantly decreased in transgenic lines, which indicates the regulatory capacity of Vvi-miR828 in fruit coloration. The miRNA expression pattern comparison between RR and CK might provide a means of unraveling the miRNA-mediated molecular process regulating grape berry development under root restricted cultivation.
Collapse
Affiliation(s)
- Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bohan Deng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zili Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Agro-Food Science and Technology/Key Laboratory of Agro-Products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Abstract
Spinal cord injury (SCI) is a common medical condition with a poor prognosis for recovery and catastrophic effects on a patient's quality of life. Available treatments for SCI are limited, and the evidence suggesting their harmful side effects is more consistent than any suggestion of clinical benefit. Developing novel safe and effective therapeutic options for SCI is crucial. Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine with known multifaceted effects on the central nervous system. Herein, we review the accumulating preclinical evidence for the beneficial effects of G-CSF on functional and structural outcomes after SCI. Meanwhile we present and discuss multiple mechanisms for G-CSF's neuroprotective and neuroregenerative actions through the results of these studies. In addition, we present the available clinical evidence indicating the efficacy and safety of G-CSF administration for the treatment of acute and chronic traumatic SCI, compression myelopathy, and SCI-associated neuropathic pain. Our review indicates that although the quality of clinical evidence regarding the use of G-CSF in SCI is inadequate, the encouraging available preclinical and clinical data warrant its further clinical development, and bring new hope to the longstanding challenge that is treatment of SCI.
Collapse
|
9
|
Kopper TJ, Gensel JC. Myelin as an inflammatory mediator: Myelin interactions with complement, macrophages, and microglia in spinal cord injury. J Neurosci Res 2017; 96:969-977. [PMID: 28696010 DOI: 10.1002/jnr.24114] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/24/2022]
Abstract
Spinal cord injury (SCI) triggers chronic intraspinal inflammation consisting of activated resident and infiltrating immune cells (especially microglia/macrophages). The environmental factors contributing to this protracted inflammation are not well understood; however, myelin lipid debris is a hallmark of SCI. Myelin is also a potent macrophage stimulus and target of complement-mediated clearance and inflammation. The downstream effects of these neuroimmune interactions have the potential to contribute to ongoing pathology or facilitate repair. This depends in large part on whether myelin drives pathological or reparative macrophage activation states, commonly referred to as M1 (proinflammatory) or M2 (alternatively) macrophages, respectively. Here we review the processes by which myelin debris may be cleared through macrophage surface receptors and the complement system, how this differentially influences macrophage and microglial activation states, and how the cellular functions of these myelin macrophages and complement proteins contribute to chronic inflammation and secondary injury after SCI.
Collapse
Affiliation(s)
- Timothy J Kopper
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
10
|
Church JS, Milich LM, Lerch JK, Popovich PG, McTigue DM. E6020, a synthetic TLR4 agonist, accelerates myelin debris clearance, Schwann cell infiltration, and remyelination in the rat spinal cord. Glia 2017; 65:883-899. [PMID: 28251686 DOI: 10.1002/glia.23132] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 12/26/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are present throughout the adult brain and spinal cord and can replace oligodendrocytes lost to injury, aging, or disease. Their differentiation, however, is inhibited by myelin debris, making clearance of this debris an important step for cellular repair following demyelination. In models of peripheral nerve injury, TLR4 activation by lipopolysaccharide (LPS) promotes macrophage phagocytosis of debris. Here we tested whether the novel synthetic TLR4 agonist E6020, a Lipid A mimetic, promotes myelin debris clearance and remyelination in spinal cord white matter following lysolecithin-induced demyelination. In vitro, E6020 induced TLR4-dependent cytokine expression (TNFα, IL1β, IL-6) and NF-κB signaling, albeit at ∼10-fold reduced potency compared to LPS. Microinjection of E6020 into the intact rat spinal cord gray/white matter border induced macrophage activation, OPC proliferation, and robust oligodendrogenesis, similar to what we described previously using an intraspinal LPS microinjection model. Finally, a single co-injection of E6020 with lysolecithin into spinal cord white matter increased axon sparing, accelerated myelin debris clearance, enhanced Schwann cell infiltration into demyelinated lesions, and increased the number of remyelinated axons. In vitro assays confirmed that direct stimulation of macrophages by E6020 stimulates myelin phagocytosis. These data implicate TLR4 signaling in promoting repair after CNS demyelination, likely by stimulating phagocytic activity of macrophages, sparing axons, recruiting myelinating cells, and promoting remyelination. This work furthers our understanding of immune-myelin interactions and identifies a novel synthetic TLR4 agonist as a potential therapeutic avenue for white matter demyelinating conditions such as spinal cord injury and multiple sclerosis.
Collapse
Affiliation(s)
- Jamie S Church
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio, USA.,Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA
| | - Lindsay M Milich
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Jessica K Lerch
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Phillip G Popovich
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - Dana M McTigue
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, Ohio, USA.,Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Lin X, Zhao T, Walker M, Ding A, Lin S, Cao Y, Zheng J, Liu X, Geng M, Xu XM, Liu S. Transplantation of Pro-Oligodendroblasts, Preconditioned by LPS-Stimulated Microglia, Promotes Recovery After Acute Contusive Spinal Cord Injury. Cell Transplant 2016; 25:2111-2128. [PMID: 27513556 DOI: 10.3727/096368916x692636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Spinal cord injury (SCI) is a significant clinical challenge, and to date no effective treatment is available. Oligodendrocyte progenitor cell (OPC) transplantation has been a promising strategy for SCI repair. However, the poor posttransplantation survival and deficiency in differentiation into myelinating oligodendrocytes (OLs) are two major challenges that limit the use of OPCs as donor cells. Here we report the generation of an OL lineage population [i.e., pro-oligodendroblasts (proOLs)] that is relatively more mature than OPCs for transplantation after SCI. We found that proOLs responded to lipopolysaccharide (LPS)-stimulated microglia conditioned medium (L+M) by preserving toll-like receptor 4 (TLR4) expression, improving cell viability, and enhancing the expression of a myelinating OL marker myelin basic protein (MBP), compared to other OL lineage cells exposed to either LPS-stimulated (L+M) or nonstimulated microglia conditioned medium (LM). When L+M-stimulated proOLs were intrathecally delivered through a lumbar puncture after a T10 thoracic contusive SCI, they promoted behavioral recovery, as assessed by the BassoBeattieBresnahan (BBB) locomotor rating scale, stride length, and slips on the grid tests. Histologically, transplantation of L+M proOLs caused a considerable increase in intralesional axon numbers and myelination, and less accumulation of invading macrophages when compared with the vehicle control or OPC transplantation. Thus, transplantation of proOLs, preconditioned by L+M, may offer a better therapeutic potential for SCI than OPCs since the former may have initiated the differentiation process toward OLs prior to transplantation.
Collapse
|
12
|
Höflich KM, Beyer C, Clarner T, Schmitz C, Nyamoya S, Kipp M, Hochstrasser T. Acute axonal damage in three different murine models of multiple sclerosis: A comparative approach. Brain Res 2016; 1650:125-133. [PMID: 27592741 DOI: 10.1016/j.brainres.2016.08.048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/30/2016] [Accepted: 08/31/2016] [Indexed: 01/12/2023]
Abstract
Axonal damage has been identified as a significant contributor to permanent clinical disability in multiple sclerosis. In the context of demyelinating disorders, this destructive event can be the result of inflammation, demyelination and/or the activation of innate defense cells such as microglia or monocytes. The relative contribution of each of these variables to acute axonal injury is, however, unknown. In the present study, we compared the extent of acute axonal damage in three different murine demyelination models using anti-amyloid precursor protein (APP) immunohistochemistry. T cell dependent (MOG35-55-induced experimental autoimmune encephalomyelitis (EAE)) as well as T cell independent demyelination models (cuprizone- and lysolecithin-induced demyelination) were used. APP+ spheroids were present in all three experimental demyelination models. The number of APP+ spheroids was highest within LPC-induced lesions. Equal amounts were found in the spinal cord of MOG35-55-EAE animals and the corpus callosum of cuprizone-intoxicated animals. Moreover, we detected increased immunoreactivity of the pre-synaptic protein vesicular glutamate transporter 1 (VGluT1) in demyelinated foci. VGluT1-staining revealed long stretched, ovoid-like axonal structures which co-localized with APP. In summary, we showed that acute axonal damage is evident under various experimental demyelination paradigms. Furthermore, disturbed axonal transport mechanisms, which are responsible for intra-axonal APP accumulation, do not only disturb APP, but also the transport of other synaptic proteins. These results indicate that, despite differences in their characteristics, all three models may serve as valid and suitable systems for investigating responsible mechanisms of axonal damage and potential protective strategies.
Collapse
Affiliation(s)
- Katharina Marie Höflich
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Tim Clarner
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Schmitz
- Department of Neuroanatomy, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Stella Nyamoya
- Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany; Department of Neuroanatomy, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Markus Kipp
- Department of Neuroanatomy, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany
| | - Tanja Hochstrasser
- Department of Neuroanatomy, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany.
| |
Collapse
|
13
|
Guo L, Rolfe AJ, Wang X, Tai W, Cheng Z, Cao K, Chen X, Xu Y, Sun D, Li J, He X, Young W, Fan J, Ren Y. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media. Mol Brain 2016; 9:48. [PMID: 27153974 PMCID: PMC4858887 DOI: 10.1186/s13041-016-0233-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/01/2016] [Indexed: 12/14/2022] Open
Abstract
Background Macrophages play an important role in the inflammatory responses involved with spinal cord injury (SCI). We have previously demonstrated that infiltrated bone marrow-derived macrophages (BMDMs) engulf myelin debris, forming myelin-laden macrophages (mye-Mϕ). These mye-Mϕ promote disease progression through their pro-inflammatory phenotype, enhanced neurotoxicity, and impaired phagocytic capacity for apoptotic cells. We thus hypothesize that the excessive accumulation of mye-Mϕ is the root of secondary injury, and that targeting mye-Mϕ represents an efficient strategy to improve the local inflammatory microenvironment in injured spinal cords and to further motor neuron function recovery. In this study, we administer murine embryonic stem cell conditioned media (ESC-M) as a cell-free stem cell based therapy to treat a mouse model of SCI. Results We showed that BMDMs, but not microglial cells, engulf myelin debris generated at the injury site. Phagocytosis of myelin debris leads to the formation of mye-Mϕ in the injured spinal cord, which are surrounded by activated microglia cells. These mye-Mϕ are pro-inflammatory and lose the normal macrophage phagocytic capacity for apoptotic cells. We therefore focus on how to trigger lipid efflux from mye-Mϕ and thus restore their function. Using ESC-M as an immune modulating treatment for inflammatory damage after SCI, we rescued mye-Mϕ function and improved functional locomotor recovery. ESC-M treatment on mye-Mϕ resulted in improved exocytosis of internalized lipids and a normal capacity for apoptotic cell phagocytosis. Furthermore, when ESC-M was administered intraperitoneally after SCI, animals exhibited significant improvements in locomotor recovery. Examination of spinal cords of the ESC-M treated mice revealed similar improvements in macrophage function as well as a shift towards a more anti-inflammatory environment at the lesion and parenchyma. Conclusions The embryonic stem cell conditioned media can be used as an effective treatment for SCI to resolve inflammation and improve functional recovery while circumventing the complications involved in whole cell transplantation.
Collapse
Affiliation(s)
- Lei Guo
- Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, 710004, China.,Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA
| | - Alyssa J Rolfe
- Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA
| | - Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
| | - Wenjiao Tai
- Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA
| | - Zhijian Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, 710004, China.,Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA
| | - Kai Cao
- Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, 710004, China
| | - Xiaoming Chen
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yunsheng Xu
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongming Sun
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
| | - Jinhua Li
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xian Jiaotong University, Xian, 710004, China
| | - Wise Young
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08854, USA
| | - Jianqing Fan
- Statistical Laboratory, Princeton University, Princeton, NJ, 08540, USA
| | - Yi Ren
- Department of Biomedical Sciences, Florida State University, College of Medicine, 1115 West Street, Tallahassee, FL, 32306, USA. .,Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
14
|
Hakim JS, Esmaeili Rad M, Grahn PJ, Chen BK, Knight AM, Schmeichel AM, Isaq NA, Dadsetan M, Yaszemski MJ, Windebank AJ. Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat. Tissue Eng Part A 2016; 21:2099-114. [PMID: 25891264 DOI: 10.1089/ten.tea.2015.0019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Positively charged oligo[poly(ethylene glycol) fumarate] (OPF+) scaffolds loaded with Schwann cells bridge spinal cord injury (SCI) lesions and support axonal regeneration in rat. The regeneration achieved is not sufficient for inducing functional recovery. Attempts to increase regeneration would benefit from understanding the effects of the scaffold and transplanted cells on lesion environment. We conducted morphometric and stereological analysis of lesions in rats implanted with OPF+ scaffolds with or without loaded Schwann cells 1, 2, 3, 4, and 8 weeks after thoracic spinal cord transection. No differences were found in collagen scarring, cyst formation, astrocyte reactivity, myelin debris, or chondroitin sulfate proteoglycan (CSPG) accumulation. However, when scaffold-implanted animals were compared with animals with transection injuries only, these barriers to regeneration were significantly reduced, accompanied by increased activated macrophages/microglia. This distinctive and regeneration permissive tissue reaction to scaffold implantation was independent of Schwann cell transplantation. Although the tissue reaction was beneficial in the short term, we observed a chronic fibrotic host response, resulting in scaffolds surrounded by collagen at 8 weeks. This study demonstrates that an appropriate biomaterial scaffold improves the environment for regeneration. Future targeting of the host fibrotic response may allow increased axonal regeneration and functional recovery.
Collapse
Affiliation(s)
- Jeffrey S Hakim
- 1 Mayo Clinic College of Medicine , Mayo Clinic, Rochester, Minnesota.,2 Mayo Graduate School , Mayo Clinic, Rochester, Minnesota
| | | | - Peter J Grahn
- 2 Mayo Graduate School , Mayo Clinic, Rochester, Minnesota
| | - Bingkun K Chen
- 3 Department of Neurology, Mayo Clinic , Rochester, Minnesota
| | - Andrew M Knight
- 3 Department of Neurology, Mayo Clinic , Rochester, Minnesota
| | | | - Nasro A Isaq
- 2 Mayo Graduate School , Mayo Clinic, Rochester, Minnesota
| | - Mahrokh Dadsetan
- 1 Mayo Clinic College of Medicine , Mayo Clinic, Rochester, Minnesota.,4 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota
| | - Michael J Yaszemski
- 1 Mayo Clinic College of Medicine , Mayo Clinic, Rochester, Minnesota.,4 Department of Orthopedic Surgery, Mayo Clinic , Rochester, Minnesota.,5 Center for Regenerative Medicine , Mayo Clinic, Rochester, Minnesota
| | - Anthony J Windebank
- 1 Mayo Clinic College of Medicine , Mayo Clinic, Rochester, Minnesota.,3 Department of Neurology, Mayo Clinic , Rochester, Minnesota.,5 Center for Regenerative Medicine , Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Kim S, Lee YI, Chang KY, Lee DW, Cho SC, Ha YW, Na JE, Rhyu IJ, Park SC, Park HC. Promotion of Remyelination by Sulfasalazine in a Transgenic Zebrafish Model of Demyelination. Mol Cells 2015; 38:1013-21. [PMID: 26549504 PMCID: PMC4673405 DOI: 10.14348/molcells.2015.0246] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/19/2022] Open
Abstract
Most of the axons in the vertebrate nervous system are surrounded by a lipid-rich membrane called myelin, which promotes rapid conduction of nerve impulses and protects the axon from being damaged. Multiple sclerosis (MS) is a chronic demyelinating disease of the CNS characterized by infiltration of immune cells and progressive damage to myelin and axons. One potential way to treat MS is to enhance the endogenous remyelination process, but at present there are no available treatments to promote remyelination in patients with demyelinating diseases. Sulfasalazine is an anti-inflammatory and immune-modulating drug that is used in rheumatology and inflammatory bowel disease. Its anti-inflammatory and immunomodulatory properties prompted us to test the ability of sulfasalazine to promote remyelination. In this study, we found that sulfasalazine promotes remyelination in the CNS of a transgenic zebrafish model of NTR/MTZ-induced demyelination. We also found that sulfasalazine treatment reduced the number of macrophages/microglia in the CNS of demyelinated zebrafish larvae, suggesting that the acceleration of remyelination is mediated by the immunomodulatory function of sulfasalazine. Our data suggest that temporal modulation of the immune response by sulfasalazine can be used to overcome MS by enhancing myelin repair and remyelination in the CNS.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Biomedical Sciences, Korea University, Ansan 425-707,
Korea
| | - Yun-Il Lee
- Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT), Suwon 443-803,
Korea
| | - Ki-Young Chang
- Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT), Suwon 443-803,
Korea
| | - Dong-Won Lee
- Department of Biomedical Sciences, Korea University, Ansan 425-707,
Korea
| | - Sung Chun Cho
- Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT), Suwon 443-803,
Korea
| | - Young Wan Ha
- Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT), Suwon 443-803,
Korea
| | - Ji Eun Na
- Department of Anatomy, College of Medicine, Korea University, Seoul 136-705,
Korea
| | - Im Joo Rhyu
- Department of Anatomy, College of Medicine, Korea University, Seoul 136-705,
Korea
| | - Sang Chul Park
- Well Aging Research Center, Samsung Advanced Institute of Technology (SAIT), Suwon 443-803,
Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, Korea University, Ansan 425-707,
Korea
| |
Collapse
|
16
|
Hakim JS, Esmaeili Rad M, Grahn PJ, Chen BK, Knight AM, Schmeichel AM, Isaq NA, Dadsetan M, Yaszemski MJ, Windebank AJ. Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat. Tissue Eng Part A 2015. [DOI: 10.1089/ten.tea.2015.0019.rev] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain Res 2015; 1619:1-11. [PMID: 25578260 DOI: 10.1016/j.brainres.2014.12.045] [Citation(s) in RCA: 548] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 12/08/2014] [Indexed: 12/11/2022]
Abstract
The injured spinal cord does not heal properly. In contrast, tissue repair and functional recovery occur after skin or muscle injuries. The reason for this dichotomy in wound repair is unclear but inflammation, and specifically macrophage activation, likely plays a key role. Macrophages have the ability to promote the repair of injured tissue by regulating transitions through different phase of the healing response. In the current review we compare and contrast the healing and inflammatory responses between spinal cord injuries and tissues that undergo complete wound resolution. Through this comparison, we identify key macrophage phenotypes that are inaptly triggered or absent after spinal cord injury and discuss spinal cord stimuli that contribute to this maladaptive response. Sequential activation of classic, pro-inflammatory, M1 macrophages and alternatively activated, M2a, M2b, and M2c macrophages occurs during normal healing and facilitates transitions through the inflammatory, proliferative, and remodeling phases of repair. In contrast, in the injured spinal cord, pro-inflammatory macrophages potentiate a prolonged inflammatory phase and remodeling is not properly initiated. The desynchronized macrophage activation after spinal cord injury is reminiscent of the inflammation present in chronic, non-healing wounds. By refining the role macrophages play in spinal cord injury repair we bring to light important areas for future neuroinflammation and neurotrauma research. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- John C Gensel
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States.
| | - Bei Zhang
- Spinal Cord and Brain Injury Research Center, Department of Physiology, University of Kentucky, Lexington, KY 40536, United States
| |
Collapse
|
18
|
Wang X, Cao K, Sun X, Chen Y, Duan Z, Sun L, Guo L, Bai P, Sun D, Fan J, He X, Young W, Ren Y. Macrophages in spinal cord injury: phenotypic and functional change from exposure to myelin debris. Glia 2014; 63:635-51. [PMID: 25452166 DOI: 10.1002/glia.22774] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 01/14/2023]
Abstract
Macrophage activation and persistent inflammation contribute to the pathological process of spinal cord injury (SCI). It was reported that M2 macrophages were induced at 3-7 days after SCI but M2 markers were reduced or eliminated after 1 week. By contrast, M1 macrophage response is rapidly induced and then maintained at injured spinal cord. However, factors that modulate macrophage phenotype and function are poorly understood. We developed a model to distinguish bone-marrow derived macrophages (BMDMs) from residential microglia and explored how BMDMs change their phenotype and functions in response to the lesion-related factors in injured spinal cord. Infiltrating BMDMs expressing higher Mac-2 and lower CX3CR1 migrate to the epicenter of injury, while microglia expressing lower Mac-2 but higher CX3CR1 distribute to the edges of lesion. Myelin debris at the lesion site switches BMDMs from M2 phenotype towards M1-like phenotype. Myelin debris activates ATP-binding cassette transporter A1 (ABCA1) for cholesterol efflux in response to myelin debris loading in vitro. However, this homeostatic mechanism in injured site is overwhelmed, leading to the development of foamy macrophages and lipid plaque in the lesion site. The persistence of these cells indicates a pro-inflammatory environment, associated with enhanced neurotoxicity and impaired wound healing. These foamy macrophages have poor capacity to phagocytose apoptotic neutrophils resulting in uningested neutrophils releasing their toxic contents and further tissue damage. In conclusion, these data demonstrate for the first time that myelin debris generated in injured spinal cord modulates macrophage activation. Lipid accumulation following macrophage phenotype switch contributes to SCI pathology.
Collapse
Affiliation(s)
- Xi Wang
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, New Jersey; Institute of Neurosciences, the Fourth Military Medical University, Xian, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Martin-Vaquero P, da Costa RC, Moore SA, Gross AC, Eubank TD. Cytokine concentrations in the cerebrospinal fluid of great danes with cervical spondylomyelopathy. J Vet Intern Med 2014; 28:1268-74. [PMID: 24965833 PMCID: PMC4169188 DOI: 10.1111/jvim.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 04/30/2014] [Indexed: 11/28/2022] Open
Abstract
Background Chronic inflammation is involved in the pathogenesis of human cervical spondylotic myelopathy and could also play a role in cervical spondylomyelopathy (CSM) in dogs. Hypothesis/Objectives That cerebrospinal fluid (CSF) cytokine concentrations would differ between clinically normal (control) and CSM‐affected Great Danes (GDs), with affected GDs showing higher levels of inflammatory cytokines, such as interleukin (IL)‐6 and monocyte chemoattractant protein‐1/chemokine ligand 2 (MCP‐1/CCL2). Animals Client‐owned GDs: 15 control, 15 CSM‐affected. Methods Prospective study. Dogs underwent cervical vertebral column magnetic resonance imaging and collection of CSF from the cerebellomedullary cistern. Cytokine concentrations were measured using a commercially available canine multiplex immunoassay. Cytokine concentrations were compared between groups. Associations with the administration of anti‐inflammatory medications, disease duration and severity, severity of spinal cord (SC) compression, and SC signal changes were investigated in affected GDs. Results Affected GDs had significantly lower MCP‐1/CCL2 (mean 138.03 pg/mL, 95% confidence interval [CI] = 114.85–161.20) than control GDs (212.89 pg/mL, 95% CI = 165.68–260.11, P = .028). In affected GDs, MCP‐1/CCL2 concentrations correlated inversely with the severity of SC compression. There were no associations with administration of anti‐inflammatory medications, disease duration, or disease severity. IL‐6 concentrations were significantly higher (2.20 pg/mL, 95% CI = 1.92–2.47, P < .001) in GDs with SC signal changes. Conclusions and Clinical Importance Lower MCP‐1/CCL2 in CSM‐affected GDs might compromise clearance of axonal and myelin debris, delay axon regeneration, and affect recovery. Higher IL‐6 in CSM‐affected GDs with SC signal changes suggests more severe inflammation in this group.
Collapse
Affiliation(s)
- P Martin-Vaquero
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University , Columbus, OH
| | | | | | | | | |
Collapse
|
20
|
Sun L, Liu S, Sun Q, Li Z, Xu F, Hou C, Harada T, Chu M, Xu K, Feng X, Duan Y, Zhang Y, Wu S. Inhibition of TROY promotes OPC differentiation and increases therapeutic efficacy of OPC graft for spinal cord injury. Stem Cells Dev 2014; 23:2104-18. [PMID: 24749558 DOI: 10.1089/scd.2013.0563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Endogenous or graft-derived oligodendrocytes promote myelination and aid in the recovery from central nervous system (CNS) injury. Regulatory mechanisms underlying neural myelination and remyelination in response to injury, including spinal cord injury (SCI), are unclear. In the present study, we demonstrated that TROY serves as an important negative regulator of oligodendrocyte development and that TROY inhibition augments the repair potential of oligodendrocyte precursor cell (OPC) graft for SCI. TROY expression was detected by reverse transcriptase-polymerase chain reaction in OPCs as well as in differentiated premature and mature oligodendrocytes of postnatal mice. Pharmacological inhibition or RNAi-induced knockdown of TROY promotes OPC differentiation, whereas overexpression of TROY dampens oligodendrocyte maturation. Further, treatment of cocultures of DRG neurons and OPCs with TROY inhibitors promotes myelination and myelin-sheath-like structures. Mechanically, protein kinase C (PKC) signaling is involved in the regulation of the inhibitory effects of TROY. Moreover, in situ transplantation of OPCs with TROY knockdown leads to notable remyelination and neurological recovery in rats with SCI. Our results indicate that TROY negatively modulates remyelination in the CNS, and thus may be a suitable target for improving the therapeutic efficacy of cell transplantation for CNS injury.
Collapse
Affiliation(s)
- Liang Sun
- 1 Department of Anatomy, School of Basic Medical Sciences, Harbin Medical University , Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The benefits and detriments of macrophages/microglia in models of multiple sclerosis. Clin Dev Immunol 2013; 2013:948976. [PMID: 23840244 PMCID: PMC3694375 DOI: 10.1155/2013/948976] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022]
Abstract
The central nervous system (CNS) is immune privileged with access to leukocytes being limited. In several neurological diseases, however, infiltration of immune cells from the periphery into the CNS is largely observed and accounts for the increased representation of macrophages within the CNS. In addition to extensive leukocyte infiltration, the activation of microglia is frequently observed. The functions of activated macrophages/microglia within the CNS are complex. In three animal models of multiple sclerosis (MS), namely, experimental autoimmune encephalomyelitis (EAE) and cuprizone- and lysolecithin-induced demyelination, there have been many reported detrimental roles associated with the involvement of macrophages and microglia. Such detriments include toxicity to neurons and oligodendrocyte precursor cells, release of proteases, release of inflammatory cytokines and free radicals, and recruitment and reactivation of T lymphocytes in the CNS. Many studies, however, have also reported beneficial roles of macrophages/microglia, including axon regenerative roles, assistance in promoting remyelination, clearance of inhibitory myelin debris, and the release of neurotrophic factors. This review will discuss the evidence supporting the detrimental and beneficial aspects of macrophages/microglia in models of MS, provide a discussion of the mechanisms underlying the dichotomous roles, and describe a few therapies in clinical use in MS that impinge on the activity of macrophages/microglia.
Collapse
|
22
|
Guo Y, Zhang H, Yang J, Liu S, Bing L, Gao J, Hao A. Granulocyte colony-stimulating factor improves alternative activation of microglia under microenvironment of spinal cord injury. Neuroscience 2013; 238:1-10. [DOI: 10.1016/j.neuroscience.2013.01.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 01/19/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022]
|
23
|
Kim JY, Oh CH, Huang X, Kim MH, Yoon SH, Kim KH, Park H, Park HC, Park SR, Choi BH. Improvement in sensory function via granulocyte-macrophage colony-stimulating factor in rat spinal cord injury models. J Neurosurg Spine 2012; 18:69-75. [PMID: 23101949 DOI: 10.3171/2012.9.spine1235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECT The aim in this study was to determine whether granulocyte-macrophage colony-stimulating factor (GM-CSF) leads to sensory improvement in rat spinal cord injury (SCI) models. METHODS Thirty male Sprague-Dawley rats were included in this study: 10 in the sham group (laminectomy alone without SCI), 10 in the SCI group (SCI treated with phosphate-buffered saline), and 10 in the GM-CSF treatment group (SCI treated with GM-CSF). A locomotor function test and pain sensitivity test were conducted weekly for 9 weeks after SCI or sham injury. Spinal tissue samples from all rats were immunohistochemically examined for the expression of calcitonin gene-related peptide (CGRP) and abnormal sprouting at Week 9 post-SCI. RESULTS Granulocyte-macrophage colony-stimulating factor treatment improves functional recovery after SCI. In the tactile withdrawal threshold and frequency of the hindlimb paw, the GM-CSF group always responded with a statistically significant lower threshold than the SCI group 9 weeks after SCI (p < 0.05). The response of the forelimb and hindlimb paws to cold in the GM-CSF group always reflected a statistically significant lower threshold than in the SCI group 9 weeks after injury (p < 0.05). Decreased CGRP expression, observed by density and distribution area, was noted in the GM-CSF group (optical density 113.5 ± 20.4) compared with the SCI group (optical density 143.1 ± 18.7; p < 0.05). CONCLUSIONS Treatment with GM-CSF results in functional recovery, improving tactile and cold sense recovery in a rat SCI model. Granulocyte-macrophage colony-stimulating factor also minimizes abnormal sprouting of sensory nerves after SCI.
Collapse
Affiliation(s)
- Ji Yong Kim
- Department of Neurosurgery, Korean Armed Forces Busan Hospital, Busan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mekhail M, Almazan G, Tabrizian M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol 2012; 96:322-39. [PMID: 22307058 DOI: 10.1016/j.pneurobio.2012.01.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 12/28/2022]
Abstract
In the past four decades, the main focus of investigators in the field of spinal cord regeneration has been to devise therapeutic measures that enhance neural regeneration. More recently, emphasis has been placed on enhancing remyelination and providing oligodendrocyte-protection after a spinal cord injury (SCI). Demyelination post-SCI is part of the cascading secondary injury that takes place immediately after the primary insult; therefore, therapeutic measures are needed to reduce oligodendrocyte death and/or enhance remyelination during the acute stage, preserving neurological functions that would be lost otherwise. In this review a thorough investigation of the oligodendrocyte-protective and remyelinative molecular therapies available to date is provided. The advent of new biomaterials shown to promote remyelination post-SCI is discussed mainly in the context of a combinatorial approach where the biomaterial also provides drug delivery capabilities. The aim of these molecular and biomaterial-based therapies is twofold: (1) oligodendrocyte-protective therapy, which involves protecting already existing oligodendrocytes from undergoing apoptosis/necrosis; and (2) inductive remyelination, which involves harnessing the remyelinative capabilities of endogenous oligodendrocyte precursor cells (OPCs) at the lesion site by providing a suitable environment for their migration, survival, proliferation and differentiation. From the evidence reported in the literature, we conclude that the use of a combinatorial approach including biomaterials and molecular therapies would provide advantages such as: (1) sustained release of the therapeutic molecule, (2) local delivery at the lesion site, and (3) an environment at the site of injury that promotes OPC migration, differentiation and remyelination.
Collapse
Affiliation(s)
- Mina Mekhail
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
25
|
Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Spine (Phila Pa 1976) 2012; 37:10-7. [PMID: 22024901 DOI: 10.1097/brs.0b013e31823b0440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN We used a severe contusive spinal cord injury (SCI) model and electrophysiologic, motor functional, immunohistochemical, and electron microscopic examinations to analyze the neuroprotective effects of delayed granulocyte colony-stimulating factor (G-CSF) treatment. OBJECTIVE To determine the neuroprotective effects of delayed G-CSF treatment using multimodality evaluations after severe contusive SCI in rats. SUMMARY OF BACKGROUND DATA Despite some reports that G-CSF treatment in the acute stage of different central nervous system injury models was neuroprotective, it has not been determined whether delayed G-CSF treatment can promote neural recovery in severe contusive SCI. METHODS Rats with severe contusive SCI were divided into 2 groups: G-CSF group rats were given serial subcutaneous injections of G-CSF, and control group rats (controls) were given only saline injections on postcontusion days 9 to 13. Using the Basso-Beattie-Bresnahan scale and cortical somatosensory evoked potentials, we recorded functional evaluations weekly. The spinal cords were harvested for protein and immunohistochemical analysis, and for electron microscopy examination. RESULTS The preserved spinal cord area was larger in G-CSF group rats than in control group rats. Both sensory and motor functions improved after G-CSF treatment. Detachment and disruption of the myelin sheets in the myelinated axons were significantly decreased, and axons sprouted and regenerated. There were fewer microglia and macrophages in the G-CSF group than in the control group. The levels of brain-derived neurotrophic factor were comparable between the 2 groups. CONCLUSION Delayed G-CSF treatment at the subacute stage of severe contusive SCI promoted spinal cord preservation and improved functional outcomes. The mechanism of G-CSF's protection may be related in part to attenuating the infiltration of microglia and macrophages.
Collapse
|
26
|
Patel JR, Klein RS. Mediators of oligodendrocyte differentiation during remyelination. FEBS Lett 2011; 585:3730-7. [PMID: 21539842 PMCID: PMC3158966 DOI: 10.1016/j.febslet.2011.04.037] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/17/2022]
Abstract
Myelin, a dielectric sheath that wraps large axons in the central and peripheral nervous systems, is essential for proper conductance of axon potentials. In multiple sclerosis (MS), autoimmune-mediated damage to myelin within the central nervous system (CNS) leads to progressive disability primarily due to limited endogenous repair of demyelination with associated axonal pathology. While treatments are available to limit demyelination, no treatments are available to promote myelin repair. Studies examining the molecular mechanisms that promote remyelination are therefore essential for identifying therapeutic targets to promote myelin repair and thereby limit disability in MS. Here, we present our current understanding of the critical extracellular and intracellular pathways that regulate the remyelinating capabilities of oligodendrocyte precursor cells (OPCs) within the adult CNS.
Collapse
Affiliation(s)
- Jigisha R. Patel
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
| | - Robyn S. Klein
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110
| |
Collapse
|
27
|
David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011; 12:388-99. [PMID: 21673720 DOI: 10.1038/nrn3053] [Citation(s) in RCA: 1060] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Macrophages from the peripheral circulation and those derived from resident microglia are among the main effector cells of the inflammatory response that follows spinal cord trauma. There has been considerable debate in the field as to whether the inflammatory response is good or bad for tissue protection and repair. Recent studies on macrophage polarization in non-neural tissues have shed much light on their changing functional states. In the context of this literature, we discuss the activation of macrophages and microglia following spinal cord injury, and their effects on repair. Harnessing their anti-inflammatory properties could pave the way for new therapeutic strategies for spinal cord trauma.
Collapse
Affiliation(s)
- Samuel David
- The Research Institute of the McGill University Health Center, 1650 Cedar Avenue, Montreal, Quebec, Canada, H3G 1A4.
| | | |
Collapse
|
28
|
Kang J, Jiang MH, Min HJ, Jo EK, Lee S, Karin M, Yune TY, Lee SJ. IKK-β-mediated myeloid cell activation exacerbates inflammation and inhibits recovery after spinal cord injury. Eur J Immunol 2011; 41:1266-77. [DOI: 10.1002/eji.201040582] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/19/2010] [Accepted: 02/10/2011] [Indexed: 11/10/2022]
|
29
|
Osada T, Watanabe M, Hasuo A, Imai M, Suyama K, Sakai D, Kawada H, Matsumae M, Mochida J. Efficacy of the coadministration of granulocyte colony-stimulating factor and stem cell factor in the activation of intrinsic cells after spinal cord injury in mice. J Neurosurg Spine 2010; 13:516-23. [DOI: 10.3171/2010.4.spine09973] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Object
Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic cytokine that induces undifferentiated stem cells from the bone marrow (BM) into the peripheral blood. Stem cell factor (SCF) is also a hematopoietic cytokine that stimulates the differentiation and proliferation of neural stem cells and has neuroprotective effects. In cerebrally infarcted mice, the combination of G-CSF and SCF promotes the differentiation of BM-derived cells into neural cells, stimulates the proliferation of intrinsic neural stem cells, and improves motor function. The object of this study was to investigate the effects of these cytokines on BM stem cells, intrinsic cells, and motor function recovery in spinal cord–injured mice.
Methods
For marking BM-derived cells, the authors induced contusive spinal cord injury in mice transplanted with BM cells from green fluorescent protein (GFP)–transgenic mice after whole-body irradiation. These mice were treated with G-CSF and SCF in the subacute injury phase. Bromodeoxyuridine (BrdU) was injected into these mice to label proliferating cells. The cell numbers and phenotype of the BM-derived cells were evaluated, and the change in intrinsic cells (proliferation, accumulation, and differentiation) was noted using immunohistological analysis at 4 weeks postinjury (wpi). A behavior analysis was conducted until 12 wpi using the Basso, Beattie, Bresnahan locomotor rating scale.
Results
In the SCF + G-CSF group, improvement in hindlimb motor function was significantly greater than in the SCF group, G-CSF group, and sham-treatment (vehicle) group after 8 wpi. At 4 wpi, the number of GFP+ BM-derived cells induced in the lesion did not significantly differ between groups. At 4 wpi, the authors evaluated perilesional GFP− intrinsic spinal cord cells. The number of GFP− and F4/80+ cells was significantly greater in the SCF + G-CSF group than in the other 3 groups. As compared with the sham group, the number of NG2+/BrdU+ cells was significantly increased in the SCF + G-CSF group.
Conclusions
In this study, the combined administration of SCF and G-CSF in traumatic spinal cord injury not only improved motor function, but also induced the accumulation of intrinsic microglia and the active proliferation of intrinsic oligodendrocyte precursor cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hiroshi Kawada
- 3Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | | | | |
Collapse
|
30
|
Schilling T, Eder C. Sodium dependence of lysophosphatidylcholine-induced caspase-1 activity and reactive oxygen species generation. Immunobiology 2010; 216:118-25. [PMID: 20655126 DOI: 10.1016/j.imbio.2010.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/21/2010] [Accepted: 06/27/2010] [Indexed: 11/30/2022]
Abstract
The proinflammatory cytokines interleukin (IL)-1β and IL-18 play pivotal roles in neuroinflammatory diseases. Caspase-1-mediated proteolytic cleavage is required to convert the premature, biologically inactive cytokines to their biologically active forms capable of promoting tissue inflammation. Although caspases have been recognized as potential therapeutic targets in inflammatory diseases, mechanisms regulating caspase-1 activation are not fully understood. Here we demonstrate that the proinflammatory lipid lysophosphatidylcholine (LPC) initiates microglial caspase-1 activation in a Na(+)-dependent manner. LPC-induced caspase-1 activity was almost completely inhibited upon omission of extracellular Na(+), but was unaffected by inhibition of Na(+)/K(+)-ATPase with ouabain or by inhibition of Na(+)/H(+) antiport with amiloride. Inhibition of caspase-1-mediated IL-1β processing by Na(+)-free medium led to reduced amounts of mature IL-1β released from LPC-stimulated microglia. Furthermore, LPC-induced production of reactive oxygen species (ROS) was abolished by Na(+)-free medium, indicating Na(+) dependence of NADPH oxidase activity in LPC-stimulated microglia. Since ROS production was found to be crucial to caspase-1 activation in LPC-stimulated microglia, the Na(+) dependence of caspase-1 can be related to the Na(+) dependence of NADPH oxidase. In summary, it is suggested that in LPC-activated microglia, Na(+) influx is required for the production of NADPH oxidase-mediated ROS, which subsequently stimulate caspase-1 activity.
Collapse
Affiliation(s)
- Tom Schilling
- Division of Basic Medical Sciences, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | | |
Collapse
|
31
|
ProBDNF inhibits infiltration of ED1+ macrophages after spinal cord injury. Brain Behav Immun 2010; 24:585-97. [PMID: 20083190 DOI: 10.1016/j.bbi.2010.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Revised: 12/17/2009] [Accepted: 01/03/2010] [Indexed: 12/27/2022] Open
Abstract
The central nervous system (CNS) does not regenerate partly due to the slow clearance of debris from the degenerated myelin sheath by Wallerian degeneration. The mechanism underlying the inefficiency in myelin clearance is not clear. Here we showed that endogenous proBDNF may inhibit the infiltration of ED1+ inflammatory cells after spinal cord injury. After injury, proBDNF and its receptors sortilin and p75NTR are expressed in the spinal cord as determined by Western blots and immunocytochemistry. ProBDNF and mature BDNF were released from macrophages in vitro. Macrophages in vivo (ED1+) and isolated in vitro (CD11b+) express moderate levels of proBDNF, sortilin and p75NTR. ProBDNF suppressed the migration of isolated macrophages in vitro and the antibody to proBDNF enhanced the migration. Suppression of proBDNF in vivo by administering the antiserum to the prodomain of BDNF after spinal cord injury (SCI) increased the infiltration of macrophages and increased number of neurons in the injured cord. BBB tests showed that the treatment of the antibody to proBDNF improved the functional recovery after spinal cord injury. Our data suggest that proBDNF is a suppressing factor for macrophage migration and infiltration and may play a detrimental role after SCI.
Collapse
|
32
|
Gál P, Kravcuková P, Mokrý M, Kluchová D. Chemokines as possible targets in modulation of the secondary damage after acute spinal cord injury: a review. Cell Mol Neurobiol 2009; 29:1025-35. [PMID: 19363652 PMCID: PMC11506275 DOI: 10.1007/s10571-009-9392-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Accepted: 03/10/2009] [Indexed: 12/23/2022]
Abstract
In spite of many promising experimental studies, an effective treatment dramatically eliminating the secondary damage after spinal cord injury (SCI) is still missing. Since clinical data on the therapeutical effect after methylprednisolone treatment are not conclusive, new therapeutical modalities targeting specific components of secondary spinal cord damage needs to be developed. It is known that immune cells are recruited to injury sites by chemokines, which are small, structurally similar proteins released locally at the site of inflammation. Hence, this review was aimed to summarize possible roles of chemokines in the inflammation following SCI as well as to identify possible new therapeutical targets which can potentially be effective in ameliorating individual components of this inflammatory response. Data concerning inflammation reduction together with techniques improving axonal growth, cell replacement and remyelinization, may be crucial to move a small step forward in an attempt to make paraplegic and quadriplegic patients to walk.
Collapse
Affiliation(s)
- Peter Gál
- Institute of Biology and Ecology, Pavol Jozef Safárik University, 041 80 Kosice, Slovak Republic.
| | | | | | | |
Collapse
|
33
|
Assina R, Sankar T, Theodore N, Javedan SP, Gibson AR, Horn KM, Berens M, Sonntag VKH, Preul MC. Activated autologous macrophage implantation in a large-animal model of spinal cord injury. Neurosurg Focus 2009; 25:E3. [PMID: 18980477 DOI: 10.3171/foc.2008.25.11.e3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Axonal regeneration may be hindered following spinal cord injury (SCI) by a limited immune response and insufficient macrophage recruitment. This limitation has been partially surmounted in small-mammal models of SCI by implanting activated autologous macrophages (AAMs). The authors sought to replicate these results in a canine model of partial SCI. METHODS Six dogs underwent left T-13 spinal cord hemisection. The AAMs were implanted at both ends of the lesion in 4 dogs, and 2 other dogs received sham implantations of cell media. Cortical motor evoked potentials (MEPs) were used to assess electrophysiological recovery. Functional motor recovery was assessed with a modified Tarlov Scale. After 9 months, animals were injected with wheat germ agglutinin-horseradish peroxidase at L-2 and killed for histological assessment. RESULTS Three of the 4 dogs that received AAM implants and 1 of the 2 negative control dogs showed clear recovery of MEP response. Behavioral assessment showed no difference in motor function between the AAM-treated and control groups. Histological investigation with an axonal retrograde tracer showed neither local fiber crossing nor significant uptake in the contralateral red nucleus in both implanted and negative control groups. CONCLUSIONS In a large-animal model of partial SCI treated with implanted AAMs, the authors saw no morphological or histological evidence of axonal regeneration. Although they observed partial electrophysiological and functional motor recovery in all dogs, this recovery was not enhanced in animals treated with implanted AAMs. Furthermore, there was no morphological or histological evidence of axonal regeneration in animals with implants that accounted for the observed recovery. The explanation for this finding is probably multifactorial, but the authors believe that the AAM implantation does not produce axonal regeneration, and therefore is a technology that requires further investigation before it can be clinically relied on to ameliorate SCI.
Collapse
Affiliation(s)
- Rachid Assina
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sharma HS. New perspectives for the treatment options in spinal cord injury. Expert Opin Pharmacother 2009; 9:2773-800. [PMID: 18937612 DOI: 10.1517/14656566.9.16.2773] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Spinal cord injury (SCI) is a serious clinical disorder that leads to lifetime disability for which no suitable therapeutic agents are available so far. Further research is needed to understand the basic mechanisms of spinal cord pathology that results in permanent disability and poses a heavy burden on our society. In the past, a lot of effort was placed on improving functional outcome with the help of various therapeutic agents, however less attention has been paid on the development and propagation of spinal cord pathology over time. Thus, it is still unclear whether improvement of functional outcome is related to spinal cord pathology or vice versa. Few drugs are able to influence functional outcome without having any improvement on cord pathology. Some drugs, however, can lessen cord pathology but fail to influence the functional outcome. The goal of future treatment options for SCI is therefore to find suitable new drugs or a combination of existing drugs and to use various cellular transplants, neurotrophic factors, myelin-inhibiting factors, tissue engineering and nano-drug delivery to improve both the functional and the pathological outcome in the inured patient. This review deals with the key aspects of the latest treatments for SCI and suggests some possible future therapeutic measures to enhance healthcare in clinical situations.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- Uppsala University, University Hospital, Laboratory of Cerebrovascular Research, Department of Surgical Sciences, Anaesthesiology & Intensive Care Medicine, SE-75185 Uppsala, Sweden.
| |
Collapse
|
35
|
Malaspina A, Jokic N, Huang WL, Priestley JV. Comparative analysis of the time-dependent functional and molecular changes in spinal cord degeneration induced by the G93A SOD1 gene mutation and by mechanical compression. BMC Genomics 2008; 9:500. [PMID: 18947433 PMCID: PMC2585103 DOI: 10.1186/1471-2164-9-500] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 10/23/2008] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Mutations of the superoxide dismutase 1 (SOD1) gene are linked to amyotrophic lateral sclerosis (ALS), an invariably fatal neurological condition involving cortico-spinal degeneration. Mechanical injury can also determine spinal cord degeneration and act as a risk factor for the development of ALS. RESULTS We have performed a comparative ontological analysis of the gene expression profiles of thoracic cord samples from rats carrying the G93A SOD1 gene mutation and from wild-type littermates subjected to mechanical compression of the spinal cord. Common molecular responses and gene expression changes unique to each experimental paradigm were evaluated against the functional development of each animal model. Gene Ontology categories crucial to protein folding, extracellular matrix and axonal formation underwent early activation in both experimental paradigms, but decreased significantly in the spinal cord from animals recovering from injury after 7 days and from the G93A SOD1 mutant rats at end-stage disease. Functional improvement after compression coincided with a massive up-regulation of growth-promoting gene categories including factors involved in angiogenesis and transcription, overcoming the more transitory surge of pro-apoptotic components and cell-cycle genes. The cord from G93A SOD1 mutants showed persistent over-expression of apoptotic and stress molecules with fewer neurorestorative signals, while functional deterioration was ongoing. CONCLUSION this study illustrates how cytoskeletal protein metabolism is central to trauma and genetically-induced spinal cord degeneration and elucidates the main molecular events accompanying functional recovery or decline in two different animal models of spinal cord degeneration.
Collapse
Affiliation(s)
- Andrea Malaspina
- Neuroscience Centre, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, Whitechapel, London E1 2AT, UK.
| | | | | | | |
Collapse
|