1
|
Trenado C, Nikolov P, Slotty PJ, Vesper J, Schnitzler A, Groiss SJ. Intraoperative DBS targeting of the globus pallidus internus by using motor evoked potentials. J Neurol Sci 2024; 463:123141. [PMID: 39043070 DOI: 10.1016/j.jns.2024.123141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
OBJECTIVES Target localization for deep brain stimulation (DBS) is a crucial step that influences the clinical benefit of the DBS procedure together with the reduction of side effects. In this work, we address the feasibility of DBS target localization in the globus pallidus internus (GPi) aided by intraoperative motor evoked potentials (MEP) with emphasis on the reduction of capsular side effects. MATERIAL AND METHODS Micro-macroelectrode recordings were performed intraoperatively on 20 patients that underwent DBS treatment of the GPi (GPi-DBS). MEP were elicited intraoperatively by microelectrode stimulation during stereotactic DBS surgery. We studied the relationship between MEP thresholds and the internal capsule (IC) proximity. RESULTS We found a significant correlation between intraoperative MEP thresholds and IC proximity. CONCLUSIONS We provide further evidence of the role of MEPs for DBS target localization in the GPi, which extends and confirms the usefulness of MEPs as previously reported by DBS target localization studies dealing with the subthalamic and thalamic nuclei. Our approach is advantageous in that it provides criteria to determine the DBS target without the need to rely on a patient's response while avoiding capsular effects.
Collapse
Affiliation(s)
- Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Max Planck Institute for Empirical Aesthetics, Frankfurt am Main, Germany
| | - Petyo Nikolov
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp J Slotty
- Department of Orthopaedics, Trauma Surgery and Hand Unit, Helios Klinikum Krefeld, Krefeld, Germany; Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Faculty of Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Jan Vesper
- Department of Functional Neurosurgery and Stereotaxy, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Stefan Jun Groiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany; Neurocenter Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Kalani M, Anjankar A. Revolutionizing Neurology: The Role of Artificial Intelligence in Advancing Diagnosis and Treatment. Cureus 2024; 16:e61706. [PMID: 38975469 PMCID: PMC11224934 DOI: 10.7759/cureus.61706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Artificial intelligence (AI) has emerged as a powerful tool in the field of neurology, significantly impacting the diagnosis and treatment of neurological disorders. Recent technological breakthroughs have given us access to a plethora of information relevant to many aspects of neurology. Neuroscience and AI share a long history of collaboration. Along with great potential, we encounter obstacles relating to data quality, ethics, and inherent difficulty in applying data science in healthcare. Neurological disorders pose intricate challenges due to their complex manifestations and variability. Automating image interpretation tasks, AI algorithms accurately identify brain structures and detect abnormalities. This accelerates diagnosis and reduces the workload on medical professionals. Treatment optimization benefits from AI simulations that model different scenarios and predict outcomes. These AI systems can currently perform many of the sophisticated perceptual and cognitive capacities of biological systems, such as object identification and decision making. Furthermore, AI is rapidly being used as a tool in neuroscience research, altering our understanding of brain functioning. It has the ability to revolutionize healthcare as we know it into a system in which humans and robots collaborate to deliver better care for our patients. Image analysis activities such as recognizing particular brain regions, calculating changes in brain volume over time, and detecting abnormalities in brain scans can be automated by AI systems. This lessens the strain on radiologists and neurologists while improving diagnostic accuracy and efficiency. It is now obvious that cutting-edge artificial intelligence models combined with high-quality clinical data will lead to enhanced prognostic and diagnostic models in neurological illness, permitting expert-level clinical decision aids across healthcare settings. In conclusion, AI's integration into neurology has revolutionized diagnosis, treatment, and research. As AI technologies advance, they promise to unravel the complexities of neurological disorders further, leading to improved patient care and quality of life. The symbiosis of AI and neurology offers a glimpse into a future where innovation and compassion converge to reshape neurological healthcare. This abstract provides a concise overview of the role of AI in neurology and its transformative potential.
Collapse
Affiliation(s)
- Meetali Kalani
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Valentim WL, Tylee DS, Polimanti R. A perspective on translating genomic discoveries into targets for brain-machine interface and deep brain stimulation devices. WIREs Mech Dis 2024; 16:e1635. [PMID: 38059513 PMCID: PMC11163995 DOI: 10.1002/wsbm.1635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Mental illnesses have a huge impact on individuals, families, and society, so there is a growing need for more efficient treatments. In this context, brain-computer interface (BCI) technology has the potential to revolutionize the options for neuropsychiatric therapies. However, the development of BCI-based therapies faces enormous challenges, such as power dissipation constraints, lack of credible feedback mechanisms, uncertainty of which brain areas and frequencies to target, and even which patients to treat. Some of these setbacks are due to the large gap in our understanding of brain function. In recent years, large-scale genomic analyses uncovered an unprecedented amount of information regarding the biology of the altered brain function observed across the psychopathology spectrum. We believe findings from genetic studies can be useful to refine BCI technology to develop novel treatment options for mental illnesses. Here, we assess the latest advancements in both fields, the possibilities that can be generated from their intersection, and the challenges that these research areas will need to address to ensure that translational efforts can lead to effective and reliable interventions. Specifically, starting from highlighting the overlap between mechanisms uncovered by large-scale genetic studies and the current targets of deep brain stimulation treatments, we describe the steps that could help to translate genomic discoveries into BCI targets. Because these two research areas have not been previously presented together, the present article can provide a novel perspective for scientists with different research backgrounds. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Wander L. Valentim
- Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
| | - Daniel S. Tylee
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA CT Healthcare Center, West Haven, CT, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
- VA CT Healthcare Center, West Haven, CT, USA
| |
Collapse
|
4
|
Gough M, Mills R, Brechany U, Nicholson C, Jenkins A, Hussain MA. Locating the ventral intermediate thalamic nucleus for deep brain stimulation surgery: analysis of a case series comparing CT and MR targeting. Br J Neurosurg 2024:1-6. [PMID: 38372013 DOI: 10.1080/02688697.2024.2313674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/27/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) surgery targeting the ventral intermediate thalamic nucleus (Vim) has proven efficacy in the treatment of tremor. AIMS The primary aim is to investigate whether there is a statistically significant difference in patient outcomes when CT-guided targeting of the Vim is compared with MRI-guided targeting. METHODS This is a retrospective study concerning patients undergoing Vim-targeted DBS at the Department of Neurosurgery, Royal Victoria Infirmary in Newcastle (9th August 2012 to 4th January 2019). Fahn-Tolosa-Marin Tremor Scale (FTM TS) and EQ-5D scores were collected from patient notes. Statistical analysis was performed using IBM® SPSS® Statistics Version 24. Independent samples t-tests were used to compare means. RESULTS Independent samples t-test did not reveal a statistically significant difference between CT (n = 10; FTM TS mean = 65.40, SD = 11.40; EQ-5D mean = 39.50, SD = 17.87) and MR (n = 7; FTM TS mean = 60.57, SD = 7.50; EQ-5D mean = 32.14, SD = 9.94) groups in pre-surgery FTM TS (t(15) = 0.977, p = 0.344) and EQ-5D (t(15) = 0.982, p = 0.342) scores. No statistically significant difference between the CT (FTM TS mean = 24.12, SD = 20.47; EQ-5D mean = 75.56, SD = 15.63) and MR (FTM TS mean = 22.86, SD = 6.72; EQ-5D mean = 70.43, SD = 15.48) groups was revealed at 1 year assessment of FTM TS (t(14) = 0.155, p = 0.879) and EQ-5D (t(14) = 0.654, p = 0.524). The median difference between pre- and post-surgery FTM TS and EQ-5D scores in the CT group at 1 year was 43.00 and 35.00, respectively. The MR patient group median difference in pre- and post-surgery at 1 year was 35.00 and 35.00 respectively. CONCLUSION No statistically significant difference between CT and MR image-guided targeting patient groups was detected.
Collapse
Affiliation(s)
| | - Russell Mills
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Una Brechany
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Claire Nicholson
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Alistair Jenkins
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Mohammed Akbar Hussain
- Department of Neurosurgery, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| |
Collapse
|
5
|
Asir B, Boscutti A, Fenoy AJ, Quevedo J. Deep Brain Stimulation (DBS) in Treatment-Resistant Depression (TRD): Hope and Concern. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:161-186. [PMID: 39261429 DOI: 10.1007/978-981-97-4402-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this chapter, we explore the historical evolution, current applications, and future directions of Deep Brain Stimulation (DBS) for Treatment-Resistant Depression (TRD). We begin by highlighting the early efforts of neurologists and neurosurgeons who laid the foundations for today's DBS techniques, moving from controversial lobotomies to the precision of stereotactic surgery. We focus on the advent of DBS, emphasizing its emergence as a significant breakthrough for movement disorders and its extension to psychiatric conditions, including TRD. We provide an overview of the neural networks implicated in depression, detailing the rationale for the choice of common DBS targets. We also cover the technical aspects of DBS, from electrode placement to programming and parameter selection. We then critically review the evidence from clinical trials and open-label studies, acknowledging the mixed outcomes and the challenges posed by placebo effects and trial design. Safety and ethical considerations are also discussed. Finally, we explore innovative directions for DBS research, including the potential of closed-loop systems, dual stimulation strategies, and noninvasive alternatives like ultrasound neuromodulation. In the last section, we outline recommendations for future DBS studies, including the use of alternative designs for placebo control, the collection of neural and behavioral recordings, and the application of machine-learning approaches.
Collapse
Affiliation(s)
- Bashar Asir
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA.
| | - Andrea Boscutti
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Joao Quevedo
- Department of Psychiatry and Behavioral Sciences at McGovern Medical School, UTHealth Houston, Houston, TX, USA
| |
Collapse
|
6
|
Succop BS, Zamora C, Roque DA, Hadar E, Kessler B, Quinsey C. Day one postoperative MRI findings following electrode placement for deep brain stimulation: analysis of a large case series. Front Neurol 2023; 14:1253241. [PMID: 38169752 PMCID: PMC10758404 DOI: 10.3389/fneur.2023.1253241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
Objective This study sought to characterize postoperative day one MRI findings in deep brain stimulation (DBS) patients. Methods DBS patients were identified by CPT and had their reviewed by a trained neuroradiologist and neurosurgeon blinded to MR sequence and patient information. The radiographic abnormalities of interest were track microhemorrhage, pneumocephalus, hematomas, and edema, and the occurrence of these findings in compare the detection of these complications between T1/T2 gradient-echo (GRE) and T1/T2 fluid-attenuated inversion recovery (FLAIR) magnetic resonance (MR) sequences was compared. The presence, size, and association of susceptibility artifact with other radiographic abnormalities was also described. Lastly, the association of multiple microelectrode cannula passes with each radiographic finding was evaluated. Ad-hoc investigation evaluated hemisphere-specific associations. Multiple logistic regression with Bonferroni correction (corrected p = 0.006) was used for all analysis. Results Out of 198 DBS patients reviewed, 115 (58%) patients showed entry microhemorrhage; 77 (39%) track microhemorrhage; 44 (22%) edema; 69 (35%) pneumocephalus; and 12 (6%) intracranial hematoma. T2 GRE was better for detecting microhemorrhage (OR = 14.82, p < 0.0001 for entry site and OR = 4.03, p < 0.0001 for track) and pneumocephalus (OR = 11.86, p < 0.0001), while T2 FLAIR was better at detecting edema (OR = 123.6, p < 0.0001). The relatively common findings of microhemorrhage and edema were best visualized by T2 GRE and T2 FLAIR sequences, respectively. More passes intraoperatively was associated with detection of ipsilateral track microhemorrhage (OR = 7.151, p < 0.0001 left; OR = 8.953, p < 0.0001 right). Susceptibility artifact surrounding electrodes possibly interfered with further detection of ipsilateral edema (OR = 4.323, p = 0.0025 left hemisphere only). Discussion Day one postoperative magnetic resonance imaging (MRI) for DBS patients can be used to detect numerous radiographic abnormalities not identifiable on a computed tomographic (CT) scan. For this cohort, multiple stimulating cannula passes intraoperatively was associated with increased microhemorrhage along the electrode track. Further studies should be performed to evaluate the clinical relevance of these observations.
Collapse
Affiliation(s)
- Benjamin S. Succop
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carlos Zamora
- Department of Neuroradiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Daniel Alberto Roque
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eldad Hadar
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brice Kessler
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Carolyn Quinsey
- Department of Neurosurgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
7
|
Pintér D, Járdaházi E, Balás I, Harmat M, Makó T, Juhász A, Janszky J, Kovács N. Antiparkinsonian Drug Reduction After Directional Versus Omnidirectional Bilateral Subthalamic Deep Brain Stimulation. Neuromodulation 2023; 26:374-381. [PMID: 35190245 DOI: 10.1016/j.neurom.2022.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/15/2021] [Accepted: 01/08/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Several pilot trials and the Clinical Evaluation of the Infinity Deep Brain Stimulation System (PROGRESS) study have found that directional stimulation can provide a wider therapeutic window and lower therapeutic current strength than omnidirectional stimulation. OBJECTIVE We conducted a single-center, open-label, registry-based, comparative trial to test the hypothesis that directional stimulation can be associated with a greater reduction in the total daily dose of antiparkinsonian medications (ApMeds) than omnidirectional stimulation. MATERIALS AND METHODS A total of 52 patients with directional and 57 subjects with omnidirectional bilateral subthalamic deep brain stimulation (STN-DBS) were enrolled. Preoperatively and 12 months postoperatively, the dose of different ApMeds, the number of tablets used daily, the severity of motor and nonmotor symptoms using the Movement Disorder Society-sponsored Unified Parkinson Disease Rating Scale, and the health-related quality of life (HRQoL) using the 39-item Parkinson's Disease Questionnaire (PDQ-39) were assessed. RESULTS According to the changes in the levodopa equivalent daily dose, directional STN-DBS led to a 13% greater reduction in the total daily dose of ApMed. The 10.3% greater reduction in the dose of levodopa was the main contributor to this difference. The number of different ApMed types also could be decreased in a greater manner with directional stimulation. The improvement in the severity of motor and nonmotor symptoms was comparable; however, we detected a 15.8% greater improvement in the global HRQoL among patients with directional stimulation according to the changes in the summary index of the PDQ-39. The total electrical energy delivered per second was comparable between the groups at 12-month postoperative visit, whereas the amplitude of stimulation was significantly lower and the impedance was significantly higher with directional leads. CONCLUSIONS Directional programming can further increase the reduction in the total daily dose of ApMed after STN-DBS. In addition, directional stimulation can have additional beneficial effects on the global HRQoL. The greater reduction of ApMed doses did not require more energy-consuming stimulation with directional stimulation.
Collapse
Affiliation(s)
- Dávid Pintér
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary.
| | - Evelyn Járdaházi
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - István Balás
- Department of Neurosurgery, Medical School, University of Pécs, Pécs, Hungary
| | - Márk Harmat
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Makó
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - Annamária Juhász
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| | - Norbert Kovács
- Department of Neurology, Medical School, University of Pécs, Pécs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Pécs, Hungary
| |
Collapse
|
8
|
Smith AD, Teague AJ, Naik A, Janbahan M, Smith EJ, Krist DT, Parupalli S, Teal K, Hassaneen W. Robotic external ventricular drain placement for acute neurosurgical care in low-resource settings: feasibility considerations and a prototype design. Neurosurg Focus 2022; 52:E14. [PMID: 34973667 DOI: 10.3171/2021.10.focus21544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Emergency neurosurgical care in lower-middle-income countries faces pronounced shortages in neurosurgical personnel and infrastructure. In instances of traumatic brain injury (TBI), hydrocephalus, and subarachnoid hemorrhage, the timely placement of external ventricular drains (EVDs) strongly dictates prognosis and can provide necessary stabilization before transfer to a higher-level center of care that has access to neurosurgery. Accordingly, the authors have developed an inexpensive and portable robotic navigation tool to allow surgeons who do not have explicit neurosurgical training to place EVDs. In this article, the authors aimed to highlight income disparities in neurosurgical care, evaluate access to CT imaging around the world, and introduce a novel, inexpensive robotic navigation tool for EVD placement. METHODS By combining the worldwide distribution of neurosurgeons, CT scanners, and gross domestic product with the incidence of TBI, meningitis, and hydrocephalus, the authors identified regions and countries where development of an inexpensive, passive robotic navigation system would be most beneficial and feasible. A prototype of the robotic navigation system was constructed using encoders, 3D-printed components, machined parts, and a printed circuit board. RESULTS Global analysis showed Montenegro, Antigua and Barbuda, and Seychelles to be primary candidates for implementation and feasibility testing of the novel robotic navigation system. To validate the feasibility of the system for further development, its performance was analyzed through an accuracy study resulting in accuracy and repeatability within 1.53 ± 2.50 mm (mean ± 2 × SD, 95% CI). CONCLUSIONS By considering regions of the world that have a shortage of neurosurgeons and a high incidence of EVD placement, the authors were able to provide an analysis of where to prioritize the development of a robotic navigation system. Subsequently, a proof-of-principle prototype has been provided, with sufficient accuracy to target the ventricles for EVD placement.
Collapse
Affiliation(s)
- Alexander D Smith
- 1Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana; and
| | - Alexander J Teague
- 1Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana; and
| | - Anant Naik
- 1Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana; and
| | - Mika Janbahan
- 1Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana; and
| | - Emily J Smith
- 1Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana; and
| | - David T Krist
- 1Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana; and
| | - Sindhu Parupalli
- 1Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana; and
| | - Kevin Teal
- 1Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana; and.,2Department of Neurological Surgery, Neuroscience Institute, Carle Foundation Hospital, Urbana, Illinois
| | - Wael Hassaneen
- 1Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana; and.,2Department of Neurological Surgery, Neuroscience Institute, Carle Foundation Hospital, Urbana, Illinois
| |
Collapse
|
9
|
Yi G, Wang J. Frequency-Dependent Energy Demand of Dendritic Responses to Deep Brain Stimulation in Thalamic Neurons: A Model-Based Study. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3056-3068. [PMID: 32730206 DOI: 10.1109/tnnls.2020.3009293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thalamic deep brain stimulation (DBS) generates excitatory postsynaptic currents and action potentials (APs) by triggering large numbers of synaptic inputs to local cells, which also activates axonal spikes to antidromically invade the soma and dendrites. To maintain signaling, the evoked dendritic responses require metabolic energy to restore ion gradients in each dendrite. The objective of this study is to estimate the energy demand associated with dendritic responses to thalamic DBS. We use a morphologically realistic computational model to simulate dendritic activity in thalamocortical (TC) relay neurons with axonal intracellular stimulation or DBS-like extracellular stimulation. We determine the metabolic cost by calculating the number of adenosine triphosphate (ATP) expended to pump Na+ and Ca2+ ions out of each dendrite. The ATP demand of dendritic activity exhibits frequency dependence, which is determined by the number of spikes in the dendrites. Each backpropagating AP from the soma activates a spike in the dendrites, and the dendritic firing is dominated by antidromic activation of the soma. High stimulus frequencies decrease dendritic ATP cost by reducing the fidelity of antidromic activation. Synaptic inputs and stimulus-induced polarization govern the ATP cost of dendritic responses by facilitating/suppressing antidromic activation, which also influences the ATP cost by depolarizing/hyperpolarizing each dendrite. These findings are important for understanding the synaptic signaling energy in TC relay neurons and metabolism-dependent functional imaging data of thalamic DBS.
Collapse
|
10
|
de Roquemaurel A, Wirth T, Vijiaratnam N, Ferreira F, Zrinzo L, Akram H, Foltynie T, Limousin P. Stimulation Sweet Spot in Subthalamic Deep Brain Stimulation - Myth or Reality? A Critical Review of Literature. Stereotact Funct Neurosurg 2021; 99:425-442. [PMID: 34120117 DOI: 10.1159/000516098] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/23/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION While deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been extensively used for more than 20 years in Parkinson's disease (PD), the optimal area of stimulation to relieve motor symptoms remains elusive. OBJECTIVE We aimed at localizing the sweet spot within the subthalamic region by performing a systematic review of the literature. METHOD PubMed database was searched for published studies exploring optimal stimulation location for STN DBS in PD, published between 2000 and 2019. A standardized assessment procedure based on methodological features was applied to select high-quality publications. Studies conducted more than 3 months after the DBS procedure, employing lateralized scores and/or stimulation condition, and reporting the volume of tissue activated or the position of the stimulating contact within the subthalamic region were considered in the final analysis. RESULTS Out of 439 references, 24 were finally retained, including 21 studies based on contact location and 3 studies based on volume of tissue activated (VTA). Most studies (all VTA-based studies and 13 of the 21 contact-based studies) suggest the superior-lateral STN and the adjacent white matter as the optimal sites for stimulation. Remaining contact-based studies were either inconclusive (5/21), favoured the caudal zona incerta (1/21), or suggested a better outcome of STN stimulation than adjacent white matter stimulation (2/21). CONCLUSION Using a standardized methodological approach, our review supports the presence of a sweet spot located within the supero-lateral STN and extending to the adjacent white matter.
Collapse
Affiliation(s)
- Alexis de Roquemaurel
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Thomas Wirth
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom.,Neurology department, Strasbourg University Hospital, Strasbourg, France.,INSERM-U964/CNRS-UMR7104/University of Strasbourg, Illkirch-Graffenstaden, France
| | - Nirosen Vijiaratnam
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Francisca Ferreira
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Harith Akram
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| |
Collapse
|
11
|
Király B, Balázsfi D, Horváth I, Solari N, Sviatkó K, Lengyel K, Birtalan E, Babos M, Bagaméry G, Máthé D, Szigeti K, Hangya B. In vivo localization of chronically implanted electrodes and optic fibers in mice. Nat Commun 2020; 11:4686. [PMID: 32943633 PMCID: PMC7499215 DOI: 10.1038/s41467-020-18472-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Electrophysiology provides a direct readout of neuronal activity at a temporal precision only limited by the sampling rate. However, interrogating deep brain structures, implanting multiple targets or aiming at unusual angles still poses significant challenges for operators, and errors are only discovered by post-hoc histological reconstruction. Here, we propose a method combining the high-resolution information about bone landmarks provided by micro-CT scanning with the soft tissue contrast of the MRI, which allowed us to precisely localize electrodes and optic fibers in mice in vivo. This enables arbitrating the success of implantation directly after surgery with a precision comparable to gold standard histology. Adjustment of the recording depth with micro-drives or early termination of unsuccessful experiments saves many working hours, and fast 3-dimensional feedback helps surgeons avoid systematic errors. Increased aiming precision enables more precise targeting of small or deep brain nuclei and multiple targeting of specific cortical or hippocampal layers.
Collapse
Affiliation(s)
- Bálint Király
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Diána Balázsfi
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Ildikó Horváth
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Nicola Solari
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Katalin Sviatkó
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Katalin Lengyel
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Eszter Birtalan
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary
| | - Magor Babos
- Mediso Medical Imaging Systems Ltd., Budapest, Hungary
| | | | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
- CROmed Translational Research Centers, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest, Hungary.
| |
Collapse
|
12
|
Nguyen BT, Pilitsis J, Golestanirad L. The effect of simulation strategies on prediction of power deposition in the tissue around electronic implants during magnetic resonance imaging. ACTA ACUST UNITED AC 2020; 65:185007. [DOI: 10.1088/1361-6560/abac9f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Dong P, Guo Y, Gao Y, Liang P, Shi Y, Wu G. Multi-Atlas Segmentation of Anatomical Brain Structures Using Hierarchical Hypergraph Learning. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2020; 31:3061-3072. [PMID: 31502994 DOI: 10.1109/tnnls.2019.2935184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Accurate segmentation of anatomical brain structures is crucial for many neuroimaging applications, e.g., early brain development studies and the study of imaging biomarkers of neurodegenerative diseases. Although multi-atlas segmentation (MAS) has achieved many successes in the medical imaging area, this approach encounters limitations in segmenting anatomical structures associated with poor image contrast. To address this issue, we propose a new MAS method that uses a hypergraph learning framework to model the complex subject-within and subject-to-atlas image voxel relationships and propagate the label on the atlas image to the target subject image. To alleviate the low-image contrast issue, we propose two strategies equipped with our hypergraph learning framework. First, we use a hierarchical strategy that exploits high-level context features for hypergraph construction. Because the context features are computed on the tentatively estimated probability maps, we can ultimately turn the hypergraph learning into a hierarchical model. Second, instead of only propagating the labels from the atlas images to the target subject image, we use a dynamic label propagation strategy that can gradually use increasing reliably identified labels from the subject image to aid in predicting the labels on the difficult-to-label subject image voxels. Compared with the state-of-the-art label fusion methods, our results show that the hierarchical hypergraph learning framework can substantially improve the robustness and accuracy in the segmentation of anatomical brain structures with low image contrast from magnetic resonance (MR) images.
Collapse
|
14
|
Boutet A, Chow CT, Narang K, Elias GJB, Neudorfer C, Germann J, Ranjan M, Loh A, Martin AJ, Kucharczyk W, Steele CJ, Hancu I, Rezai AR, Lozano AM. Improving Safety of MRI in Patients with Deep Brain Stimulation Devices. Radiology 2020; 296:250-262. [PMID: 32573388 DOI: 10.1148/radiol.2020192291] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MRI is a valuable clinical and research tool for patients undergoing deep brain stimulation (DBS). However, risks associated with imaging DBS devices have led to stringent regulations, limiting the clinical and research utility of MRI in these patients. The main risks in patients with DBS devices undergoing MRI are heating at the electrode tips, induced currents, implantable pulse generator dysfunction, and mechanical forces. Phantom model studies indicate that electrode tip heating remains the most serious risk for modern DBS devices. The absence of adverse events in patients imaged under DBS vendor guidelines for MRI demonstrates the general safety of MRI for patients with DBS devices. Moreover, recent work indicates that-given adequate safety data-patients may be imaged outside these guidelines. At present, investigators are primarily focused on improving DBS device and MRI safety through the development of tools, including safety simulation models. Existing guidelines provide a standardized framework for performing safe MRI in patients with DBS devices. It also highlights the possibility of expanding MRI as a tool for research and clinical care in these patients going forward.
Collapse
Affiliation(s)
- Alexandre Boutet
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Clement T Chow
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Keshav Narang
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Gavin J B Elias
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Clemens Neudorfer
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Jürgen Germann
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Manish Ranjan
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Aaron Loh
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Alastair J Martin
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Walter Kucharczyk
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Christopher J Steele
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Ileana Hancu
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Ali R Rezai
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| | - Andres M Lozano
- From the University Health Network, Toronto, Canada (A.B., C.T.C., K.N., G.J.B.E., C.N., J.G., A.L., W.K., A.M.L.); Joint Department of Medical Imaging, University of Toronto, Toronto, Canada (A.B., W.K.); Department of Neurosurgery, West Virginia University, Morgantown, WVa (M.R., A.R.R.); Department of Neurosurgery, Rockefeller Neuroscience Institute, Morgantown, WVa (M.R., A.R.R.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, Calif (A.J.M.); Department of Psychology, Concordia University, Montreal, Canada (C.J.S.); Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (C.J.S.); Center for Scientific Review, National Institutes of Health, Bethesda, Md (I.H.); and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital and University of Toronto, 399 Bathurst St, WW 4-437, Toronto, ON, Canada M5T 2S8 (A.M.L.)
| |
Collapse
|
15
|
Structural Imaging and Target Visualization. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Dimov AV, Gupta A, Kopell BH, Wang Y. High-resolution QSM for functional and structural depiction of subthalamic nuclei in DBS presurgical mapping. J Neurosurg 2019; 131:360-367. [PMID: 30095333 DOI: 10.3171/2018.3.jns172145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 03/01/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Faithful depiction of the subthalamic nucleus (STN) is critical for planning deep brain stimulation (DBS) surgery in patients with Parkinson's disease (PD). Quantitative susceptibility mapping (QSM) has been shown to be superior to traditional T2-weighted spin echo imaging (T2w). The aim of the study was to describe submillimeter QSM for preoperative imaging of the STN in planning of DBS. METHODS Seven healthy volunteers were included in this study. T2w and QSM were obtained for all healthy volunteers, and images of different resolutions were reconstructed. Image quality and visibility of STN anatomical features were analyzed by a radiologist using a 5-point scale, and contrast properties of the STN and surrounding tissue were calculated. Additionally, data from 10 retrospectively and randomly selected PD patients who underwent 3-T MRI for DBS were analyzed for STN size and susceptibility gradient measurements. RESULTS Higher contrast-to-noise ratio (CNR) values were observed in both high-resolution and low-resolution QSM images. Inter-resolution comparison demonstrated improvement in CNR for QSM, but not for T2w images. QSM provided higher inter-quadrant contrast ratios (CR) within the STN, and depicted a gradient in the distribution of susceptibility sources not visible in T2w images. CONCLUSIONS For 3-T MRI, submillimeter QSM provides accurate delineation of the functional and anatomical STN features for DBS targeting.
Collapse
Affiliation(s)
- Alexey V Dimov
- 1Meinig School of Biomedical Engineering, Cornell University, Ithaca
- 2Department of Radiology, Weill Medical College of Cornell University; and
| | - Ajay Gupta
- 2Department of Radiology, Weill Medical College of Cornell University; and
| | - Brian H Kopell
- 3Department of Neurosurgery, Mount Sinai Health System, New York, New York
| | - Yi Wang
- 1Meinig School of Biomedical Engineering, Cornell University, Ithaca
- 2Department of Radiology, Weill Medical College of Cornell University; and
| |
Collapse
|
17
|
Sterman J, Cunqueiro A, Dym RJ, Spektor M, Lipton ML, Revzin MV, Scheinfeld MH. Implantable Electronic Stimulation Devices from Head to Sacrum: Imaging Features and Functions. Radiographics 2019; 39:1056-1074. [DOI: 10.1148/rg.2019180088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jonathan Sterman
- From the Department of Radiology, Division of Emergency Radiology (J.S., A.C., M.L.L., M.H.S.), Department of Psychiatry and Behavioral Sciences (M.L.L.), and Dominick P. Purpura Department of Neuroscience (M.L.L.), Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467; Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ (R.J.D.); and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Conn (M.S., M.V.R.)
| | - Alain Cunqueiro
- From the Department of Radiology, Division of Emergency Radiology (J.S., A.C., M.L.L., M.H.S.), Department of Psychiatry and Behavioral Sciences (M.L.L.), and Dominick P. Purpura Department of Neuroscience (M.L.L.), Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467; Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ (R.J.D.); and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Conn (M.S., M.V.R.)
| | - R. Joshua Dym
- From the Department of Radiology, Division of Emergency Radiology (J.S., A.C., M.L.L., M.H.S.), Department of Psychiatry and Behavioral Sciences (M.L.L.), and Dominick P. Purpura Department of Neuroscience (M.L.L.), Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467; Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ (R.J.D.); and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Conn (M.S., M.V.R.)
| | - Michael Spektor
- From the Department of Radiology, Division of Emergency Radiology (J.S., A.C., M.L.L., M.H.S.), Department of Psychiatry and Behavioral Sciences (M.L.L.), and Dominick P. Purpura Department of Neuroscience (M.L.L.), Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467; Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ (R.J.D.); and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Conn (M.S., M.V.R.)
| | - Michael L. Lipton
- From the Department of Radiology, Division of Emergency Radiology (J.S., A.C., M.L.L., M.H.S.), Department of Psychiatry and Behavioral Sciences (M.L.L.), and Dominick P. Purpura Department of Neuroscience (M.L.L.), Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467; Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ (R.J.D.); and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Conn (M.S., M.V.R.)
| | - Margarita V. Revzin
- From the Department of Radiology, Division of Emergency Radiology (J.S., A.C., M.L.L., M.H.S.), Department of Psychiatry and Behavioral Sciences (M.L.L.), and Dominick P. Purpura Department of Neuroscience (M.L.L.), Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467; Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ (R.J.D.); and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Conn (M.S., M.V.R.)
| | - Meir H. Scheinfeld
- From the Department of Radiology, Division of Emergency Radiology (J.S., A.C., M.L.L., M.H.S.), Department of Psychiatry and Behavioral Sciences (M.L.L.), and Dominick P. Purpura Department of Neuroscience (M.L.L.), Montefiore Medical Center, Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY 10467; Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ (R.J.D.); and Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Conn (M.S., M.V.R.)
| |
Collapse
|
18
|
Yi G, Wang J, Wei X, Che Y. Energy Cost of Action Potential Generation and Propagation in Thalamocortical Relay Neurons During Deep Brain Stimulation. IEEE Trans Biomed Eng 2019; 66:3457-3471. [PMID: 30932816 DOI: 10.1109/tbme.2019.2906114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Thalamocortical (TC) relay neurons generate antidromic and orthodromic action potentials (APs) during thalamic deep brain stimulation (DBS). To maintain signaling, each AP requires Na+/K+ pump to expend adenosine triphosphate (ATP) to restore Na+ and K+ gradients. Our aim was to estimate the energy demand associated with AP generation and propagation within TC relay cells during DBS. We used a morphology-based computational model to simulate the APs at different locations. We determined AP energy cost by calculating the amount of ATP required to reverse Na+ influx during the spike and measured metabolic efficiency by using Na+/K+ charge overlap. The ATP cost for AP generation exhibited location dependence, which was determined by spike shape, spatial morphology, and heterogeneously distributed currents. The APs in the axonal initial segment (AIS) were energetically efficient, but backpropagation to the soma and forward propagation to the axon were inefficient. Due to large surface area, the soma and AIS dominated the overall ATP usage. The AP cost also depended on membrane potential, which controlled T-type Ca2+ conductance and degree of availability of Na+ and K+ channels. The excitatory/inhibitory synaptic inputs affected spike cost by increasing/reducing the excitability of local cells. There was a tradeoff between AP cost and firing rate at high firing frequencies. We explained a fundamental link between biophysics of ionic currents, spatial morphology of neural segments, and ATP cost per AP. The predictions should be considered when understanding the functional magnetic resonance imaging data of thalamic DBS.
Collapse
|
19
|
Golestanirad L, Angelone LM, Kirsch J, Downs S, Keil B, Bonmassar G, Wald LL. Reducing RF-induced Heating near Implanted Leads through High-Dielectric Capacitive Bleeding of Current (CBLOC). IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2019; 67:1265-1273. [PMID: 31607756 PMCID: PMC6788634 DOI: 10.1109/tmtt.2018.2885517] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Patients with implanted medical devices such as deep brain stimulation or spinal cord stimulation are often unable to receive magnetic resonance imaging (MRI). This is because once the device is within the radiofrequency (RF) field of the MRI scanner, electrically conductive leads act as antenna, amplifying the RF energy deposition in the tissue and causing possible excessive tissue heating. Here we propose a novel concept in lead design in which 40cm lead wires are coated with a ~1.2mm layer of high dielectric constant material (155 < ε r < 250) embedded in a weakly conductive insulation (σ = 20S/m). The technique called High-Dielectric Capacitive Bleeding of Current, or CBLOC, works by forming a distributed capacitance along the lengths of the lead, efficiently dissipating RF energy before it reaches the exposed tip. Measurements during RF exposure at 64 MHz and 123 MHz demonstrated that CBLOC leads generated 20-fold less heating at 1.5 T, and 40-fold less heating at 3 T compared to control leads. Numerical simulations of RF exposure at 297 MHz (7T) predicted a 15-fold reduction in specific absorption rate (SAR) of RF energy around the tip of CBLOC leads compared to control leads.
Collapse
Affiliation(s)
- Laleh Golestanirad
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Department of Radiology, Harvard Medical School, Charlestown, MA 02129 USA, and the Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Leonardo M Angelone
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Device and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD
| | - John Kirsch
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Sean Downs
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Giorgio Bonmassar
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Charlestown MA 02129 USA (, , , )
| |
Collapse
|
20
|
Kim J, Duchin Y, Shamir RR, Patriat R, Vitek J, Harel N, Sapiro G. Automatic localization of the subthalamic nucleus on patient-specific clinical MRI by incorporating 7 T MRI and machine learning: Application in deep brain stimulation. Hum Brain Mapp 2019; 40:679-698. [PMID: 30379376 PMCID: PMC6519731 DOI: 10.1002/hbm.24404] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has shown clinical potential for relieving the motor symptoms of advanced Parkinson's disease. While accurate localization of the STN is critical for consistent across-patients effective DBS, clear visualization of the STN under standard clinical MR protocols is still challenging. Therefore, intraoperative microelectrode recordings (MER) are incorporated to accurately localize the STN. However, MER require significant neurosurgical expertise and lengthen the surgery time. Recent advances in 7 T MR technology facilitate the ability to clearly visualize the STN. The vast majority of centers, however, still do not have 7 T MRI systems, and fewer have the ability to collect and analyze the data. This work introduces an automatic STN localization framework based on standard clinical MRIs without additional cost in the current DBS planning protocol. Our approach benefits from a large database of 7 T MRI and its clinical MRI pairs. We first model in the 7 T database, using efficient machine learning algorithms, the spatial and geometric dependency between the STN and its adjacent structures (predictors). Given a standard clinical MRI, our method automatically computes the predictors and uses the learned information to predict the patient-specific STN. We validate our proposed method on clinical T2 W MRI of 80 subjects, comparing with experts-segmented STNs from the corresponding 7 T MRI pairs. The experimental results show that our framework provides more accurate and robust patient-specific STN localization than using state-of-the-art atlases. We also demonstrate the clinical feasibility of the proposed technique assessing the post-operative electrode active contact locations.
Collapse
Affiliation(s)
- Jinyoung Kim
- Surgical Information Sciences, Inc.MinneapolisMinnesota
| | - Yuval Duchin
- Surgical Information Sciences, Inc.MinneapolisMinnesota
| | | | - Remi Patriat
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesota
| | - Jerrold Vitek
- Department of NeurologyUniversity of MinnesotaMinneapolisMinnesota
| | - Noam Harel
- Surgical Information Sciences, Inc.MinneapolisMinnesota
- Center for Magnetic Resonance ResearchUniversity of MinnesotaMinneapolisMinnesota
- Department of NeurosurgeryUniversity of MinnesotaMinneapolisMinnesota
| | - Guillermo Sapiro
- Surgical Information Sciences, Inc.MinneapolisMinnesota
- Department of Electrical and Computer EngineeringDuke UniversityDurhamNorth Carolina
- Department of Biomedical EngineeringDuke UniversityDurhamNorth Carolina
- Department of Computer ScienceDuke UniversityDurhamNorth Carolina
- Department of MathematicsDuke UniversityDurhamNorth Carolina
| |
Collapse
|
21
|
Horn A, Li N, Dembek TA, Kappel A, Boulay C, Ewert S, Tietze A, Husch A, Perera T, Neumann WJ, Reisert M, Si H, Oostenveld R, Rorden C, Yeh FC, Fang Q, Herrington TM, Vorwerk J, Kühn AA. Lead-DBS v2: Towards a comprehensive pipeline for deep brain stimulation imaging. Neuroimage 2019; 184:293-316. [PMID: 30179717 PMCID: PMC6286150 DOI: 10.1016/j.neuroimage.2018.08.068] [Citation(s) in RCA: 503] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/13/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
Deep brain stimulation (DBS) is a highly efficacious treatment option for movement disorders and a growing number of other indications are investigated in clinical trials. To ensure optimal treatment outcome, exact electrode placement is required. Moreover, to analyze the relationship between electrode location and clinical results, a precise reconstruction of electrode placement is required, posing specific challenges to the field of neuroimaging. Since 2014 the open source toolbox Lead-DBS is available, which aims at facilitating this process. The tool has since become a popular platform for DBS imaging. With support of a broad community of researchers worldwide, methods have been continuously updated and complemented by new tools for tasks such as multispectral nonlinear registration, structural/functional connectivity analyses, brain shift correction, reconstruction of microelectrode recordings and orientation detection of segmented DBS leads. The rapid development and emergence of these methods in DBS data analysis require us to revisit and revise the pipelines introduced in the original methods publication. Here we demonstrate the updated DBS and connectome pipelines of Lead-DBS using a single patient example with state-of-the-art high-field imaging as well as a retrospective cohort of patients scanned in a typical clinical setting at 1.5T. Imaging data of the 3T example patient is co-registered using five algorithms and nonlinearly warped into template space using ten approaches for comparative purposes. After reconstruction of DBS electrodes (which is possible using three methods and a specific refinement tool), the volume of tissue activated is calculated for two DBS settings using four distinct models and various parameters. Finally, four whole-brain tractography algorithms are applied to the patient's preoperative diffusion MRI data and structural as well as functional connectivity between the stimulation volume and other brain areas are estimated using a total of eight approaches and datasets. In addition, we demonstrate impact of selected preprocessing strategies on the retrospective sample of 51 PD patients. We compare the amount of variance in clinical improvement that can be explained by the computer model depending on the preprocessing method of choice. This work represents a multi-institutional collaborative effort to develop a comprehensive, open source pipeline for DBS imaging and connectomics, which has already empowered several studies, and may facilitate a variety of future studies in the field.
Collapse
Affiliation(s)
- Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany.
| | - Ningfei Li
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Till A Dembek
- Department of Neurology, University Hospital of Cologne, Germany
| | - Ari Kappel
- Wayne State University, Department of Neurosurgery, Detroit, Michigan, USA
| | | | - Siobhan Ewert
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| | - Anna Tietze
- Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Andreas Husch
- University of Luxembourg, Luxembourg Centre for Systems Biomedicine, Interventional Neuroscience Group, Belvaux, Luxembourg
| | - Thushara Perera
- Bionics Institute, East Melbourne, Victoria, Australia; Department of Medical Bionics, University of Melbourne, Parkville, Victoria, Australia
| | - Wolf-Julian Neumann
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany; Institute of Neuroradiology, Charité - University Medicine Berlin, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Faculty of Medicine, University Freiburg, Germany
| | - Hang Si
- Numerical Mathematics and Scientific Computing, Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Germany
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, NL, Netherlands; NatMEG, Karolinska Institutet, Stockholm, SE, Sweden
| | - Christopher Rorden
- McCausland Center for Brain Imaging, University of South Carolina, Columbia, SC, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh PA, USA
| | - Qianqian Fang
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Todd M Herrington
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Johannes Vorwerk
- Scientific Computing & Imaging (SCI) Institute, University of Utah, Salt Lake City, USA
| | - Andrea A Kühn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Germany
| |
Collapse
|
22
|
Trenado C, Elben S, Friggemann L, Groiss SJ, Vesper J, Schnitzler A, Wojtecki L. Intraoperative Localization of the Subthalamic Nucleus Using Long-Latency Somatosensory Evoked Potentials. Neuromodulation 2017; 21:582-587. [PMID: 29164724 DOI: 10.1111/ner.12727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/25/2017] [Accepted: 09/22/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Target localization for deep brain stimulation (DBS) is a challenging step that determines not only the correct placement of stimulation electrodes, but also influences the success of the DBS procedure as reflected in the desired clinical outcome of a patient. OBJECTIVE We report on the feasibility of DBS target localization in the subthalamic nucleus (STN) by long-latency somatosensory evoked potentials (LL-SSEPs) (>40 msec) in Parkinson's disease (PD) patients. METHODS Micro-macroelectrode recordings were performed intraoperatively on seven PD patients (eight STN hemispheres) who underwent DBS treatment. LL-SSEPs were elicited by ipsi- and contralateral median nerve stimulation to the wrist. RESULTS Four distinctive LL-SSEP components were elicited ("LL-complex" consisting of P80, N100, P140, and N200). The P80 appeared as the most visible and reliable intraoperative component. Localization of the "LL-complex" within the target was approved with typical microelectrode firing activity patterns, atlas visualization of recording electrodes, and postoperative CT-based visualization of final DBS electrodes. CONCLUSIONS LL-SSEPs represent a promising approach for DBS target localization in the STN, provided deeper understanding on their anesthesia effect is obtained. This approach is advantageous in that it does not require the patient's participation in an intraoperative setting.
Collapse
Affiliation(s)
- Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.,Department of Neurology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Saskia Elben
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.,Department of Neurology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Lena Friggemann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Stefan Jun Groiss
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.,Department of Neurology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Jan Vesper
- Department of Functional and Stereotactic Neurosurgery, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.,Department of Neurology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Lars Wojtecki
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany.,Department of Neurology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| |
Collapse
|
23
|
Edwards CA, Kouzani A, Lee KH, Ross EK. Neurostimulation Devices for the Treatment of Neurologic Disorders. Mayo Clin Proc 2017; 92:1427-1444. [PMID: 28870357 DOI: 10.1016/j.mayocp.2017.05.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/16/2017] [Accepted: 05/01/2017] [Indexed: 12/01/2022]
Abstract
Rapid advancements in neurostimulation technologies are providing relief to an unprecedented number of patients affected by debilitating neurologic and psychiatric disorders. Neurostimulation therapies include invasive and noninvasive approaches that involve the application of electrical stimulation to drive neural function within a circuit. This review focuses on established invasive electrical stimulation systems used clinically to induce therapeutic neuromodulation of dysfunctional neural circuitry. These implantable neurostimulation systems target specific deep subcortical, cortical, spinal, cranial, and peripheral nerve structures to modulate neuronal activity, providing therapeutic effects for a myriad of neuropsychiatric disorders. Recent advances in neurotechnologies and neuroimaging, along with an increased understanding of neurocircuitry, are factors contributing to the rapid rise in the use of neurostimulation therapies to treat an increasingly wide range of neurologic and psychiatric disorders. Electrical stimulation technologies are evolving after remaining fairly stagnant for the past 30 years, moving toward potential closed-loop therapeutic control systems with the ability to deliver stimulation with higher spatial resolution to provide continuous customized neuromodulation for optimal clinical outcomes. Even so, there is still much to be learned about disease pathogenesis of these neurodegenerative and psychiatric disorders and the latent mechanisms of neurostimulation that provide therapeutic relief. This review provides an overview of the increasingly common stimulation systems, their clinical indications, and enabling technologies.
Collapse
Affiliation(s)
- Christine A Edwards
- School of Engineering, Deakin University, Geelong, Victoria, Australia; Department of Neurologic Surgery, Mayo Clinic, Rochester, MN
| | - Abbas Kouzani
- School of Engineering, Deakin University, Geelong, Victoria, Australia
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN
| | - Erika K Ross
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN; Department of Surgery, Mayo Clinic, Rochester, MN.
| |
Collapse
|
24
|
Gilmore G, Lee DH, Parrent A, Jog M. The current state of postoperative imaging in the presence of deep brain stimulation electrodes. Mov Disord 2017; 32:833-838. [DOI: 10.1002/mds.27028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/01/2017] [Accepted: 03/31/2017] [Indexed: 11/08/2022] Open
Affiliation(s)
- Greydon Gilmore
- Department of Biomedical Engineering; Western University; London Canada
- Department of Clinical Neurological Sciences; University Hospital; London Canada
| | - Donald H. Lee
- Department of Medical Imaging; University Hospital; London Canada
| | - Andrew Parrent
- Department of Clinical Neurological Sciences; University Hospital; London Canada
- Department of Neurosurgery; University Hospital; London Canada
| | - Mandar Jog
- Department of Biomedical Engineering; Western University; London Canada
- Department of Clinical Neurological Sciences; University Hospital; London Canada
| |
Collapse
|
25
|
Eijkholt M, Cabrera LY, Ramirez-Zamora A, Pilitsis JG. Shaking Up the Debate: Ensuring the Ethical Use of DBS Intervention Criteria for Mid-Stage Parkinson's Patients. Neuromodulation 2017; 20:411-416. [DOI: 10.1111/ner.12608] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/06/2017] [Accepted: 03/21/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Marleen Eijkholt
- Center for Ethics & Humanities in the Life Sciences; Michigan State University; Grand Rapids MI USA
| | - Laura Y. Cabrera
- Center for Ethics & Humanities in the Life Sciences; Michigan State University; East Lansing MI USA
| | - Adolfo Ramirez-Zamora
- Department of Neurology, Center for Movement Disorders and Neurorestoration; University of Florida; Gainesville FL USA
| | - Julie G. Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical Center; Albany NY USA
| |
Collapse
|
26
|
Alkemade A, de Hollander G, Keuken MC, Schäfer A, Ott DVM, Schwarz J, Weise D, Kotz SA, Forstmann BU. Comparison of T2*-weighted and QSM contrasts in Parkinson's disease to visualize the STN with MRI. PLoS One 2017; 12:e0176130. [PMID: 28423027 PMCID: PMC5397046 DOI: 10.1371/journal.pone.0176130] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/05/2017] [Indexed: 12/26/2022] Open
Abstract
The subthalamic nucleus (STN) plays a crucial role in the surgical treatment of Parkinson’s disease (PD). Studies investigating optimal protocols for STN visualization using state of the art magnetic resonance imaging (MRI) techniques have shown that susceptibility weighted images, which display the magnetic susceptibility distribution, yield better results than T1-weighted, T2-weighted, and T2*-weighted contrasts. However, these findings are based on young healthy individuals, and require validation in elderly individuals and persons suffering from PD. Using 7T MRI, the present study set out to investigate which MRI contrasts yielded the best results for STN visualization in 12 PD patients and age-matched healthy controls (HC). We found that STNs were more difficult to delineate in PD as reflected by a lower inter-rater agreement when compared to HCs. No STN size differences were observed between the groups. Analyses of quantitative susceptibility mapping (QSM) images showed a higher inter-rater agreement reflected by increased Dice-coefficients. The location of the center of mass of the STN was not affected by contrast. Overall, contrast-to-noise ratios (CNR) were higher in QSM than in T2*-weighted images. This can at least partially, explain the higher inter-rater agreement in QSM. The current results indicate that the calculation of QSM contrasts contributes to an improved visualization of the entire STN. We conclude that QSM contrast is the preferred choice for the visualization of the STN in persons with PD as well as in aging HC.
Collapse
Affiliation(s)
- Anneke Alkemade
- Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Gilles de Hollander
- Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Max C. Keuken
- Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, The Netherlands
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Andreas Schäfer
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Derek V. M. Ott
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Epilepsy Center Berlin-Brandenburg, Berlin, Germany
| | - Johannes Schwarz
- Klinik Haag, Oberbayern/Technische Universität München, München, Germany
| | - David Weise
- Klinik und Poliklinik für Neurologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Sonja A. Kotz
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Birte U. Forstmann
- Amsterdam Brain and Cognition Center, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Pujol S, Cabeen R, Sébille SB, Yelnik J, François C, Fernandez Vidal S, Karachi C, Zhao Y, Cosgrove GR, Jannin P, Kikinis R, Bardinet E. In vivo Exploration of the Connectivity between the Subthalamic Nucleus and the Globus Pallidus in the Human Brain Using Multi-Fiber Tractography. Front Neuroanat 2017; 10:119. [PMID: 28154527 PMCID: PMC5243825 DOI: 10.3389/fnana.2016.00119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/25/2016] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia is part of a complex system of neuronal circuits that play a key role in the integration and execution of motor, cognitive and emotional function in the human brain. Parkinson’s disease is a progressive neurological disorder of the motor circuit characterized by tremor, rigidity, and slowness of movement. Deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna provides an efficient treatment to reduce symptoms and levodopa-induced side effects in Parkinson’s disease patients. While the underlying mechanism of action of DBS is still unknown, the potential modulation of white matter tracts connecting the surgical targets has become an active area of research. With the introduction of advanced diffusion MRI acquisition sequences and sophisticated post-processing techniques, the architecture of the human brain white matter can be explored in vivo. The goal of this study is to investigate the white matter connectivity between the subthalamic nucleus and the globus pallidus. Two multi-fiber tractography methods were used to reconstruct pallido-subthalamic, subthalamo-pallidal and pyramidal fibers in five healthy subjects datasets of the Human Connectome Project. The anatomical accuracy of the tracts was assessed by four judges with expertise in neuroanatomy, functional neurosurgery, and diffusion MRI. The variability among subjects was evaluated based on the fractional anisotropy and mean diffusivity of the tracts. Both multi-fiber approaches enabled the detection of complex fiber architecture in the basal ganglia. The qualitative evaluation by experts showed that the identified tracts were in agreement with the expected anatomy. Tract-derived measurements demonstrated relatively low variability among subjects. False-negative tracts demonstrated the current limitations of both methods for clinical decision-making. Multi-fiber tractography methods combined with state-of-the-art diffusion MRI data have the potential to help identify white matter tracts connecting DBS targets in functional neurosurgery intervention.
Collapse
Affiliation(s)
- Sonia Pujol
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | - Ryan Cabeen
- Department of Computer Science, Brown University, Providence RI, USA
| | - Sophie B Sébille
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127 Paris, France
| | - Jérôme Yelnik
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127 Paris, France
| | - Chantal François
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127 Paris, France
| | - Sara Fernandez Vidal
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127Paris, France; Centre de Neuro-Imagerie de Recherche, Institut du Cerveau et de la Moëlle EpinièreParis, France
| | - Carine Karachi
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127Paris, France; Department of Neurosurgery, Pitié-Salpêtrière HospitalParis, France
| | - Yulong Zhao
- LTSI, Inserm UMR 1099 - Université de Rennes Rennes, France
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | - Pierre Jannin
- LTSI, Inserm UMR 1099 - Université de Rennes Rennes, France
| | - Ron Kikinis
- Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston MA, USA
| | - Eric Bardinet
- Institut du Cerveau et de la Moëlle Epinière, INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, University of Paris 06, UMR S 1127Paris, France; Centre de Neuro-Imagerie de Recherche, Institut du Cerveau et de la Moëlle EpinièreParis, France
| |
Collapse
|
28
|
Wang JW, Zhang YQ, Zhang XH, Wang YP, Li JP, Li YJ. Cognitive and Psychiatric Effects of STN versus GPi Deep Brain Stimulation in Parkinson's Disease: A Meta-Analysis of Randomized Controlled Trials. PLoS One 2016; 11:e0156721. [PMID: 27248139 PMCID: PMC4889151 DOI: 10.1371/journal.pone.0156721] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) of either the subthalamic nucleus (STN) or the globus pallidus interna (GPi) can reduce motor symptoms in patients with Parkinson's disease (PD) and improve their quality of life. However, the effects of STN DBS and GPi DBS on cognitive functions and their psychiatric effects remain controversial. The present meta-analysis was therefore performed to clarify these issues. METHODS We searched the PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases. Other sources, including internet-based clinical trial registries and grey literature sources, were also searched. After searching the literature, two investigators independently performed literature screens to assess the quality of the included trials and to extract the data. The outcomes included the effects of STN DBS and GPi DBS on multiple cognitive domains, depression, anxiety, and quality of life. RESULTS Seven articles related to four randomized controlled trials that included 521 participants were incorporated into the present meta-analysis. Compared with GPi DBS, STN DBS was associated with declines in selected cognitive domains after surgery, including attention, working memory and processing speed, phonemic fluency, learning and memory, and global cognition. However, there were no significant differences in terms of quality of life or psychiatric effects, such as depression and anxiety, between the two groups. CONCLUSIONS A selective decline in frontal-subcortical cognitive functions is observed after STN DBS in comparison with GPi DBS, which should not be ignored in the target selection for DBS treatment in PD patients. In addition, compared to GPi DBS, STN DBS does not affect depression, anxiety, and quality of life.
Collapse
Affiliation(s)
- Jia-Wei Wang
- Beijing Institute of Functional Neurosurgery, Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yu-Qing Zhang
- Beijing Institute of Functional Neurosurgery, Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Xiao-Hua Zhang
- Beijing Institute of Functional Neurosurgery, Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yun-Peng Wang
- Beijing Institute of Functional Neurosurgery, Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Ji-Ping Li
- Beijing Institute of Functional Neurosurgery, Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yong-Jie Li
- Beijing Institute of Functional Neurosurgery, Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
29
|
Moldovan AS, Groiss SJ, Elben S, Südmeyer M, Schnitzler A, Wojtecki L. The treatment of Parkinson's disease with deep brain stimulation: current issues. Neural Regen Res 2015; 10:1018-22. [PMID: 26330809 PMCID: PMC4541217 DOI: 10.4103/1673-5374.160094] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 11/04/2022] Open
Abstract
Deep brain stimulation has become a well-established symptomatic treatment for Parkinson's disease during the last 25 years. Besides improving motor symptoms and long-term motor complications, positive effects on patients' mobility, activities of daily living, emotional well-being and health-related quality of life have been recognized. Apart from that, numerous clinical trials analyzed effects on non-motor symptoms and side effects of deep brain stimulation. Several technical issues and stimulation paradigms have been and are still being developed to optimize the therapeutic effects, minimize the side effects and facilitate handling. This review summarizes current therapeutic issues, i.e., patient and target selection, surgical procedure and programming paradigms. In addition it focuses on neuropsychological effects and side effects of deep brain stimulation.
Collapse
Affiliation(s)
- Alexia-Sabine Moldovan
- Center for Movement Disorders and Neuromodulation, Department of Neurology, University Hospital Düsseldorf, Germany & Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Stefan Jun Groiss
- Center for Movement Disorders and Neuromodulation, Department of Neurology, University Hospital Düsseldorf, Germany & Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Saskia Elben
- Center for Movement Disorders and Neuromodulation, Department of Neurology, University Hospital Düsseldorf, Germany & Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Martin Südmeyer
- Center for Movement Disorders and Neuromodulation, Department of Neurology, University Hospital Düsseldorf, Germany & Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Alfons Schnitzler
- Center for Movement Disorders and Neuromodulation, Department of Neurology, University Hospital Düsseldorf, Germany & Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| | - Lars Wojtecki
- Center for Movement Disorders and Neuromodulation, Department of Neurology, University Hospital Düsseldorf, Germany & Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
30
|
de Celis Alonso B, Hidalgo-Tobón SS, Menéndez-González M, Salas-Pacheco J, Arias-Carrión O. Magnetic Resonance Techniques Applied to the Diagnosis and Treatment of Parkinson's Disease. Front Neurol 2015; 6:146. [PMID: 26191037 PMCID: PMC4490248 DOI: 10.3389/fneur.2015.00146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/18/2015] [Indexed: 12/26/2022] Open
Abstract
Parkinson's disease (PD) affects at least 10 million people worldwide. It is a neurodegenerative disease, which is currently diagnosed by neurological examination. No neuroimaging investigation or blood biomarker is available to aid diagnosis and prognosis. Most effort toward diagnosis using magnetic resonance (MR) has been focused on the use of structural/anatomical neuroimaging and diffusion tensor imaging (DTI). However, deep brain stimulation, a current strategy for treating PD, is guided by MR imaging (MRI). For clinical prognosis, diagnosis, and follow-up investigations, blood oxygen level-dependent MRI, DTI, spectroscopy, and transcranial magnetic stimulation have been used. These techniques represent the state of the art in the last 5 years. Here, we focus on MR techniques for the diagnosis and treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Benito de Celis Alonso
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla , Puebla , Mexico ; Fundación para el Desarrollo Carlos Sigüenza , Puebla , Mexico
| | - Silvia S Hidalgo-Tobón
- Departamento de Imagenología, Hospital Infantil de México "Federico Gómez" , Mexico City , Mexico ; Departamento de Física, Universidad Autónoma Metropolitana Iztapalapa , Mexico City , Mexico
| | | | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango , Durango , Mexico
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño (TMS), Hospital General Dr. Manuel Gea González , Mexico City , Mexico
| |
Collapse
|
31
|
Serano P, Angelone LM, Katnani H, Eskandar E, Bonmassar G. A novel brain stimulation technology provides compatibility with MRI. Sci Rep 2015; 5:9805. [PMID: 25924189 PMCID: PMC4413880 DOI: 10.1038/srep09805] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/10/2015] [Indexed: 02/05/2023] Open
Abstract
Clinical electrical stimulation systems--such as pacemakers and deep brain stimulators (DBS)--are an increasingly common therapeutic option to treat a large range of medical conditions. Despite their remarkable success, one of the significant limitations of these medical devices is the limited compatibility with magnetic resonance imaging (MRI), a standard diagnostic tool in medicine. During an MRI exam, the leads used with these devices, implanted in the body of the patient, act as an electric antenna potentially causing a large amount of energy to be absorbed in the tissue, which can lead to serious heat-related injury. This study presents a novel lead design that reduces the antenna effect and allows for decreased tissue heating during MRI. The optimal parameters of the wire design were determined by a combination of computational modeling and experimental measurements. The results of these simulations were used to build a prototype, which was tested in a gel phantom during an MRI scan. Measurement results showed a three-fold decrease in heating when compared to a commercially available DBS lead. Accordingly, the proposed design may allow a significantly increased number of patients with medical implants to have safe access to the diagnostic benefits of MRI.
Collapse
Affiliation(s)
- Peter Serano
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA,
U.S.A
- Department of Electrical and Computer Engineering, University of
Maryland, College Park, MD, U.S.A
- Division of Biomedical Physics, Office of Science and
Engineering Laboratories, Center for Devices and Radiological Health, U.S.
Food and Drug Administration, Silver Spring, MD, U.S.A
| | - Leonardo M. Angelone
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA,
U.S.A
- Division of Biomedical Physics, Office of Science and
Engineering Laboratories, Center for Devices and Radiological Health, U.S.
Food and Drug Administration, Silver Spring, MD, U.S.A
| | - Husam Katnani
- Department of Neurosurgery, Massachusetts General Hospital,
Harvard Medical School, Boston, MA
| | - Emad Eskandar
- Department of Neurosurgery, Massachusetts General Hospital,
Harvard Medical School, Boston, MA
| | - Giorgio Bonmassar
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA,
U.S.A
| |
Collapse
|
32
|
Kim J, Lenglet C, Duchin Y, Sapiro G, Harel N. Semiautomatic segmentation of brain subcortical structures from high-field MRI. IEEE J Biomed Health Inform 2015; 18:1678-95. [PMID: 25192576 DOI: 10.1109/jbhi.2013.2292858] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Volumetric segmentation of subcortical structures, such as the basal ganglia and thalamus, is necessary for noninvasive diagnosis and neurosurgery planning. This is a challenging problem due in part to limited boundary information between structures, similar intensity profiles across the different structures, and low contrast data. This paper presents a semiautomatic segmentation system exploiting the superior image quality of ultrahigh field (7 T) MRI. The proposed approach utilizes the complementary edge information in the multiple structural MRI modalities. It combines optimally selected two modalities from susceptibility-weighted, T2-weighted, and diffusion MRI, and introduces a tailored new edge indicator function. In addition to this, we employ prior shape and configuration knowledge of the subcortical structures in order to guide the evolution of geometric active surfaces. Neighboring structures are segmented iteratively, constraining oversegmentation at their borders with a nonoverlapping penalty. Several experiments with data acquired on a 7 T MRI scanner demonstrate the feasibility and power of the approach for the segmentation of basal ganglia components critical for neurosurgery applications such as deep brain stimulation surgery.
Collapse
|
33
|
Adams A, Shand-Smith J, Watkins L, McEvoy AW, Elneil S, Zrinzo L, Davagnanam I. Neural stimulators: a guide to imaging and postoperative appearances. Clin Radiol 2014; 69:993-1003. [PMID: 24842398 DOI: 10.1016/j.crad.2014.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/02/2014] [Accepted: 03/05/2014] [Indexed: 11/28/2022]
Abstract
Implantable neural stimulators have been developed to aid patients with debilitating neurological conditions that are not amenable to other therapies. The aim of this article is to improve understanding of correct anatomical placement as well as the relevant imaging methods used to assess these devices. Potential complications following their insertion and an overview of the current indications and potential mechanism of action of these devices is provided.
Collapse
Affiliation(s)
- A Adams
- Department of Neuroradiology, Barts and the Royal London Hospital, West Smithfield, London, EC1A 7BE, UK.
| | - J Shand-Smith
- Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - L Watkins
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - A W McEvoy
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - S Elneil
- Department of Urogynaecology, National Hospital for Neurology and Neurosurgery, London, UK
| | - L Zrinzo
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - I Davagnanam
- Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
34
|
D’Albis T, Haegelen C, Essert C, Fernández-Vidal S, Lalys F, Jannin P. PyDBS: an automated image processing workflow for deep brain stimulation surgery. Int J Comput Assist Radiol Surg 2014; 10:117-28. [DOI: 10.1007/s11548-014-1007-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/09/2014] [Indexed: 11/28/2022]
|
35
|
Lefranc M, Derrey S, Merle P, Tir M, Constans JM, Montpellier D, Macron JM, Le Gars D, Peltier J, Baledentt O, Krystkowiak P. High-Resolution 3-Dimensional T2*-Weighted Angiography (HR 3-D SWAN). Neurosurgery 2014; 74:615-26; discussion 627. [DOI: 10.1227/neu.0000000000000319] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ABSTRACT
BACKGROUND:
Subthalamic nucleus deep brain stimulation (STN-DBS) is an established treatment for Parkinson's disease.
OBJECTIVE:
To characterize an optimized magnetic resonance imaging (MRI) sequence (high-resolution 3-dimensional T2*-weighted angiography [HR 3-D SWAN]) for direct STN targeting.
METHODS:
Sequence distortions were measured using the Leksell stereotactic phantom. Eight consecutive candidates for STN-DBS underwent HR 3-D SWAN MRI for direct identification of the 16 STN. Two senior neurosurgeons independently determined the boundaries of STN on a semiquantitative scale (ranging from 1 [identification very easy] to 4 [identification very difficult]) and the anatomic target within the nucleus. The anatomic data were compared with electrophysiological recordings (48 microrecordings). We examined the anatomic location of the active contacts on MRI.
RESULTS:
The mean distortion error over the phantom was 0.16 mm. For the 16 STNs, identification of the upper, internal, anterior, and external edges was considered to be easy (scores of 1 or 2). The distinction between the substantia nigra and the STN was rated 1 or 2 for all but 6 nuclei. In the mediolateral axis, electrophysiological recordings covered perfectly anatomic data. In the craniocaudal axis, the mean differences between the electrophysiological data and the anatomic data were 0.8 mm and 0.19 mm for the “entry” and “exit” of the STN, respectively. All active contacts were located within the STN on MRI.
CONCLUSION:
HR 3-D SWAN allows easy visualization of the STN. Adapted to stereotactic requirement, the sequence simplifies direct targeting in STN-DBS surgery.
Collapse
Affiliation(s)
| | - Stéphane Derrey
- Department of Neurosurgery, Rouen University Medical Center, Rouen, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lalys F, Haegelen C, Mehri M, Drapier S, Vérin M, Jannin P. Anatomo-clinical atlases correlate clinical data and electrode contact coordinates: Application to subthalamic deep brain stimulation. J Neurosci Methods 2013; 212:297-307. [DOI: 10.1016/j.jneumeth.2012.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
|
37
|
Ben-Haim S, Gologorsky Y, Monahan A, Weisz D, Alterman RL. Fiducial registration with spoiled gradient-echo magnetic resonance imaging enhances the accuracy of subthalamic nucleus targeting. Neurosurgery 2011; 69:870-5; discussion 875. [PMID: 21552170 DOI: 10.1227/neu.0b013e318222ae33] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A variety of imaging strategies may be used to derive reliable stereotactic coordinates when performing deep brain stimulation lead implants. No single technique has yet proved optimal. OBJECTIVE To compare the relative accuracy of stereotactic coordinates for the subthalamic nucleus (STN) derived either from fast spin echo/inversion recovery (FSE/IR) magnetic resonance imaging MRI alone (group 1) or FSE/IR in conjunction with T1-weighted spoiled gradient-echo MRI (group 2). METHODS A retrospective analysis of 145 consecutive STN deep brain stimulation lead placements (group 1, n = 72; group 2, n = 73) was performed in 81 Parkinson disease patients by 1 surgical team. From the operative reports, we recorded the number of microelectrode recording trajectories required to localize the desired STN target and the span of STN traversed along the implantation trajectory. In addition, we calculated the 3-dimensional vector difference between the initial MRI-derived coordinates and the final physiologically refined coordinates. RESULTS The proportion of implants completed with just 1 microelectrode recording trajectory was greater (81% vs 58%; P < .001) and the 3-dimensional vector difference between the anatomically selected target and the microelectrode recording-refined target was smaller (0.6 ± 1.2 vs 0.9 ± 1.3; P = .04) in group 2 than in group 1. At the same time, the mean expanse of STN recorded along the implantation trajectory was 8% greater in group 2 (4.8 ± 0.6 vs 5.2 ± 0.6 mm; P < .001). CONCLUSION A combination of stereotactic FSE/IR and spoiled gradient-echo MRI yields more accurate coordinates for the STN than FSE/IR MRI alone.
Collapse
Affiliation(s)
- Sharona Ben-Haim
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | | | |
Collapse
|
38
|
Brunenberg EJL, Platel B, Hofman PAM, Ter Haar Romeny BM, Visser-Vandewalle V. Magnetic resonance imaging techniques for visualization of the subthalamic nucleus. J Neurosurg 2011; 115:971-84. [PMID: 21800960 DOI: 10.3171/2011.6.jns101571] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The authors reviewed 70 publications on MR imaging-based targeting techniques for identifying the subthalamic nucleus (STN) for deep brain stimulation in patients with Parkinson disease. Of these 70 publications, 33 presented quantitatively validated results. There is still no consensus on which targeting technique to use for surgery planning; methods vary greatly between centers. Some groups apply indirect methods involving anatomical landmarks, or atlases incorporating anatomical or functional data. Others perform direct visualization on MR imaging, using T2-weighted spin echo or inversion recovery protocols. The combined studies do not offer a straightforward conclusion on the best targeting protocol. Indirect methods are not patient specific, leading to varying results between cases. On the other hand, direct targeting on MR imaging suffers from lack of contrast within the subthalamic region, resulting in a poor delineation of the STN. These deficiencies result in a need for intraoperative adaptation of the original target based on test stimulation with or without microelectrode recording. It is expected that future advances in MR imaging technology will lead to improvements in direct targeting. The use of new MR imaging modalities such as diffusion MR imaging might even lead to the specific identification of the different functional parts of the STN, such as the dorsolateral sensorimotor part, the target for deep brain stimulation.
Collapse
Affiliation(s)
- Ellen J L Brunenberg
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Bystritsky A, Korb AS, Douglas PK, Cohen MS, Melega WP, Mulgaonkar AP, DeSalles A, Min BK, Yoo SS. A review of low-intensity focused ultrasound pulsation. Brain Stimul 2011; 4:125-36. [PMID: 21777872 DOI: 10.1016/j.brs.2011.03.007] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/20/2011] [Accepted: 03/20/2011] [Indexed: 01/16/2023] Open
Abstract
With the recent approval by the Food and Drug Administration (FDA) of Deep Brain Stimulation (DBS) for Parkinson's Disease, dystonia and obsessive compulsive disorder (OCD), vagus nerve stimulation (VNS) for epilepsy and depression, and repetitive transcranial magnetic stimulation (rTMS) for the treatment of depression, neuromodulation has become increasingly relevant to clinical research. However, these techniques have significant drawbacks (eg, lack of special specificity and depth for the rTMS, and invasiveness and cumbersome maintenance for DBS). This article reviews the background, rationale, and pilot studies to date, using a new brain stimulation method-low-intensity focused ultrasound pulsation (LIFUP). The ability of ultrasound to be focused noninvasively through the skull anywhere within the brain, together with concurrent imaging (ie, functional magnetic resonance imaging [fMRI]) techniques, may create a role for research and clinical use of LIFUP. This technique is still in preclinical testing and needs to be assessed thoroughly before being advanced to clinical trials. In this study, we review over 50 years of research data on the use of focused ultrasound (FUS) in neuronal tissue and live brain, and propose novel applications of this noninvasive neuromodulation method.
Collapse
Affiliation(s)
- Alexander Bystritsky
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|