1
|
Expert Panel on Neurological Imaging, Ivanidze J, Shih RY, Utukuri PS, Ajam AA, Auron M, Chang SM, Jordan JT, Kalnins A, Kuo PH, Ledbetter LN, Pannell JS, Pollock JM, Sheehan J, Soares BP, Soderlund KA, Wang LL, Burns J. ACR Appropriateness Criteria® Brain Tumors. J Am Coll Radiol 2025; 22:S108-S135. [PMID: 40409872 DOI: 10.1016/j.jacr.2025.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 05/25/2025]
Abstract
Brain tumors represent a complex and clinically diverse disease group, whose management is particularly dependent on neuroimaging given the wide range of differential diagnostic considerations and clinical scenarios. The introduction of advanced brain imaging tools into clinical practice makes it paramount for all treating physicians to recognize the range and understand the appropriate application of various conventional and advanced imaging modalities. The imaging recommendations for neuro-oncologic clinical scenarios involving screening in patients with increased genetic risk, screening in patients with systemic malignancy, pretreatment evaluation in patients with intra- and extraaxial brain tumors, posttreatment-surveillance in patients with known brain tumors after completion of therapy, and subsequent workup in the context of suspected radiographic progression are encompassed by this document. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | | | - Robert Y Shih
- Panel Chair, Uniformed Services University, Bethesda, Maryland
| | - Pallavi S Utukuri
- Panel Vice-Chair, Columbia University Medical Center, New York, New York
| | | | - Moises Auron
- Cleveland Clinic and Outcomes Research Consortium, Cleveland, Ohio; American College of Physicians
| | - Susan M Chang
- University of California, San Francisco, San Francisco, California; American Society of Clinical Oncology
| | - Justin T Jordan
- Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; American Academy of Neurology
| | | | - Phillip H Kuo
- University of Arizona, Tucson, Arizona; Commission on Nuclear Medicine and Molecular Imaging
| | | | | | | | - Jason Sheehan
- University of Virginia, Charlottesville, Virginia; American Association of Neurological Surgeons/Congress of Neurological Surgeons
| | - Bruno P Soares
- Stanford University School of Medicine, Stanford, California
| | | | - Lily L Wang
- University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Judah Burns
- Specialty Chair, Montefiore Medical Center, Bronx, New York
| |
Collapse
|
2
|
van Dorth D, Croese RJI, Jiang FY, Schmitz-Abecassis B, Taphoorn MJB, Smits M, Dirven L, van Osch MJP, de Bresser J, Koekkoek JAF. Perfusion MRI-based differentiation between early tumor progression and pseudoprogression in glioblastoma and its use in clinical practice. Neurooncol Pract 2025; 12:281-290. [PMID: 40110054 PMCID: PMC11913638 DOI: 10.1093/nop/npae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Background Early treatment effects in patients with glioblastoma are frequently discussed during multidisciplinary team meetings (MDTM), after which a decision regarding (dis)continuation of tumor-targeted treatment is made. This study examined whether a separate and systematic evaluation of perfusion MRI (pMRI) could impact such treatment decisions in the early stage. Methods This retrospective observational study evaluated the diagnostic accuracy for detecting early tumor progression of 4 different approaches including conventional MRI, pMRI with Arterial Spin Labeling (ASL), and/or Dynamic Susceptibility Contrast (DSC) MRI, and compared those to the MDTM evaluation in clinical practice. Results Sixty-five glioblastoma patients with clinical and radiological data until 9 months after irradiation were included. For all approaches, the sensitivity for detecting early true disease progression was poor to moderate (32%-62%). Area under the curve values were comparable (range 0.63-0.74), but highest for the MDTM evaluation (0.74). In the cases of inconclusive MDTM (26%), systematic pMRI evaluation showed a higher sensitivity compared to conventional MRI (respectively, 36% vs 0%), while the specificity was 100% for all MRI approaches. Multivariable regression analysis showed that a lower KPS score (OR = 0.84 [95% CI: 0.77-0.91]) and pMRI indicative of tumor progression (OR = 0.09 [95% CI: 0.02-0.52]) were independently associated with concluding tumor progression at the MDTM. Conclusion MDTM assessment in daily clinical practice has a higher diagnostic accuracy in distinguishing early tumor progression from pseudoprogression compared to a separate, systematic evaluation of pMRI. Systematic evaluation of pMRI might be helpful if the clinical MDTM assessment is uncertain.
Collapse
Affiliation(s)
- Daniëlle van Dorth
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert J I Croese
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Feng Yan Jiang
- Department of Radiology, HagaZiekenhuis, Den Haag, The Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bárbara Schmitz-Abecassis
- Medical Delta, Delft, The Netherlands
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin J B Taphoorn
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marion Smits
- Brain Tumor Center, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Medical Delta, Delft, The Netherlands
| | - Linda Dirven
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias J P van Osch
- Medical Delta, Delft, The Netherlands
- C. J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen de Bresser
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johan A F Koekkoek
- Department of Neurology, Haaglanden Medical Center, Den Haag, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Vollmuth P, Karschnia P, Sahm F, Park YW, Ahn SS, Jain R. A Radiologist's Guide to IDH-Wildtype Glioblastoma for Efficient Communication With Clinicians: Part II-Essential Information on Post-Treatment Imaging. Korean J Radiol 2025; 26:368-389. [PMID: 40015559 PMCID: PMC11955384 DOI: 10.3348/kjr.2024.0983] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/08/2024] [Accepted: 11/30/2024] [Indexed: 03/01/2025] Open
Abstract
Owing to recent advancements in various postoperative treatment modalities, such as radiation, chemotherapy, antiangiogenic treatment, and immunotherapy, the radiological and clinical assessment of patients with isocitrate dehydrogenase-wildtype glioblastoma using post-treatment imaging has become increasingly challenging. This review highlights the challenges in differentiating treatment-related changes such as pseudoprogression, radiation necrosis, and pseudoresponse from true tumor progression and aims to serve as a guideline for efficient communication with clinicians for optimal management of patients with post-treatment imaging.
Collapse
Affiliation(s)
- Philipp Vollmuth
- Division for Computational Radiology & Clinical AI (CCIBonn.ai), Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
- Medical Faculty Bonn, University of Bonn, Bonn, Germany
- Division of Medical Image Computing, German Cancer Research Center, Heidelberg, Germany
| | - Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- Department of Neurosurgery, Friedrich-Alexander-University University, Erlangen-Nuremberg, Germany
| | - Felix Sahm
- Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yae Won Park
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Rajan Jain
- Department of Radiology, New York University Grossman School of Medicine, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, USA
| |
Collapse
|
4
|
Chen H, Tan G, Zhong L, Hu Y, Han W, Huang Y, Liang Q, Szekeres D, Jiang H, Bharadwaj R, Smith SM, Wang HZ, Liu X. MR perfusion characteristics of pseudoprogression in brain tumors treated with immunotherapy - a comparative study with chemo-radiation induced pseudoprogression and radiation necrosis. J Neurooncol 2025; 172:239-247. [PMID: 39688766 PMCID: PMC11832695 DOI: 10.1007/s11060-024-04910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
PURPOSE Pseudoprogression is an atypical imaging pattern of response to immunotherapy in patients with brain tumors. MR perfusion studies in this field are limited. The purpose of our study is to compare the perfusion features between pseudoprogression lesions in malignant gliomas and brain metastases treated with immunotherapy (iPsP) and the pseudoprogression after chemo-radiation therapy and radiation necrosis after radiation treatment (ChR-PsP & RN). METHODS We retrospectively reviewed 25 iPsP lesions in 16 brain tumor patients and 48 ChR-PsP & RN lesions in 35 patients. The cerebral blood volume (CBV) of MR dynamic susceptibility contrast (DSC) perfusion weighted imaging (PWI) was analyzed, and the mean and maximal values of the ratio of CBV (rCBVmean and rCBVmax) of iPsPs and ChR-PsP & RNs were calculated and compared between these two groups using the Mann-Whitney U test. A receiver operating characteristic curve analysis was conducted, and the optimal cutoff of perfusion parameters were determined using the area under the curve, sensitivity, and specificity. RESULTS The medians of rCBVmean and rCBVmax in iPsP group were significantly higher (0.94 and 1.39 respectively) than ChR-PsP & RN group (0.67, p < 0.01 and 1.1, p = 0.01 respectively). The rCBVmean value of 0.69 can differentiate the iPsP from ChR-PsP & RN with the area under the curve of 0.71, sensitivity of 0.72, and specificity of 0.56. CONCLUSION These findings may suggest immunotherapy-induced higher perfusion in the iPsP lesions compared to ChR-PsP & RN lesions in primary and metastatic brain tumors.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guirong Tan
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
- Department of Radiology, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Lijuan Zhong
- Department of Pathology, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Yichuan Hu
- Department of Radiology, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Wenjing Han
- Yanjing Medical College, Capital Medical University, Beijing, China
| | - Yi Huang
- Interventional Radiotherapy Room, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Qiong Liang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Denes Szekeres
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Rajnish Bharadwaj
- Department of Pathology and Laboratory Medicine (SMD), University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen M Smith
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA.
| | - Xiang Liu
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China.
- Department of Radiology, The Affiliated Yuebei People's Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China.
| |
Collapse
|
5
|
Ahmad F. Boron Nanocomposites for Boron Neutron Capture Therapy and in Biomedicine: Evolvement and Challenges. Biomater Res 2025; 29:0145. [PMID: 40008112 PMCID: PMC11850861 DOI: 10.34133/bmr.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer remains a major concern for human health worldwide. To fight the curse of cancer, boron neutron capture therapy is an incredibly advantageous modality in the treatment of cancer as compared to other radiotherapies. Due to tortuous vasculature in and around tumor regions, boron (10B) compounds preferentially house into tumor cells, creating a large dose gradient between the highly mingled cancer cells and normal cells. Epithermal or thermal neutron bombardment leads to tumor-cell-selective killing due to the generation of heavy particles yielded from in situ fission reaction. However, the major challenges for boron nanocomposites' development have been from the synthesis part as well as the requirement for selective cancer targeting and the delivery of therapeutic concentrations of boron (10B) with nominal healthy tissue accumulation and retention. To circumvent the above challenges, this review discusses boride nanocomposite design, safety, and biocompatibility for biomedical applications for general public use. This review sparks interest in using boron nanocomposites as boron neutron capture therapy agents and repurposing them in comorbidity treatments, with future scientific challenges and opportunities, with a hope to accelerate the stimulus of developing possible boron composite nanomedicine research and applications worldwide.
Collapse
Affiliation(s)
- Farooq Ahmad
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
6
|
de Godoy LL, Rajan A, Banihashemi A, Patel T, Desai A, Bagley S, Brem S, Chawla S, Mohan S. Response Assessment in Long-Term Glioblastoma Survivors Using a Multiparametric MRI-Based Prediction Model. Brain Sci 2025; 15:146. [PMID: 40002479 PMCID: PMC11852837 DOI: 10.3390/brainsci15020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose: Early treatment response assessments are crucial, and the results are known to better correlate with prognosis and survival outcomes. The present study was conducted to differentiate true progression (TP) from pseudoprogression (PsP) in long-term-surviving glioblastoma patients using our previously established multiparametric MRI-based predictive model, as well as to identify clinical factors impacting survival outcomes in these patients. Methods: We report six patients with glioblastoma that had an overall survival longer than 5 years. When tumor specimens were available from second-stage surgery, histopathological analyses were used to classify between TP (>25% characteristics of malignant neoplasms; n = 2) and PsP (<25% characteristics of malignant neoplasms; n = 2). In the absence of histopathology, modified RANO criteria were assessed to determine the presence of TP (n = 1) or PsP (n = 1). The predictive probabilities (PPs) of tumor progression were measured from contrast-enhancing regions of neoplasms using a multiparametric MRI-based prediction model. Subsequently, these PP values were used to define each lesion as TP (PP ≥ 50%) or PsP (PP < 50%). Additionally, detailed clinical information was collected. Results: Our predictive model correctly identified all patients with TP (n = 3) and PsP (n = 3) cases, reflecting a significant concordance between histopathology/modified RANO criteria and PP values. The overall survival varied from 5.1 to 12.3 years. Five of the six glioblastoma patients were MGMT promoter methylated. All patients were female, with a median age of 56 years. Moreover, all six patients had a good functional status (KPS ≥ 70), underwent near-total/complete resection, and received alternative therapies. Conclusions: Multiparametric MRI can aid in assessing treatment response in long-term-surviving glioblastoma patients.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Archith Rajan
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Amir Banihashemi
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Thara Patel
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (T.P.); (S.B.)
| | - Arati Desai
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen Bagley
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven Brem
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (T.P.); (S.B.)
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.D.); (S.B.)
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanjeev Chawla
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| | - Suyash Mohan
- Departments of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; (L.L.d.G.); (A.R.); (S.M.)
| |
Collapse
|
7
|
Rafanan J, Ghani N, Kazemeini S, Nadeem-Tariq A, Shih R, Vida TA. Modernizing Neuro-Oncology: The Impact of Imaging, Liquid Biopsies, and AI on Diagnosis and Treatment. Int J Mol Sci 2025; 26:917. [PMID: 39940686 PMCID: PMC11817476 DOI: 10.3390/ijms26030917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Advances in neuro-oncology have transformed the diagnosis and management of brain tumors, which are among the most challenging malignancies due to their high mortality rates and complex neurological effects. Despite advancements in surgery and chemoradiotherapy, the prognosis for glioblastoma multiforme (GBM) and brain metastases remains poor, underscoring the need for innovative diagnostic strategies. This review highlights recent advancements in imaging techniques, liquid biopsies, and artificial intelligence (AI) applications addressing current diagnostic challenges. Advanced imaging techniques, including diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS), improve the differentiation of tumor progression from treatment-related changes. Additionally, novel positron emission tomography (PET) radiotracers, such as 18F-fluoropivalate, 18F-fluoroethyltyrosine, and 18F-fluluciclovine, facilitate metabolic profiling of high-grade gliomas. Liquid biopsy, a minimally invasive technique, enables real-time monitoring of biomarkers such as circulating tumor DNA (ctDNA), extracellular vesicles (EVs), circulating tumor cells (CTCs), and tumor-educated platelets (TEPs), enhancing diagnostic precision. AI-driven algorithms, such as convolutional neural networks, integrate diagnostic tools to improve accuracy, reduce interobserver variability, and accelerate clinical decision-making. These innovations advance personalized neuro-oncological care, offering new opportunities to improve outcomes for patients with central nervous system tumors. We advocate for future research integrating these tools into clinical workflows, addressing accessibility challenges, and standardizing methodologies to ensure broad applicability in neuro-oncology.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Department of Medical Education, Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (J.R.); (N.G.); (S.K.); (A.N.-T.); (R.S.)
| |
Collapse
|
8
|
Cozzi FM, Mayrand RC, Wan Y, Price SJ. Predicting glioblastoma progression using MR diffusion tensor imaging: A systematic review. J Neuroimaging 2025; 35:e13251. [PMID: 39648937 PMCID: PMC11626419 DOI: 10.1111/jon.13251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/27/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND AND PURPOSE Despite multimodal treatment of glioblastoma (GBM), recurrence beyond the initial tumor volume is inevitable. Moreover, conventional MRI has shortcomings that hinder the early detection of occult white matter tract infiltration by tumor, but diffusion tensor imaging (DTI) is a sensitive probe for assessing microstructural changes, facilitating the identification of progression before standard imaging. This sensitivity makes DTI a valuable tool for predicting recurrence. A systematic review was therefore conducted to investigate how DTI, in comparison to conventional MRI, can be used for predicting GBM progression. METHODS We queried three databases (PubMed, Web of Science, and Scopus) using the search terms: (diffusion tensor imaging OR DTI) AND (glioblastoma OR GBM) AND (recurrence OR progression). For included studies, data pertaining to the study type, number of GBM recurrence patients, treatment type(s), and DTI-related metrics of recurrence were extracted. RESULTS In all, 16 studies were included, from which there were 394 patients in total. Six studies reported decreased fractional anisotropy in recurrence regions, and 2 studies described the utility of connectomics/tractography for predicting tumor migratory pathways to a site of recurrence. Three studies reported evidence of tumor progression using DTI before recurrence was visible on conventional imaging. CONCLUSIONS These findings suggest that DTI metrics may be useful for guiding surgical and radiotherapy planning for GBM patients, and for informing long-term surveillance. Understanding the current state of the literature pertaining to these metrics' trends is crucial, particularly as DTI is increasingly used as a treatment-guiding imaging modality.
Collapse
Affiliation(s)
- Francesca M. Cozzi
- Cambridge Brain Tumour Imaging LaboratoryDivision of NeurosurgeryDepartment of Clinical NeurosciencesAddenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | - Roxanne C. Mayrand
- Cambridge Brain Tumour Imaging LaboratoryDivision of NeurosurgeryDepartment of Clinical NeurosciencesAddenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | - Yizhou Wan
- Cambridge Brain Tumour Imaging LaboratoryDivision of NeurosurgeryDepartment of Clinical NeurosciencesAddenbrooke's HospitalUniversity of CambridgeCambridgeUK
| | - Stephen J. Price
- Cambridge Brain Tumour Imaging LaboratoryDivision of NeurosurgeryDepartment of Clinical NeurosciencesAddenbrooke's HospitalUniversity of CambridgeCambridgeUK
| |
Collapse
|
9
|
Liu X, Chen H, Tan G, Zhong L, Jiang H, Smith SM, Wang HZ. A comprehensive neuroimaging review of the primary and metastatic brain tumors treated with immunotherapy: current status, and the application of advanced imaging approaches and artificial intelligence. Front Immunol 2024; 15:1496627. [PMID: 39669560 PMCID: PMC11634813 DOI: 10.3389/fimmu.2024.1496627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel clinical therapeutic option for a variety of solid tumors over the past decades. The application of immunotherapy in primary and metastatic brain tumors continues to grow despite limitations due to the physiological characteristics of the immune system within the central nervous system (CNS) and distinct pathological barriers of malignant brain tumors. The post-immunotherapy treatment imaging is more complex. In this review, we summarize the clinical application of immunotherapies in solid tumors beyond the CNS. We provide an overview of current immunotherapies used in brain tumors, including immune checkpoint inhibitors (ICIs), oncolytic viruses, vaccines, and CAR T-cell therapies. We focus on the imaging criteria for the assessment of treatment response to immunotherapy, and post-immunotherapy treatment imaging patterns. We discuss advanced imaging techniques in the evaluation of treatment response to immunotherapy in brain tumors. The imaging characteristics of immunotherapy treatment-related complications in CNS are described. Lastly, future imaging challenges in this field are explored.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Hongyan Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guirong Tan
- Department of Radiology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Lijuan Zhong
- Department of Pathology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Stephen M. Smith
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Henry Z. Wang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
10
|
Rossi J, Zedde M, Napoli M, Pascarella R, Pisanello A, Biagini G, Valzania F. Impact of Sex Hormones on Glioblastoma: Sex-Related Differences and Neuroradiological Insights. Life (Basel) 2024; 14:1523. [PMID: 39768232 PMCID: PMC11677825 DOI: 10.3390/life14121523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Glioblastoma (GBM) displays significant gender disparities, being 1.6 times more prevalent in men, with a median survival time of 15.0 months for males compared to 25.5 months for females. These differences may be linked to gonadal steroid hormones, particularly testosterone, which interacts with the androgen receptor (AR) to promote tumor proliferation. Conversely, estrogen (E2), progesterone (P4), and P4 metabolites exert more complex effects on GBM. Despite these insights, the identification of reliable hormonal tumor markers remains challenging, and studies investigating hormone therapies yield inconclusive results due to small sample sizes and heterogeneous tumor histology. Additionally, genetic, epigenetic, and immunological factors play critical roles in sex disparities, with female patients demonstrating increased O6-Methylguanine-DNA methyltransferase promoter methylation and greater genomic instability. These complexities highlight the need for personalized therapeutic strategies that integrate hormonal influences alongside other sex-specific biological characteristics in the management of GBM. In this review, we present the current understanding of the potential role of sex hormones in the natural history of GBM.
Collapse
Affiliation(s)
- Jessica Rossi
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41121 Modena, Italy;
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy (F.V.)
| | - Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy (F.V.)
| | - Manuela Napoli
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (R.P.)
| | - Rosario Pascarella
- Neuroradiology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy; (M.N.); (R.P.)
| | - Anna Pisanello
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy (F.V.)
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Franco Valzania
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy (F.V.)
| |
Collapse
|
11
|
Wu X, Zhang M, Jiang Q, Li M, Wu Y. Diagnostic accuracy of magnetic resonance diffusion tensor imaging in distinguishing pseudoprogression from glioma recurrence: a systematic review and meta-analysis. Expert Rev Anticancer Ther 2024; 24:1177-1185. [PMID: 39400036 DOI: 10.1080/14737140.2024.2415404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE To evaluate the diagnostic accuracy of diffusion tensor imaging (DTI)-derived metrics mean diffusivity (MD) and fractional anisotropy (FA) in differentiating glioma recurrence from pseudoprogression. METHODS The Cochrane Library, Scopus, PubMed, and the Web of Science were systematically searched. Study selection and data extraction were done by two investigators independently. The quality assessment of diagnostic accuracy studies was applied to evaluate the quality of the included studies. Combined sensitivity (SEN) and specificity (SPE) and the area under the summary receiver operating characteristic curve (SROC) with the 95% confidence interval (CI) were calculated. RESULTS Seven high-quality studies involving 246 patients were included. Quantitative synthesis of studies showed that the pooled SEN and SPE for MD were 0.81 (95% CI 0.70-0.88) and 0.82 (95% CI 0.70-0.90), respectively, and the value of the area under the SROC curve was 0.88 (95% CI 0.85-0.91). The pooled SEN and SPE for FA were 0.74 (95% CI 0.65-0.82) and 0.79 (95% CI 0.66-0.88), respectively, and the value of the area under the SROC curve was 0.84 (95% CI 0.80-0.87). CONCLUSIONS This meta-analysis showed that both MD and FA have a high diagnostic accuracy in differentiating glioma recurrence from pseudoprogression. REGISTRATION PROSPERO protocol: CRD42024501146.
Collapse
Affiliation(s)
- Xiaoyi Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mai Zhang
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quan Jiang
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingxi Li
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuankui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Serafin Z. Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling. Magn Reson Imaging 2024; 112:63-81. [PMID: 38914147 DOI: 10.1016/j.mri.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
13
|
Anbarasi J, Kumari R, Ganesh M, Agrawal R. Translational Connectomics: overview of machine learning in macroscale Connectomics for clinical insights. BMC Neurol 2024; 24:364. [PMID: 39342171 PMCID: PMC11438080 DOI: 10.1186/s12883-024-03864-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Connectomics is a neuroscience paradigm focused on noninvasively mapping highly intricate and organized networks of neurons. The advent of neuroimaging has led to extensive mapping of the brain functional and structural connectome on a macroscale level through modalities such as functional and diffusion MRI. In parallel, the healthcare field has witnessed a surge in the application of machine learning and artificial intelligence for diagnostics, especially in imaging. While reviews covering machine learn ing and macroscale connectomics exist for specific disorders, none provide an overview that captures their evolving role, especially through the lens of clinical application and translation. The applications include understanding disorders, classification, identifying neuroimaging biomarkers, assessing severity, predicting outcomes and intervention response, identifying potential targets for brain stimulation, and evaluating the effects of stimulation intervention on the brain and connectome mapping in patients before neurosurgery. The covered studies span neurodegenerative, neurodevelopmental, neuropsychiatric, and neurological disorders. Along with applications, the review provides a brief of common ML methods to set context. Conjointly, limitations in ML studies within connectomics and strategies to mitigate them have been covered.
Collapse
Affiliation(s)
- Janova Anbarasi
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Radha Kumari
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Malvika Ganesh
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India
| | - Rimjhim Agrawal
- BrainSightAI, No. 677, 1st Floor, 27th Main, 13th Cross, HSR Layout, Sector 1, Adugodi, Bengaluru, Karnataka, 560102, India.
| |
Collapse
|
14
|
Khadhraoui E, Schmidt L, Klebingat S, Schwab R, Hernández-Durán S, Gihr G, Paukisch H, Stein KP, Behme D, Müller SJ. Comparison of a new MR rapid wash-out map with MR perfusion in brain tumors. BMC Cancer 2024; 24:1139. [PMID: 39267002 PMCID: PMC11395865 DOI: 10.1186/s12885-024-12909-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND MR perfusion is a standard marker to distinguish progression and therapy-associated changes after surgery and radiochemotherapy for glioblastoma. TRAMs (Treatment Response Assessment Maps) were introduced, which are intended to facilitate the differentiation of vital tumor cells and radiation necrosis by means of late (20-90 min) contrast clearance and enhancement. The differences of MR perfusion and late-enhancement are not fully understood yet. METHODS We have implemented and established a fully automated creation of rapid wash-out (15-20 min interval) maps in our clinic. We included patients with glioblastoma, CNS lymphoma or brain metastases who underwent our MR protocol with MR perfusion and rapid wash-out between 01/01/2024 and 30/06/2024. Since both wash-out and hyperperfusion are intended to depict the active tumor area, this study involves a quantitative and qualitative comparison of both methods. For this purpose, we volumetrically measured rCBV (relative cerebral blood volume) maps and rapid wash-out maps separately (two raters). Additionally, we rated the agreement between both maps on a Likert scale (0-10). RESULTS Thirty-two patients were included in the study: 15 with glioblastoma, 7 with CNS lymphomas and 10 with brain metastasis. We calculated 36 rapid wash-out maps (9 initial diagnosis, 27 follow-up). Visual agreement of MR perfusion with rapid wash-out by rating were found in 44 ± 40% for initial diagnosis, and 75 ± 31% for follow-up. We found a strong correlation (Pearson coefficient 0.92, p < 0.001) between the measured volumes of MR perfusion and rapid wash-out. The measured volumes of MR perfusion and rapid wash-out did not differ significantly. Small lesions were often not detected by MR perfusion. Nevertheless, the measured volumes showed no significant differences in this small cohort. CONCLUSIONS Rapid wash-out calculation is a simple tool that provides new information and, when used in conjunction with MR perfusion, may increase diagnostic accuracy. The method shows promising results, particularly in the evaluation of small lesions.
Collapse
Affiliation(s)
- Eya Khadhraoui
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Leon Schmidt
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Stefan Klebingat
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Roland Schwab
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Silvia Hernández-Durán
- Department of Neurological Surgery, Göttingen University Hospital, Robert-Koch-Str. 40, D-37075, Göttingen, Germany
| | - Georg Gihr
- Clinic for Neuroradiology, Katharinen-Hospital Stuttgart, Kriegsbergstr. 60, D-70174, Stuttgart, Germany
| | - Harald Paukisch
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Klaus-Peter Stein
- Department of Neurosurgery, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
| | - Daniel Behme
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany
- Stimulate Research Campus Magdeburg, Otto-Hahn-Str. 2, D-39106, Magdeburg, Germany
| | - Sebastian Johannes Müller
- Clinic for Neuroradiology, Otto-Von-Guericke-University Magdeburg, Leipziger Str. 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
15
|
Gagnon L, Gupta D, Mastorakos G, White N, Goodwill V, McDonald CR, Beaumont T, Conlin C, Seibert TM, Nguyen U, Hattangadi-Gluth J, Kesari S, Schulte JD, Piccioni D, Schmainda KM, Farid N, Dale AM, Rudie JD. Deep Learning Segmentation of Infiltrative and Enhancing Cellular Tumor at Pre- and Posttreatment Multishell Diffusion MRI of Glioblastoma. Radiol Artif Intell 2024; 6:e230489. [PMID: 39166970 PMCID: PMC11427928 DOI: 10.1148/ryai.230489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Purpose To develop and validate a deep learning (DL) method to detect and segment enhancing and nonenhancing cellular tumor on pre- and posttreatment MRI scans in patients with glioblastoma and to predict overall survival (OS) and progression-free survival (PFS). Materials and Methods This retrospective study included 1397 MRI scans in 1297 patients with glioblastoma, including an internal set of 243 MRI scans (January 2010 to June 2022) for model training and cross-validation and four external test cohorts. Cellular tumor maps were segmented by two radiologists on the basis of imaging, clinical history, and pathologic findings. Multimodal MRI data with perfusion and multishell diffusion imaging were inputted into a nnU-Net DL model to segment cellular tumor. Segmentation performance (Dice score) and performance in distinguishing recurrent tumor from posttreatment changes (area under the receiver operating characteristic curve [AUC]) were quantified. Model performance in predicting OS and PFS was assessed using Cox multivariable analysis. Results A cohort of 178 patients (mean age, 56 years ± 13 [SD]; 116 male, 62 female) with 243 MRI timepoints, as well as four external datasets with 55, 70, 610, and 419 MRI timepoints, respectively, were evaluated. The median Dice score was 0.79 (IQR, 0.53-0.89), and the AUC for detecting residual or recurrent tumor was 0.84 (95% CI: 0.79, 0.89). In the internal test set, estimated cellular tumor volume was significantly associated with OS (hazard ratio [HR] = 1.04 per milliliter; P < .001) and PFS (HR = 1.04 per milliliter; P < .001) after adjustment for age, sex, and gross total resection (GTR) status. In the external test sets, estimated cellular tumor volume was significantly associated with OS (HR = 1.01 per milliliter; P < .001) after adjustment for age, sex, and GTR status. Conclusion A DL model incorporating advanced imaging could accurately segment enhancing and nonenhancing cellular tumor, distinguish recurrent or residual tumor from posttreatment changes, and predict OS and PFS in patients with glioblastoma. Keywords: Segmentation, Glioblastoma, Multishell Diffusion MRI Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
- Louis Gagnon
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Diviya Gupta
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - George Mastorakos
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Nathan White
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Vanessa Goodwill
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Carrie R McDonald
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Thomas Beaumont
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Christopher Conlin
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Tyler M Seibert
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Uyen Nguyen
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Jona Hattangadi-Gluth
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Santosh Kesari
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Jessica D Schulte
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - David Piccioni
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Kathleen M Schmainda
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Nikdokht Farid
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Anders M Dale
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| | - Jeffrey D Rudie
- From the Departments of Radiology (L.G., D.G., C.C., T.M.S., U.N., N.F., A.M.D., J.D.R.), Pathology (V.G.), Radiation Medicine and Applied Sciences (C.R.M., T.M.S., J.H.G.), Neurologic Surgery (T.B.), Bioengineering (T.M.S.), and Neurosciences (J.D.S., D.P., A.M.D.), University of California San Diego, 9500 Gillman Dr, La Jolla, CA 92093; Cortechs.ai, San Diego, Calif (G.M., N.W.); Department of Translational Neurosciences, Pacific Neuroscience Institute and Saint John's Cancer Institute at Providence Saint John's Health Center, Santa Monica, Calif (S.K.); and Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wis (K.M.S.)
| |
Collapse
|
16
|
Wongsawaeng D, Schwartz D, Li X, Muldoon LL, Stoller J, Stateler C, Holland S, Szidonya L, Rooney WD, Wyatt C, Ambady P, Fu R, Neuwelt EA, Barajas RF. Comparison of dynamic susceptibility contrast (DSC) using gadolinium and iron-based contrast agents in high-grade glioma at high-field MRI. Neuroradiol J 2024; 37:473-482. [PMID: 38544404 PMCID: PMC11366198 DOI: 10.1177/19714009241242596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024] Open
Abstract
PURPOSE To compare DSC-MRI using Gadolinium (GBCA) and Ferumoxytol (FBCA) in high-grade glioma at 3T and 7T MRI field strengths. We hypothesized that using FBCA at 7T would enhance the performance of DSC, as measured by contrast-to-noise ratio (CNR). METHODS Ten patients (13 lesions) were assigned to 3T (6 patients, 6 lesions) or 7T (4 patients, 7 lesions). All lesions received 0.1 mmol/kg of GBCA on day 1. Ten lesions (4 at 3T and 6 at 7T) received a lower dose (0.6 mg/kg) of FBCA, followed by a higher dose (1.0-1.2 mg/kg), while 3 lesions (2 at 3T and 1 at 7T) received only a higher dose on Day 2. CBV maps with leakage correction for GBCA but not for FBCA were generated. The CNR and normalized CBV (nCBV) were analyzed on enhancing and non-enhancing high T2W lesions. RESULTS Regardless of FBCA dose, GBCA showed higher CNR than FBCA at 7T, which was significant for high-dose FBCA (p < .05). Comparable CNR between GBCA and high-dose FBCA was observed at 3T. There was a trend toward higher CNR for FBCA at 3T than 7T. GBCA also showed nCBV twice that of FBCA at both MRI field strengths with significance at 7T. CONCLUSION GBCA demonstrated higher image conspicuity, as measured by CNR, than FBCA on 7T. The stronger T2* weighting realized with higher magnetic field strength, combined with FBCA, likely results in more signal loss rather than enhanced performance on DSC. However, at clinical 3T, both GBCA and FBCA, particularly a dosage of 1.0-1.2 mg/kg (optimal for perfusion imaging), yielded comparable CNR.
Collapse
Affiliation(s)
- Doonyaporn Wongsawaeng
- Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Thailand
| | - Daniel Schwartz
- Advanced Imaging Research Center, Oregon Health and Science University, USA
| | - Xin Li
- Advanced Imaging Research Center, Oregon Health and Science University, USA
| | - Leslie L Muldoon
- Department of Neurology, Oregon Health & Science University, USA
| | - Jared Stoller
- Department of Radiology, Oregon Health & Science University, USA
| | | | - Samantha Holland
- Department of Neurology, Oregon Health & Science University, USA
| | - Laszlo Szidonya
- Department of Radiology, Oregon Health & Science University, USA
| | - William D Rooney
- Advanced Imaging Research Center, Oregon Health and Science University, USA
| | - Cory Wyatt
- Department of Radiology, Oregon Health & Science University, USA
| | | | - Rongwei Fu
- School of Public Health, Oregon Health & Science University, USA
| | - Edward A Neuwelt
- Department of Neurology, Oregon Health & Science University, USA
- Department of Neurosurgery, Oregon Health & Science University, USA
| | - Ramon F Barajas
- Advanced Imaging Research Center, Oregon Health and Science University, USA
- Department of Radiology, Oregon Health & Science University, USA
- Knight Cancer Institute, Oregon Health & Science University, USA
| |
Collapse
|
17
|
Li K, Zhu Q, Yang J, Zheng Y, Du S, Song M, Peng Q, Yang R, Liu Y, Qi L. Imaging and Liquid Biopsy for Distinguishing True Progression From Pseudoprogression in Gliomas, Current Advances and Challenges. Acad Radiol 2024; 31:3366-3383. [PMID: 38614827 DOI: 10.1016/j.acra.2024.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/14/2024] [Accepted: 03/18/2024] [Indexed: 04/15/2024]
Abstract
RATIONALE AND OBJECTIVES Gliomas are aggressive brain tumors with a poor prognosis. Assessing treatment response is challenging because magnetic resonance imaging (MRI) may not distinguish true progression (TP) from pseudoprogression (PsP). This review aims to discuss imaging techniques and liquid biopsies used to distinguish TP from PsP. MATERIALS AND METHODS This review synthesizes existing literature to examine advances in imaging techniques, such as magnetic resonance diffusion imaging (MRDI), perfusion-weighted imaging (PWI) MRI, and liquid biopsies, for identifying TP or PsP through tumor markers and tissue characteristics. RESULTS Advanced imaging techniques, including MRDI and PWI MRI, have proven effective in delineating tumor tissue properties, offering valuable insights into glioma behavior. Similarly, liquid biopsy has emerged as a potent tool for identifying tumor-derived markers in biofluids, offering a non-invasive glimpse into tumor evolution. Despite their promise, these methodologies grapple with significant challenges. Their sensitivity remains inconsistent, complicating the accurate differentiation between TP and PSP. Furthermore, the absence of standardized protocols across platforms impedes the reliability of comparisons, while inherent biological variability adds complexity to data interpretation. CONCLUSION Their potential applications have been highlighted, but gaps remain before routine clinical use. Further research is needed to develop and validate these promising methods for distinguishing TP from PsP in gliomas.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China; Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China.; Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qihui Zhu
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Junyi Yang
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Yin Zheng
- Department of Neurosurgery, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Siyuan Du
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Meihui Song
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Qian Peng
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China
| | - Runwei Yang
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Yawei Liu
- Department of Neurosurgery & Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), 1# Jiazi Road, Foshan, Guangdong 528300, China
| | - Ling Qi
- Institute of Digestive Disease of Guangzhou Medical University, Affiliated Qingyuan Hospital,Guangzhou Medical University,Qingyuan People's Hospital, Qingyuan 511518, China.
| |
Collapse
|
18
|
Song Q, Wang C, Jiang W, Wang J, Li J, Guo H, Chen H, Han X. Pre-operative spinal cord perfusion quantified by DSC MRI as a predictor of post-operative prognosis in patients with cervical spondylotic myelopathy. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024:10.1007/s00586-024-08417-0. [PMID: 39048843 DOI: 10.1007/s00586-024-08417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE This study aims to investigate the potential of preoperative blood supply condition measured by dynamic susceptibility contract (DSC) MRI in prediction of postoperative outcomes for patients with cervical spondylotic myelopathy (CSM). MATERIALS AND METHOD Thirty-nine patients (Age: 61 ± 7, male: 23, female: 16) with CSM who underwent laminoplasty were enrolled. All patients received DSC MRI before the operation. Five parameters include Enhance, rEnhance, full width at half maxima (FWHM), Slope1 and Slope2 in DSC MRI, were calculated at all the compressed spinal cord segments. Clinical outcomes were evaluated by modified Japanese Orthopaedic Association (mJOA) scores. Patients were divided into two groups based on mJOA recovery rate of 5 years: good recovery (> 50%) or poor recovery (≤ 50%). The difference between two groups were compared. The value of DSC MRI to CSM was evaluated by logistic and receiver operating characteristic (ROC) curve analysis. RESULTS There were 26 patients in good recovery group and 13 patients in poor recovery group. The baseline characteristics, including age, gender, preoperative mJOA score, and smoking status showed no significant difference between the two groups (all p > 0.05). The FWHM was significantly higher in the poor recovery group (9.77 ± 2.78) compared to the good recovery group (6.64 ± 1.65) (p = 0.002). Logistic regression analysis indicated that an increased FWHM was a significant risk factor for poor prognosis recovery (p = 0.013, OR = 0.392, 95%CI: 0.187-0.822). The AUC of FWHM for ROC was 0.843 (95% CI: 0.710-0.975) with a p value of 0.001. In addition, an FWHM greater than 5.87, with a sensitivity of 92.3% and specificity of 69.2%, was found to be an independent risk factor for poor postoperative recovery in patients with CSM. CONCLUSION In this study, we successfully quantified the spinal cord blood supply condition by DSC MRI technique. We found that an increase in FWHM was an independent risk factor for poor postoperative recovery in CSM patients. Specifically, patients with FWHM > 5.87 have a poor postoperative recovery.
Collapse
Affiliation(s)
- Qingpeng Song
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Chunyao Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Wen Jiang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jinchao Wang
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jiuheng Li
- Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| | - Xiao Han
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China.
| |
Collapse
|
19
|
Almalki YE, Basha MAA, Metwally MI, Zeed NA, Nada MG, Alduraibi SK, Morsy AA, Balata R, Al Attar AZ, Amer MM, Farag MAEAM, Aly SA, Basha AMA, Hamed EM. Validating Brain Tumor Reporting and Data System (BT-RADS) as a Diagnostic Tool for Glioma Follow-Up after Surgery. Biomedicines 2024; 12:887. [PMID: 38672241 PMCID: PMC11048183 DOI: 10.3390/biomedicines12040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Gliomas are a type of brain tumor that requires accurate monitoring for progression following surgery. The Brain Tumor Reporting and Data System (BT-RADS) has emerged as a potential tool for improving diagnostic accuracy and reducing the need for repeated operations. This prospective multicenter study aimed to evaluate the diagnostic accuracy and reliability of BT-RADS in predicting tumor progression (TP) in postoperative glioma patients and evaluate its acceptance in clinical practice. The study enrolled patients with a history of partial or complete resection of high-grade glioma. All patients underwent two consecutive follow-up brain MRI examinations. Five neuroradiologists independently evaluated the MRI examinations using the BT-RADS. The diagnostic accuracy of the BT-RADS for predicting TP was calculated using histopathology after reoperation and clinical and imaging follow-up as reference standards. Reliability based on inter-reader agreement (IRA) was assessed using kappa statistics. Reader acceptance was evaluated using a short survey. The final analysis included 73 patients (male, 67.1%; female, 32.9%; mean age, 43.2 ± 12.9 years; age range, 31-67 years); 47.9% showed TP, and 52.1% showed no TP. According to readers, TP was observed in 25-41.7% of BT-3a, 61.5-88.9% of BT-3b, 75-90.9% of BT-3c, and 91.7-100% of BT-RADS-4. Considering >BT-RADS-3a as a cutoff value for TP, the sensitivity, specificity, and accuracy of the BT-RADS were 68.6-85.7%, 84.2-92.1%, and 78.1-86.3%, respectively, according to the reader. The overall IRA was good (κ = 0.75) for the final BT-RADS classification and very good for detecting new lesions (κ = 0.89). The readers completely agreed with the statement "the application of the BT-RADS should be encouraged" (score = 25). The BT-RADS has good diagnostic accuracy and reliability for predicting TP in postoperative glioma patients. However, BT-RADS 3 needs further improvements to increase its diagnostic accuracy.
Collapse
Affiliation(s)
- Yassir Edrees Almalki
- Division of Radiology, Department of Internal Medicine, Medical College, Najran University, Najran 61441, Saudi Arabia;
| | - Mohammad Abd Alkhalik Basha
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (M.I.M.); (N.A.Z.); (M.G.N.); (E.M.H.)
| | - Maha Ibrahim Metwally
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (M.I.M.); (N.A.Z.); (M.G.N.); (E.M.H.)
| | - Nesma Adel Zeed
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (M.I.M.); (N.A.Z.); (M.G.N.); (E.M.H.)
| | - Mohamad Gamal Nada
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (M.I.M.); (N.A.Z.); (M.G.N.); (E.M.H.)
| | | | - Ahmed A. Morsy
- Department of Neurosurgery, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Rawda Balata
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (R.B.); (A.Z.A.A.)
| | - Ahmed Z. Al Attar
- Department of Clinical Oncology and Nuclear Medicine, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (R.B.); (A.Z.A.A.)
| | - Mona M. Amer
- Department of Neurology, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt;
| | | | - Sameh Abdelaziz Aly
- Department of Diagnostic Radiology, Faculty of Human Medicine, Benha University, Benha 13511, Egypt;
| | | | - Enas Mahmoud Hamed
- Department of Diagnostic Radiology, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt; (M.I.M.); (N.A.Z.); (M.G.N.); (E.M.H.)
| |
Collapse
|
20
|
Cuccarini V, Savoldi F, Mardor Y, Last D, Pellegatta S, Mazzi F, Bruzzone MG, Anghileri E, Pollo B, Maddaloni L, Russo C, Bocchi E, Pinzi V, Eoli M, Aquino D. Response assessment of GBM during immunotherapy by delayed contrast treatment response assessment maps. Front Neurol 2024; 15:1374737. [PMID: 38651109 PMCID: PMC11033465 DOI: 10.3389/fneur.2024.1374737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction Assessing the treatment response of glioblastoma multiforme during immunotherapy (IT) is an open issue. Treatment response assessment maps (TRAMs) might help distinguish true tumor progression (TTP) and pseudoprogression (PsP) in this setting. Methods We recruited 16 naïve glioblastoma patients enrolled in a phase II trial consisting of the Stupp protocol (a standardized treatment for glioblastoma involving combined radiotherapy and chemotherapy with temozolomide, followed by adjuvant temozolomide) plus IT with dendritic cells. Patients were followed up till progression or death; seven underwent a second surgery for suspected progression. Clinical, immunological, and MRI data were collected from all patients and histology in case of second surgery. Patients were classified as responders (progression-free survival, PFS > 12 months), and non-responders (PFS ≤ 12), HIGH-NK (natural killer cells, i.e., immunological responders), and LOW-NK (immunological non-responders) based on immune cell counts in peripheral blood. TRAMs differentiate contrast-enhancing lesions with different washout dynamics into hypothesized tumoral (conventionally blue-colored) vs. treatment-related (red-colored). Results Using receiver operating characteristic (ROC) curves, a threshold of -0.066 in VBlue/VCE (volume of the blue portion of tumoral area/volume of contrast enhancement) variation between values obtained in the MRI performed before PsP/TTP and at TTP/PSP allowed to discriminate TTP from PsP with a sensitivity of 71.4% and a specificity of 100%. Among HIGH-NK patients, at month 6 there was a significant reduction compared to baseline and month 2 in median "blue" volumes. Discussion In conclusion, in our pilot study TRAMs support the discrimination between tumoral and treatment-related enhancing features in immunological responders vs. non-responders, the distinction between PsP and TTP, and might provide surrogate markers of immunological response.
Collapse
Affiliation(s)
- Valeria Cuccarini
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Filippo Savoldi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Yael Mardor
- Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - David Last
- Advanced Technology Center, Sheba Medical Center, Ramat Gan, Israel
| | - Serena Pellegatta
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Federica Mazzi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Anghileri
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Bianca Pollo
- Neuro-Pathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luisa Maddaloni
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Camilla Russo
- Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione (DIETI), Università Degli Studi di Napoli “Federico II”, Naples, Italy
| | - Elisa Bocchi
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Valentina Pinzi
- Radiotherapy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marica Eoli
- Molecular Neuro-Oncology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
21
|
Ungan G, Pons-Escoda A, Ulinic D, Arús C, Ortega-Martorell S, Olier I, Vellido A, Majós C, Julià-Sapé M. Early pseudoprogression and progression lesions in glioblastoma patients are both metabolically heterogeneous. NMR IN BIOMEDICINE 2024; 37:e5095. [PMID: 38213096 DOI: 10.1002/nbm.5095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/06/2023] [Accepted: 12/01/2023] [Indexed: 01/13/2024]
Abstract
The standard treatment in glioblastoma includes maximal safe resection followed by concomitant radiotherapy plus chemotherapy and adjuvant temozolomide. The first follow-up study to evaluate treatment response is performed 1 month after concomitant treatment, when contrast-enhancing regions may appear that can correspond to true progression or pseudoprogression. We retrospectively evaluated 31 consecutive patients at the first follow-up after concomitant treatment to check whether the metabolic pattern assessed with multivoxel MRS was predictive of treatment response 2 months later. We extracted the underlying metabolic patterns of the contrast-enhancing regions with a blind-source separation method and mapped them over the reference images. Pattern heterogeneity was calculated using entropy, and association between patterns and outcomes was measured with Cramér's V. We identified three distinct metabolic patterns-proliferative, necrotic, and responsive, which were associated with status 2 months later. Individually, 70% of the patients showed metabolically heterogeneous patterns in the contrast-enhancing regions. Metabolic heterogeneity was not related to the regions' size and only stable patients were less heterogeneous than the rest. Contrast-enhancing regions are also metabolically heterogeneous 1 month after concomitant treatment. This could explain the reported difficulty in finding robust pseudoprogression biomarkers.
Collapse
Affiliation(s)
- Gülnur Ungan
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Albert Pons-Escoda
- Grup de Neuro-oncologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Daniel Ulinic
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carles Arús
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | | | - Ivan Olier
- Data Science Research Centre, Liverpool John Moores University (LJMU), Liverpool, UK
| | - Alfredo Vellido
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- IDEAI-UPC Research Center, UPC BarcelonaTech, Barcelona, Spain
| | - Carles Majós
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Grup de Neuro-oncologia, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Margarida Julià-Sapé
- Centro de Investigación Biomédica en Red (CIBER), Madrid, Spain
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
22
|
Maziero D, Azzam GA, de La Fuente M, Stoyanova R, Ford JC, Mellon EA. Implementation and evaluation of a dynamic contrast-enhanced MR perfusion protocol for glioblastoma using a 0.35 T MRI-Linac system. Phys Med 2024; 119:103316. [PMID: 38340693 PMCID: PMC11575850 DOI: 10.1016/j.ejmp.2024.103316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/29/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
PURPOSE MRI-linear accelerator (MRI-Linac) systems allow for daily tracking of MRI changes during radiotherapy (RT). Since one common MRI-Linac operates at 0.35 T, there are efforts towards developing protocols at that field strength. In this study we demonstrate the implementation of a post-contrast 3DT1-weighted (3D-T1w) and dynamic contrast-enhancement (DCE) protocol to assess glioblastoma response to RT using a 0.35 T MRI-Linac. METHODS AND MATERIALS The protocol implemented was used to acquire 3D-T1w and DCE data from a flow phantom and two patients with glioblastoma (a responder and a non-responder) who underwent RT on a 0.35 T MRI-Linac. The detection of post-contrast-enhanced volumes was evaluated by comparing the 3DT1w images from the 0.35 T MRI-Linac to images obtained using a 3 T scanner. The DCE data were tested temporally and spatially using data from a flow phantom and patients. Ktrans maps were derived from DCE at three time points (a week before treatment-Pre RT, four weeks through treatment-Mid RT, and three weeks after treatment-Post RT) and were validated with patients' treatment outcomes. RESULTS The 3D-T1w contrast-enhancement volumes were visually and volumetrically similar between 0.35 T MRI-Linac and 3 T. DCE images showed temporal stability, and associated Ktrans maps were consistent with patient response to treatment. On average, Ktrans values showed a 54 % decrease and 8.6 % increase for a responder and non-responder respectively when Pre RT and Mid RT images were compared. CONCLUSION Our findings support the feasibility of obtaining post-contrast 3D-T1w and DCE data from patients with glioblastoma using a 0.35 T MRI-Linac system.
Collapse
Affiliation(s)
- Danilo Maziero
- Department of Radiation Medicine & Applied Sciences, UC San Diego Health, La Jolla, CA 92093, United States; Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States.
| | - Gregory Albert Azzam
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Macarena de La Fuente
- Department of Neurology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Radka Stoyanova
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - John Chetley Ford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Eric Albert Mellon
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
23
|
Wang C, Han X, Ma X, Jiang W, Wang J, Li S, Guo H, Tian W, Chen H. Spinal cord perfusion is associated with microstructural damage in cervical spondylotic myelopathy patients who underwent cervical laminoplasty. Eur Radiol 2024; 34:1349-1357. [PMID: 37581664 DOI: 10.1007/s00330-023-10011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/01/2023] [Accepted: 06/08/2023] [Indexed: 08/16/2023]
Abstract
OBJECTIVES To investigate the association between spinal cord perfusion and microstructural damage in CSM patients who underwent cervical laminoplasty using MR dynamic susceptibility contrast (DSC), diffusion tensor imaging (DTI), and neurite orientation dispersion and density imaging (NODDI) techniques. METHODS A follow-up cohort study was conducted with 53 consecutively recruited CSM patients who had undergone cervical laminoplasty 12-14 months after the surgery from April 2016 to December 2016. Twenty-one aged-matched healthy volunteers were recruited as controls. For each patient, decompressed spinal cord levels were imaged on a 3.0-T MRI scanner by diffusion and DSC sequences to quantify the degrees of microstructural damage and perfusion conditions, respectively. The diffusion data were analyzed by DTI and NODDI models to produce diffusion metrics. Classic indicator dilution model was used to quantify the DSC metrics. Mann-Whitney U test was performed for comparison of diffusion metrics between patients and healthy controls. Pearson correlation was used to explore the associations between the metrics of spinal cord perfusion and microstructural damage. RESULTS DTI metrics, neurite density, and isotropic volume fraction had significant differences between postoperative patients and healthy controls. Pearson correlation test showed that SCBV was significantly positively correlated with RD, MD, and ODI, and negatively correlated with FA and NDI. SCBF was found to be significantly positively correlated with RD and MD, and negatively correlated with FA. CONCLUSIONS Increased spinal cord perfusion quantified by DSC is associated with microstructural damage assessed by diffusion MRI in CSM patients who underwent cervical laminoplasty. CLINICAL RELEVANCE STATEMENT This study found that the spinal cord perfusion is associated with microstructural damage in postoperative cervical spondylotic myelopathy patients, indicating that high perfusion may play a role in the pathophysiological process of cervical spondylotic myelopathy and deserves more attention. KEY POINTS • Spinal cord microstructural damage can be persistent despite the compression had been relieved 12-14 months after the cervical laminoplasty in cervical spondylotic myelopathy (CSM) patients. • Spinal cord perfusion is associated with microstructural damage in CSM patients after the cervical laminoplasty. • Inflammation in the decompressed spinal cord may be a cause of increased perfusion and is associated with microstructural damage during the recovery period of CSM.
Collapse
Affiliation(s)
- Chunyao Wang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiao Han
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, China
| | - Xiaodong Ma
- Center for Magnetic Resonance Research, Radiology, Medical School of the University of Minnesota, Minnesota, USA
| | - Wen Jiang
- Department of Radiology, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Jinchao Wang
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Sisi Li
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Tian
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China.
| | - Huijun Chen
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
24
|
Yadav VK, Mohan S, Agarwal S, de Godoy LL, Rajan A, Nasrallah MP, Bagley SJ, Brem S, Loevner LA, Poptani H, Singh A, Chawla S. Distinction of pseudoprogression from true progression in glioblastomas using machine learning based on multiparametric magnetic resonance imaging and O 6-methylguanine-methyltransferase promoter methylation status. Neurooncol Adv 2024; 6:vdae159. [PMID: 39502470 PMCID: PMC11535496 DOI: 10.1093/noajnl/vdae159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024] Open
Abstract
Background It is imperative to differentiate true progression (TP) from pseudoprogression (PsP) in glioblastomas (GBMs). We sought to investigate the potential of physiologically sensitive quantitative parameters derived from diffusion and perfusion magnetic resonance imaging (MRI), and molecular signature combined with machine learning in distinguishing TP from PsP in GBMs in the present study. Methods GBM patients (n = 93) exhibiting contrast-enhancing lesions within 6 months after completion of standard treatment underwent 3T MRI. Final data analyses were performed on 75 patients as O6-methylguanine-DNA-methyltransferase (MGMT) status was available only from these patients. Subsequently, patients were classified as TP (n = 55) or PsP (n = 20) based on histological features or mRANO criteria. Quantitative parameters were computed from contrast-enhancing regions of neoplasms. PsP datasets were artificially augmented to achieve balanced class distribution in 2 groups (TP and PsP). A random forest algorithm was applied to select the optimized features. The data were randomly split into training and testing subsets in an 8:2 ratio. To develop a robust prediction model in distinguishing TP from PsP, several machine-learning classifiers were employed. The cross-validation and receiver operating characteristic (ROC) curve analyses were performed to determine the diagnostic performance. Results The quadratic support vector machine was found to be the best classifier in distinguishing TP from PsP with a training accuracy of 91%, cross-validation accuracy of 86%, and testing accuracy of 85%. Additionally, ROC analysis revealed an accuracy of 85%, sensitivity of 70%, and specificity of 100%. Conclusions Machine learning using quantitative multiparametric MRI may be a promising approach to distinguishing TP from PsP in GBMs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sumeet Agarwal
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
- Department of Electical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Archith Rajan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Department of Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephen J Bagley
- Department of Medicine, Division of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Department of Molecular and Clinical Cancer Medicine, Centre for Preclinical Imaging, University of Liverpool, Liverpool, UK
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Martucci M, Russo R, Giordano C, Schiarelli C, D’Apolito G, Tuzza L, Lisi F, Ferrara G, Schimperna F, Vassalli S, Calandrelli R, Gaudino S. Advanced Magnetic Resonance Imaging in the Evaluation of Treated Glioblastoma: A Pictorial Essay. Cancers (Basel) 2023; 15:3790. [PMID: 37568606 PMCID: PMC10417432 DOI: 10.3390/cancers15153790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
MRI plays a key role in the evaluation of post-treatment changes, both in the immediate post-operative period and during follow-up. There are many different treatment's lines and many different neuroradiological findings according to the treatment chosen and the clinical timepoint at which MRI is performed. Structural MRI is often insufficient to correctly interpret and define treatment-related changes. For that, advanced MRI modalities, including perfusion and permeability imaging, diffusion tensor imaging, and magnetic resonance spectroscopy, are increasingly utilized in clinical practice to characterize treatment effects more comprehensively. This article aims to provide an overview of the role of advanced MRI modalities in the evaluation of treated glioblastomas. For a didactic purpose, we choose to divide the treatment history in three main timepoints: post-surgery, during Stupp (first-line treatment) and at recurrence (second-line treatment). For each, a brief introduction, a temporal subdivision (when useful) or a specific drug-related paragraph were provided. Finally, the current trends and application of radiomics and artificial intelligence (AI) in the evaluation of treated GB have been outlined.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Chiara Schiarelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Laura Tuzza
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesca Lisi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Giuseppe Ferrara
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Francesco Schimperna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Stefania Vassalli
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| | - Rosalinda Calandrelli
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy; (R.R.); (C.G.); (C.S.); (G.D.); (R.C.); (S.G.)
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.T.); (F.L.); (G.F.); (F.S.); (S.V.)
| |
Collapse
|
26
|
de Godoy LL, Chawla S, Brem S, Mohan S. Taming Glioblastoma in "Real Time": Integrating Multimodal Advanced Neuroimaging/AI Tools Towards Creating a Robust and Therapy Agnostic Model for Response Assessment in Neuro-Oncology. Clin Cancer Res 2023; 29:2588-2592. [PMID: 37227179 DOI: 10.1158/1078-0432.ccr-23-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The highly aggressive nature of glioblastoma carries a dismal prognosis despite aggressive multimodal therapy. Alternative treatment regimens, such as immunotherapies, are known to intensify the inflammatory response in the treatment field. Follow-up imaging in these scenarios often mimics disease progression on conventional MRI, making accurate evaluation extremely challenging. To this end, revised criteria for assessment of treatment response in high-grade gliomas were successfully proposed by the RANO Working Group to distinguish pseudoprogression from true progression, with intrinsic constraints related to the postcontrast T1-weighted MRI sequence. To address these existing limitations, our group proposes a more objective and quantifiable "treatment agnostic" model, integrating into the RANO criteria advanced multimodal neuroimaging techniques, such as diffusion tensor imaging (DTI), dynamic susceptibility contrast-perfusion weighted imaging (DSC-PWI), dynamic contrast enhanced (DCE)-MRI, MR spectroscopy, and amino acid-based positron emission tomography (PET) imaging tracers, along with artificial intelligence (AI) tools (radiomics, radiogenomics, and radiopathomics) and molecular information to address this complex issue of treatment-related changes versus tumor progression in "real-time", particularly in the early posttreatment window. Our perspective delineates the potential of incorporating multimodal neuroimaging techniques to improve consistency and automation for the assessment of early treatment response in neuro-oncology.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Das A, Ding S, Liu R, Huang C. Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images. Cancers (Basel) 2023; 15:3614. [PMID: 37509277 PMCID: PMC10377296 DOI: 10.3390/cancers15143614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Predicting the eventual volume of tumor cells, that might proliferate from a given tumor, can help in cancer early detection and medical procedure planning to prevent their migration to other organs. In this work, a new statistical framework is proposed using Bayesian techniques for detecting the eventual volume of cells expected to proliferate from a glioblastoma (GBM) tumor. Specifically, the tumor region was first extracted using a parallel image segmentation algorithm. Once the tumor region was determined, we were interested in the number of cells that could proliferate from this tumor until its survival time. For this, we constructed the posterior distribution of the tumor cell numbers based on the proposed likelihood function and a certain prior volume. Furthermore, we extended the detection model and conducted a Bayesian regression analysis by incorporating radiomic features to discover those non-tumor cells that remained undetected. The main focus of the study was to develop a time-independent prediction model that could reliably predict the ultimate volume a malignant tumor of the fourth-grade severity could attain and which could also determine if the incorporation of the radiomic properties of the tumor enhanced the chances of no malignant cells remaining undetected.
Collapse
Affiliation(s)
- Anisha Das
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Shengxian Ding
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Rongjie Liu
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| | - Chao Huang
- Department of Statistics, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
28
|
de Godoy LL, Chawla S, Brem S, Wang S, O'Rourke DM, Nasrallah MP, Desai A, Loevner LA, Liau LM, Mohan S. Assessment of treatment response to dendritic cell vaccine in patients with glioblastoma using a multiparametric MRI-based prediction model. J Neurooncol 2023; 163:173-183. [PMID: 37129737 DOI: 10.1007/s11060-023-04324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
PURPOSE Autologous tumor lysate-loaded dendritic cell vaccine (DCVax-L) is a promising treatment modality for glioblastomas. The purpose of this study was to investigate the potential utility of multiparametric MRI-based prediction model in evaluating treatment response in glioblastoma patients treated with DCVax-L. METHODS Seventeen glioblastoma patients treated with standard-of-care therapy + DCVax-L were included. When tumor progression (TP) was suspected and repeat surgery was being contemplated, we sought to ascertain the number of cases correctly classified as TP + mixed response or pseudoprogression (PsP) from multiparametric MRI-based prediction model using histopathology/mRANO criteria as ground truth. Multiparametric MRI model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI-derived parameters. A comparison of overall survival (OS) was performed between patients treated with standard-of-care therapy + DCVax-L and standard-of-care therapy alone (external controls). Additionally, Kaplan-Meier analyses were performed to compare OS between two groups of patients using PsP, Ki-67, and MGMT promoter methylation status as stratification variables. RESULTS Multiparametric MRI model correctly predicted TP + mixed response in 72.7% of cases (8/11) and PsP in 83.3% (5/6) with an overall concordance rate of 76.5% with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.54; p = 0.026). DCVax-L-treated patients had significantly prolonged OS than those treated with standard-of-care therapy (22.38 ± 12.8 vs. 13.8 ± 9.5 months, p = 0.040). Additionally, glioblastomas with PsP, MGMT promoter methylation status, and Ki-67 values below median had longer OS than their counterparts. CONCLUSION Multiparametric MRI-based prediction model can assess treatment response to DCVax-L in patients with glioblastoma.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sumei Wang
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arati Desai
- Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Laurie A Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Linda M Liau
- Department of Neurosurgery, University of California Los Angeles David Geffen School of Medicine & Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
29
|
de Godoy LL, Mohan S, Wang S, Nasrallah MP, Sakai Y, O'Rourke DM, Bagley S, Desai A, Loevner LA, Poptani H, Chawla S. Validation of multiparametric MRI based prediction model in identification of pseudoprogression in glioblastomas. J Transl Med 2023; 21:287. [PMID: 37118754 PMCID: PMC10142504 DOI: 10.1186/s12967-023-03941-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/30/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Accurate differentiation of pseudoprogression (PsP) from tumor progression (TP) in glioblastomas (GBMs) is essential for appropriate clinical management and prognostication of these patients. In the present study, we sought to validate the findings of our previously developed multiparametric MRI model in a new cohort of GBM patients treated with standard therapy in identifying PsP cases. METHODS Fifty-six GBM patients demonstrating enhancing lesions within 6 months after completion of concurrent chemo-radiotherapy (CCRT) underwent anatomical imaging, diffusion and perfusion MRI on a 3 T magnet. Subsequently, patients were classified as TP + mixed tumor (n = 37) and PsP (n = 19). When tumor specimens were available from repeat surgery, histopathologic findings were used to identify TP + mixed tumor (> 25% malignant features; n = 34) or PsP (< 25% malignant features; n = 16). In case of non-availability of tumor specimens, ≥ 2 consecutive conventional MRIs using mRANO criteria were used to determine TP + mixed tumor (n = 3) or PsP (n = 3). The multiparametric MRI-based prediction model consisted of predictive probabilities (PP) of tumor progression computed from diffusion and perfusion MRI derived parameters from contrast enhancing regions. In the next step, PP values were used to characterize each lesion as PsP or TP+ mixed tumor. The lesions were considered as PsP if the PP value was < 50% and TP+ mixed tumor if the PP value was ≥ 50%. Pearson test was used to determine the concordance correlation coefficient between PP values and histopathology/mRANO criteria. The area under ROC curve (AUC) was used as a quantitative measure for assessing the discriminatory accuracy of the prediction model in identifying PsP and TP+ mixed tumor. RESULTS Multiparametric MRI model correctly predicted PsP in 95% (18/19) and TP+ mixed tumor in 57% of cases (21/37) with an overall concordance rate of 70% (39/56) with final diagnosis as determined by histopathology/mRANO criteria. There was a significant concordant correlation coefficient between PP values and histopathology/mRANO criteria (r = 0.56; p < 0.001). The ROC analyses revealed an accuracy of 75.7% in distinguishing PsP from TP+ mixed tumor. Leave-one-out cross-validation test revealed that 73.2% of cases were correctly classified as PsP and TP + mixed tumor. CONCLUSIONS Our multiparametric MRI based prediction model may be helpful in identifying PsP in GBM patients.
Collapse
Affiliation(s)
- Laiz Laura de Godoy
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Sumei Wang
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - MacLean P Nasrallah
- Clinical Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Yu Sakai
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Donald M O'Rourke
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Bagley
- Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Arati Desai
- Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Laurie A Loevner
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Harish Poptani
- Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Sanjeev Chawla
- Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Laudicella R, Mantarro C, Catalfamo B, Alongi P, Gaeta M, Minutoli F, Baldari S, Bisdas S. PET Imaging in Gliomas. RADIOLOGY‐NUCLEAR MEDICINE DIAGNOSTIC IMAGING 2023:194-218. [DOI: 10.1002/9781119603627.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Song X, Li J, Qian X. Diagnosis of Glioblastoma Multiforme Progression via Interpretable Structure-Constrained Graph Neural Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:380-390. [PMID: 36018877 DOI: 10.1109/tmi.2022.3202037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common type of brain tumors with high recurrence and mortality rates. After chemotherapy treatment, GBM patients still show a high rate of differentiating pseudoprogression (PsP), which is often confused as true tumor progression (TTP) due to high phenotypical similarities. Thus, it is crucial to construct an automated diagnosis model for differentiating between these two types of glioma progression. However, attaining this goal is impeded by the limited data availability and the high demand for interpretability in clinical settings. In this work, we propose an interpretable structure-constrained graph neural network (ISGNN) with enhanced features to automatically discriminate between PsP and TTP. This network employs a metric-based meta-learning strategy to aggregate class-specific graph nodes, focus on meta-tasks associated with various small graphs, thus improving the classification performance on small-scale datasets. Specifically, a node feature enhancement module is proposed to account for the relative importance of node features and enhance their distinguishability through inductive learning. A graph generation constraint module enables learning reasonable graph structures to improve the efficiency of information diffusion while avoiding propagation errors. Furthermore, model interpretability can be naturally enhanced based on the learned node features and graph structures that are closely related to the classification results. Comprehensive experimental evaluation of our method demonstrated excellent interpretable results in the diagnosis of glioma progression. In general, our work provides a novel systematic GNN approach for dealing with data scarcity and enhancing decision interpretability. Our source codes will be released at https://github.com/SJTUBME-QianLab/GBM-GNN.
Collapse
|
32
|
Hu J, Xie X, Zhou W, Hu X, Sun X. The emerging potential of quantitative MRI biomarkers for the early prediction of brain metastasis response after stereotactic radiosurgery: a scoping review. Quant Imaging Med Surg 2023; 13:1174-1189. [PMID: 36819250 PMCID: PMC9929394 DOI: 10.21037/qims-22-412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/23/2022] [Indexed: 01/05/2023]
Abstract
Background At present, the simple prognostic models based on clinical information for predicting the treatment outcomes of brain metastases (BMs) are subjective and delayed. Thus, we performed this systematic review of multiple studies to assess the potential of quantitative magnetic resonance imaging (MRI) biomarkers for the early prediction of treatment outcomes of brain metastases with stereotactic radiosurgery (SRS). Methods We systematically searched the PubMed, Embase, Cochrane, Web of Science, and Clinical Trials.gov databases for articles published between February 1, 1991, and April 11, 2022, with no language restrictions. We included studies involving patients with BMs receiving SRS; the included patients were required to have definite pathology of a primary tumor and complete imaging data (pre- and post-SRS). We excluded the articles that included patients who had undergone previous surgery and those that did not include regular follow-up or corresponding MRI scans. Results We identified 2,162 studies, of which 26 were included in our analysis, involving a total of 1,362 participants. All 26 studies explored the relevant MRI parameters to predict the prognosis of patients with BMs who received SRS. The outcomes were generalized according to the relationships between the anatomical/morphological, microstructural, vascular, and metabolic changes and SRS. Generally, with traditional MRI, there are several quantitative prognostic models based on preradiosurgical radiomics that predict the outcome of SRS treatment in local BM control. With the implementation of advanced MRI, the relative apparent diffusion coefficient (ADC), perfusion fraction (f), relative cerebral blood volume (rCBV), relative regional cerebral blood flow (rrCBF), interstitial fluid pressure (IFP), quadratic of time-dependent leakage (Ktrans 2), extracellular extravascular volume (ve), choline/creatine (Cho/Cr), nuclear Overhauser effect (NOE) peak, and intraextracellular water exchange rate constant (kIE ) were confirmed to be indicative of the therapeutic effect of SRS for BMs. Conclusions Quantitative MRI biomarkers extracted from traditional or advanced MRI at different time points, which can represent the anatomical/morphological, microstructural, vascular, and metabolic changes, respectively, have been proposed as promising markers for the early prediction of SRS response in those with BMs. There are some limitations in this review, including the risk of selection bias, the limited number of study objects, the incomparability of the total data, and the subjectivity of the review process.
Collapse
Affiliation(s)
- Jiamiao Hu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Xuyun Xie
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Weiwen Zhou
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiao Hu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
33
|
Martucci M, Russo R, Schimperna F, D’Apolito G, Panfili M, Grimaldi A, Perna A, Ferranti AM, Varcasia G, Giordano C, Gaudino S. Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives. Biomedicines 2023; 11:364. [PMID: 36830900 PMCID: PMC9953338 DOI: 10.3390/biomedicines11020364] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
MRI is undoubtedly the cornerstone of brain tumor imaging, playing a key role in all phases of patient management, starting from diagnosis, through therapy planning, to treatment response and/or recurrence assessment. Currently, neuroimaging can describe morphologic and non-morphologic (functional, hemodynamic, metabolic, cellular, microstructural, and sometimes even genetic) characteristics of brain tumors, greatly contributing to diagnosis and follow-up. Knowing the technical aspects, strength and limits of each MR technique is crucial to correctly interpret MR brain studies and to address clinicians to the best treatment strategy. This article aimed to provide an overview of neuroimaging in the assessment of adult primary brain tumors. We started from the basilar role of conventional/morphological MR sequences, then analyzed, one by one, the non-morphological techniques, and finally highlighted future perspectives, such as radiomics and artificial intelligence.
Collapse
Affiliation(s)
- Matia Martucci
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Rosellina Russo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | | | - Gabriella D’Apolito
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Marco Panfili
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Alessandro Grimaldi
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alessandro Perna
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppe Varcasia
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Carolina Giordano
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
| | - Simona Gaudino
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico “A. Gemelli” IRCCS, 00168 Rome, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
34
|
Henssen D, Meijer F, Verburg FA, Smits M. Challenges and opportunities for advanced neuroimaging of glioblastoma. Br J Radiol 2023; 96:20211232. [PMID: 36062962 PMCID: PMC10997013 DOI: 10.1259/bjr.20211232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most aggressive of glial tumours in adults. On conventional magnetic resonance (MR) imaging, these tumours are observed as irregular enhancing lesions with areas of infiltrating tumour and cortical expansion. More advanced imaging techniques including diffusion-weighted MRI, perfusion-weighted MRI, MR spectroscopy and positron emission tomography (PET) imaging have found widespread application to diagnostic challenges in the setting of first diagnosis, treatment planning and follow-up. This review aims to educate readers with regard to the strengths and weaknesses of the clinical application of these imaging techniques. For example, this review shows that the (semi)quantitative analysis of the mentioned advanced imaging tools was found useful for assessing tumour aggressiveness and tumour extent, and aids in the differentiation of tumour progression from treatment-related effects. Although these techniques may aid in the diagnostic work-up and (post-)treatment phase of glioblastoma, so far no unequivocal imaging strategy is available. Furthermore, the use and further development of artificial intelligence (AI)-based tools could greatly enhance neuroradiological practice by automating labour-intensive tasks such as tumour measurements, and by providing additional diagnostic information such as prediction of tumour genotype. Nevertheless, due to the fact that advanced imaging and AI-diagnostics is not part of response assessment criteria, there is no harmonised guidance on their use, while at the same time the lack of standardisation severely hampers the definition of uniform guidelines.
Collapse
Affiliation(s)
- Dylan Henssen
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederick Meijer
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederik A. Verburg
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Marion Smits
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| |
Collapse
|
35
|
van den Elshout R, Scheenen TWJ, Driessen CML, Smeenk RJ, Meijer FJA, Henssen D. Diffusion imaging could aid to differentiate between glioma progression and treatment-related abnormalities: a meta-analysis. Insights Imaging 2022; 13:158. [PMID: 36194373 PMCID: PMC9532499 DOI: 10.1186/s13244-022-01295-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background In a considerable subgroup of glioma patients treated with (chemo) radiation new lesions develop either representing tumor progression (TP) or treatment-related abnormalities (TRA). Quantitative diffusion imaging metrics such as the Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) have been reported as potential metrics to noninvasively differentiate between these two phenomena. Variability in performance scores of these metrics and absence of a critical overview of the literature contribute to the lack of clinical implementation. This meta-analysis therefore critically reviewed the literature and meta-analyzed the performance scores. Methods Systematic searching was carried out in PubMed, EMBASE and The Cochrane Library. Using predefined criteria, papers were reviewed. Diagnostic accuracy values of suitable papers were meta-analyzed quantitatively. Results Of 1252 identified papers, 10 ADC papers, totaling 414 patients, and 4 FA papers, with 154 patients were eligible for meta-analysis. Mean ADC values of the patients in the TP/TRA groups were 1.13 × 10−3mm2/s (95% CI 0.912 × 10–3–1.32 × 10−3mm2/s) and 1.38 × 10−3mm2/s (95% CI 1.33 × 10–3–1.45 × 10−3mm2/s, respectively. Mean FA values of TP/TRA was 0.19 (95% CI 0.189–0.194) and 0.14 (95% CI 0.137–0.143) respectively. A significant mean difference between ADC and FA values in TP versus TRA was observed (p = 0.005). Conclusions Quantitative ADC and FA values could be useful for distinguishing TP from TRA on a meta-level. Further studies using serial imaging of individual patients are warranted to determine the role of diffusion imaging in glioma patients.
Collapse
Affiliation(s)
- Rik van den Elshout
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Chantal M L Driessen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frederick J A Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
36
|
Qin D, Yang G, Jing H, Tan Y, Zhao B, Zhang H. Tumor Progression and Treatment-Related Changes: Radiological Diagnosis Challenges for the Evaluation of Post Treated Glioma. Cancers (Basel) 2022; 14:cancers14153771. [PMID: 35954435 PMCID: PMC9367286 DOI: 10.3390/cancers14153771] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Glioma is the most common primary malignant tumor of the adult central nervous system. Despite aggressive multimodal treatment, its prognosis remains poor. During follow-up, it remains challenging to distinguish treatment-related changes from tumor progression in treated patients with gliomas due to both share clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions). The early effective identification of tumor progression and treatment-related changes is of great significance for the prognosis and treatment of gliomas. We believe that advanced neuroimaging techniques can provide additional information for distinguishing both at an early stage. In this article, we focus on the research of magnetic resonance imaging technology and artificial intelligence in tumor progression and treatment-related changes. Finally, it provides new ideas and insights for clinical diagnosis. Abstract As the most common neuro-epithelial tumors of the central nervous system in adults, gliomas are highly malignant and easy to recurrence, with a dismal prognosis. Imaging studies are indispensable for tracking tumor progression (TP) or treatment-related changes (TRCs). During follow-up, distinguishing TRCs from TP in treated patients with gliomas remains challenging as both share similar clinical symptoms and morphological imaging characteristics (with new and/or increasing enhancing mass lesions) and fulfill criteria for progression. Thus, the early identification of TP and TRCs is of great significance for determining the prognosis and treatment. Histopathological biopsy is currently the gold standard for TP and TRC diagnosis. However, the invasive nature of this technique limits its clinical application. Advanced imaging methods (e.g., diffusion magnetic resonance imaging (MRI), perfusion MRI, magnetic resonance spectroscopy (MRS), positron emission tomography (PET), amide proton transfer (APT) and artificial intelligence (AI)) provide a non-invasive and feasible technical means for identifying of TP and TRCs at an early stage, which have recently become research hotspots. This paper reviews the current research on using the abovementioned advanced imaging methods to identify TP and TRCs of gliomas. First, the review focuses on the pathological changes of the two entities to establish a theoretical basis for imaging identification. Then, it elaborates on the application of different imaging techniques and AI in identifying the two entities. Finally, the current challenges and future prospects of these techniques and methods are discussed.
Collapse
Affiliation(s)
- Danlei Qin
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
| | - Guoqiang Yang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Hui Jing
- Department of MRI, The Six Hospital, Shanxi Medical University, Taiyuan 030008, China;
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
| | - Bin Zhao
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School, Hospital of Stomatology, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hui Zhang
- College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China;
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, Taiyuan 030001, China; (G.Y.); (Y.T.)
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, Taiyuan 030001, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
37
|
Chen K, Jiang XW, Deng LJ, She HL. Differentiation between glioma recurrence and treatment effects using amide proton transfer imaging: A mini-Bayesian bivariate meta-analysis. Front Oncol 2022; 12:852076. [PMID: 35978813 PMCID: PMC9376615 DOI: 10.3389/fonc.2022.852076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Background Amide proton transfer (APT) imaging as an emerging MRI approach has been used for distinguishing tumor recurrence (TR) and treatment effects (TEs) in glioma patients, but the initial results from recent studies are different. Aim The aim of this study is to systematically review and quantify the diagnostic performance of APT in assessing treatment response in patients with post-treatment gliomas. Methods A systematic search in PubMed, EMBASE, and the Web of Science was performed to retrieve related original studies. For the single and added value of APT imaging in distinguishing TR from TEs, we calculated pooled sensitivity and specificity by using Bayesian bivariate meta-analyses. Results Six studies were included, five of which reported on single APT imaging parameters and four of which reported on multiparametric MRI combined with APT imaging parameters. For single APT imaging parameters, the pooled sensitivity and specificity were 0.85 (95% CI: 0.75–0.92) and 0.88 (95% CI: 0.74–0.97). For multiparametric MRI including APT, the pooled sensitivity and specificity were 0.92 (95% CI: 0.85–0.97) and 0.83 (95% CI: 0.55–0.97), respectively. In addition, in the three studies reported on both single and added value of APT imaging parameters, the combined imaging parameters further improved diagnostic performance, yielding pooled sensitivity and specificity of 0.91 (95% CI: 0.80–0.97) and 0.92 (95% CI: 0.79–0.98), respectively, but the pooled sensitivity was 0.81 (95% CI: 0.65-0.93) and specificity was 0.82 (95% CI: 0.61–0.94) for single APT imaging parameters. Conclusion APT imaging showed high diagnostic performance in assessing treatment response in patients with post-treatment gliomas, and the addition of APT imaging to other advanced MRI techniques can improve the diagnostic accuracy for distinguishing TR from TE.
Collapse
Affiliation(s)
- Kai Chen
- Department of Medical Imaging, Shenzhen Samii Medical Center, Shenzhen, China
| | - Xi-Wen Jiang
- Department of Medical Imaging, Affiliated Hospital of Xiangnan University (Clinical College), Chenzhou, China
| | - Li-jing Deng
- Department of Neonatology, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Hua-Long She
- Department of Medical Imaging, Affiliated Hospital of Xiangnan University (Clinical College), Chenzhou, China
- *Correspondence: Hua-Long She,
| |
Collapse
|
38
|
Chawla S, Bukhari S, Afridi OM, Wang S, Yadav SK, Akbari H, Verma G, Nath K, Haris M, Bagley S, Davatzikos C, Loevner LA, Mohan S. Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma. NMR IN BIOMEDICINE 2022; 35:e4719. [PMID: 35233862 PMCID: PMC9203929 DOI: 10.1002/nbm.4719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 05/15/2023]
Abstract
Pseudoprogression (PsP) refers to treatment-related clinico-radiologic changes mimicking true progression (TP) that occurs in patients with glioblastoma (GBM), predominantly within the first 6 months after the completion of surgery and concurrent chemoradiation therapy (CCRT) with temozolomide. Accurate differentiation of TP from PsP is essential for making informed decisions on appropriate therapeutic intervention as well as for prognostication of these patients. Conventional neuroimaging findings are often equivocal in distinguishing between TP and PsP and present a considerable diagnostic dilemma to oncologists and radiologists. These challenges have emphasized the need for developing alternative imaging techniques that may aid in the accurate diagnosis of TP and PsP. In this review, we encapsulate the current state of knowledge in the clinical applications of commonly used metabolic and physiologic magnetic resonance (MR) imaging techniques such as diffusion and perfusion imaging and proton spectroscopy in distinguishing TP from PsP. We also showcase the potential of promising imaging techniques, such as amide proton transfer and amino acid-based positron emission tomography, in providing useful information about the treatment response. Additionally, we highlight the role of "radiomics", which is an emerging field of radiology that has the potential to change the way in which advanced MR techniques are utilized in assessing treatment response in GBM patients. Finally, we present our institutional experiences and discuss future perspectives on the role of multiparametric MR imaging in identifying PsP in GBM patients treated with "standard-of-care" CCRT as well as novel/targeted therapies.
Collapse
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sultan Bukhari
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Omar M. Afridi
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Sumei Wang
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Santosh K. Yadav
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohammad Haris
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Stephen Bagley
- Department of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A. Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Qing Z, Xiaoai K, Caiqiang X, Shenglin L, Xiaoyu H, Bin Z, Junlin Z. Nomogram for predicting early recurrence in patients with high-grade gliomas. World Neurosurg 2022; 164:e619-e628. [PMID: 35589036 DOI: 10.1016/j.wneu.2022.05.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To develop a nomogram to predict early recurrence of high-grade glioma (HGG) based on clinical pathology, genetic factors and MRI parameters. METHODS 154 patients with HGG were classified into recurrence and non-recurrence groups based on the pathological diagnosis and RANO criteria. Clinical pathology information included age, sex, preoperative Karnofsky performance status (KPS) scores,grade, and cell proliferation index (Ki-67). Gene information included P53, IDH1, MGMT, and TERT expression status. All patients underwent baseline MRIs before treatment, including T1WI, T2WI, T1C, Flair, and DWI examinations. Tumor location, single/multiple tumors, tumor diameter, peritumoral edema, necrotic cyst, hemorrhage, average apparent diffusion coefficient(ADC) value, and minimum ADC values were evaluated. Univariate and multivariate logistic regression analyses were used to determine the predictors of early recurrence and build nomogram. RESULTS Univariate analysis showed that the number of tumors (OR, 0.258; 95% CI: 0.104, 0.639; P = 0.003) and peritumoral edema (OR, 0.965; 95% CI 0.942, 0.988; P = 0.003; mean in the recurrence group 22.04±17.21 mm; mean in the non-recurrence group 14.22±12.84 mm) were statistically significantly different in patients with early recurrence. Genetic factors associated with early recurrence included IDH1 (OR, 4.405; 95% CI 1.874, 10.353; P= 0.001), and MGMT (OR, 2.389; 95% CI 1.234, 4.628; P= 0.010). Multivariate logistic regression analysis revealed that the number of tumors (OR, 0.227; 95% CI 0.084, 0.616; P = 0.004), peritumoral edema (OR, 0.969; 95% CI 0.945, 0.993; P = 0.013), and IDH1 (OR, 4.200; 95% CI 1.602, 10.013; P= 0.004) were independent risk factors for early recurrence. The nomogram showed the highest net benefit when the threshold probability was less than 60%. CONCLUSION A nomogram prediction model can effectively aid in clinical treatment decisions for patients with newly diagnosed HGG .
Collapse
Affiliation(s)
- Zhou Qing
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Ke Xiaoai
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Xue Caiqiang
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Li Shenglin
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Huang Xiaoyu
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Zhang Bin
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Second Clinical School,Lanzhou University, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China
| | - Zhou Junlin
- Department of Radiology, Lanzhou University Second Hospital, Gansu, China; Key Laboratory of Medical Imaging of Gansu Province, China; Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence,China.
| |
Collapse
|
40
|
Ota Y, Liao E, Capizzano AA, Baba A, Kurokawa R, Kurokawa M, Srinivasan A. Intracranial paragangliomas versus schwannomas: Role of dynamic susceptibility contrast perfusion and diffusion MRI. J Neuroimaging 2022; 32:875-883. [PMID: 35562184 PMCID: PMC9546409 DOI: 10.1111/jon.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/09/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Differentiating paragangliomas from schwannomas and distinguishing sporadic from neurofibromatosis type 2 (NF 2)-related schwannomas is challenging but clinically important. This study aimed to assess the utility of dynamic susceptibility contrast perfusion MRI (DSC-MRI) and diffusion-weighted imaging (DWI) in discriminating infratentorial extra-axial schwannomas from paragangliomas and NF2-related schwannomas. METHODS This retrospective study included 41 patients diagnosed with paragangliomas, sporadic schwannomas, and NF2-related schwannomas in the infratentorial extra-axial space between April 2013 and August 2021. All cases had pretreatment DSC-MRI and DWI. Normalized mean apparent diffusion coefficient (nADCmean), normalized relative cerebral blood volume (nrCBV), and normalized relative cerebral blood flow (nrCBF) were compared between paragangliomas and schwannomas and between sporadic and NF2-related schwannomas as appropriate. RESULTS nrCBV and nrCBF were significantly higher in paragangliomas than in sporadic/NF2-related schwannomas (nrCBV: median 11.5 vs. 1.14/3.74; p < .001 and .004, nrCBF: median 7.43 vs. 1.13/2.85; p < .001 and .007, respectively), while nADCmean were not. The corresponding diagnostic performances were area under the curves (AUCs) of .99/.92 and 1.0/.90 with cutoffs of 2.56/4.22 and 1.94/3.36, respectively. nADCmean were lower, and nrCBV and nrCBF were higher in NF2-related than in sporadic schwannomas (nADCmean: median 1.23 vs. 1.58, nrCBV: median 3.74 vs. 1.14, nrCBF: median 2.85 vs. 1.13; all p < .001), and the corresponding diagnostic performances were AUCs of .93, .91, and .95 with cutoffs of 1.37, 2.63, and 2.48, respectively. CONCLUSIONS DSC-MRI and DWI both can aid in differentiating paragangliomas from schwannomas and sporadic from NF2-related schwannomas.
Collapse
Affiliation(s)
- Yoshiaki Ota
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric Liao
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Aristides A Capizzano
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Akira Baba
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ryo Kurokawa
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Mariko Kurokawa
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashok Srinivasan
- Department of Radiology, Division of Neuroradiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Henriksen OM, del Mar Álvarez-Torres M, Figueiredo P, Hangel G, Keil VC, Nechifor RE, Riemer F, Schmainda KM, Warnert EAH, Wiegers EC, Booth TC. High-Grade Glioma Treatment Response Monitoring Biomarkers: A Position Statement on the Evidence Supporting the Use of Advanced MRI Techniques in the Clinic, and the Latest Bench-to-Bedside Developments. Part 1: Perfusion and Diffusion Techniques. Front Oncol 2022; 12:810263. [PMID: 35359414 PMCID: PMC8961422 DOI: 10.3389/fonc.2022.810263] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Objective Summarize evidence for use of advanced MRI techniques as monitoring biomarkers in the clinic, and highlight the latest bench-to-bedside developments. Methods Experts in advanced MRI techniques applied to high-grade glioma treatment response assessment convened through a European framework. Current evidence regarding the potential for monitoring biomarkers in adult high-grade glioma is reviewed, and individual modalities of perfusion, permeability, and microstructure imaging are discussed (in Part 1 of two). In Part 2, we discuss modalities related to metabolism and/or chemical composition, appraise the clinic readiness of the individual modalities, and consider post-processing methodologies involving the combination of MRI approaches (multiparametric imaging) or machine learning (radiomics). Results High-grade glioma vasculature exhibits increased perfusion, blood volume, and permeability compared with normal brain tissue. Measures of cerebral blood volume derived from dynamic susceptibility contrast-enhanced MRI have consistently provided information about brain tumor growth and response to treatment; it is the most clinically validated advanced technique. Clinical studies have proven the potential of dynamic contrast-enhanced MRI for distinguishing post-treatment related effects from recurrence, but the optimal acquisition protocol, mode of analysis, parameter of highest diagnostic value, and optimal cut-off points remain to be established. Arterial spin labeling techniques do not require the injection of a contrast agent, and repeated measurements of cerebral blood flow can be performed. The absence of potential gadolinium deposition effects allows widespread use in pediatric patients and those with impaired renal function. More data are necessary to establish clinical validity as monitoring biomarkers. Diffusion-weighted imaging, apparent diffusion coefficient analysis, diffusion tensor or kurtosis imaging, intravoxel incoherent motion, and other microstructural modeling approaches also allow treatment response assessment; more robust data are required to validate these alone or when applied to post-processing methodologies. Conclusion Considerable progress has been made in the development of these monitoring biomarkers. Many techniques are in their infancy, whereas others have generated a larger body of evidence for clinical application.
Collapse
Affiliation(s)
- Otto M. Henriksen
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Patricia Figueiredo
- Department of Bioengineering and Institute for Systems and Robotics-Lisboa, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gilbert Hangel
- Department of Neurosurgery, Medical University, Vienna, Austria
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University, Vienna, Austria
| | - Vera C. Keil
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Ruben E. Nechifor
- International Institute for the Advanced Studies of Psychotherapy and Applied Mental Health, Department of Clinical Psychology and Psychotherapy, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Frank Riemer
- Mohn Medical Imaging and Visualization Centre (MMIV), Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | | | - Evita C. Wiegers
- Department of Radiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Thomas C. Booth
-
School of Biomedical Engineering and Imaging Sciences, St. Thomas’ Hospital, King’s College London, London, United Kingdom
- Department of Neuroradiology, King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
42
|
Zhou Q, Xue C, Ke X, Zhou J. Treatment Response and Prognosis Evaluation in High-Grade Glioma: An Imaging Review Based on MRI. J Magn Reson Imaging 2022; 56:325-340. [PMID: 35129845 DOI: 10.1002/jmri.28103] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, the development of advanced magnetic resonance imaging (MRI) technology and machine learning (ML) have created new tools for evaluating treatment response and prognosis of patients with high-grade gliomas (HGG); however, patient prognosis has not improved significantly. This is mainly due to the heterogeneity between and within HGG tumors, resulting in standard treatment methods not benefitting all patients. Moreover, the survival of patients with HGG is not only related to tumor cells, but also to noncancer cells in the tumor microenvironment (TME). Therefore, during preoperative diagnosis and follow-up treatment of patients with HGG, noninvasive imaging markers are needed to characterize intratumoral heterogeneity, and then to evaluate treatment response and predict prognosis, timeously adjust treatment strategies, and achieve individualized diagnosis and treatment. In this review, we summarize the research progress of conventional MRI, advanced MRI technology, and ML in evaluation of treatment response and prognosis of patients with HGG. We further discuss the significance of the TME in the prognosis of HGG patients, associate imaging features with the TME, indirectly reflecting the heterogeneity within the tumor, and shifting treatment strategies from tumor cells alone to systemic therapy of the TME, which may be a major development direction in the future. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 4.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Caiqiang Xue
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Second Clinical School, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Xiaoai Ke
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Lanzhou, Gansu, China.,Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, Gansu, China.,Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, Gansu, China
| |
Collapse
|
43
|
Fu R, Szidonya L, Barajas RF, Ambady P, Varallyay C, Neuwelt EA. Diagnostic performance of DSC perfusion MRI to distinguish tumor progression and treatment-related changes: a systematic review and meta-analysis. Neurooncol Adv 2022; 4:vdac027. [PMID: 35386567 PMCID: PMC8982196 DOI: 10.1093/noajnl/vdac027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background In patients with high-grade glioma (HGG), true disease progression and treatment-related changes often appear similar on magnetic resonance imaging (MRI), making it challenging to evaluate therapeutic response. Dynamic susceptibility contrast (DSC) MRI has been extensively studied to differentiate between disease progression and treatment-related changes. This systematic review evaluated and synthesized the evidence for using DSC MRI to distinguish true progression from treatment-related changes. Methods We searched Ovid MEDLINE and the Ovid MEDLINE in-process file (January 2005-October 2019) and the reference lists. Studies on test performance of DSC MRI using relative cerebral blood volume in HGG patients were included. One investigator abstracted data, and a second investigator confirmed them; two investigators independently assessed study quality. Meta-analyses were conducted to quantitatively synthesize area under the receiver operating curve (AUROC), sensitivity, and specificity. Results We screened 1177 citations and included 28 studies with 638 patients with true tumor progression, and 430 patients with treatment-related changes. Nineteen studies reported AUROC and the combined AUROC is 0.85 (95% CI, 0.81-0.90). All studies contributed data for sensitivity and specificity, and the pooled sensitivity and specificity are 0.84 (95% CI, 0.80-0.88), and 0.78 (95% CI, 0.72-0.83). Extensive subgroup analyses based on study, treatment, and imaging characteristics generally showed similar results. Conclusions There is moderate strength of evidence that relative cerebral blood volume obtained from DSC imaging demonstrated "excellent" ability to discriminate true tumor progression from treatment-related changes, with robust sensitivity and specificity.
Collapse
Affiliation(s)
- Rongwei Fu
- Oregon Health & Science University-Portland State University, School of Public Health, Portland, Oregon, USA.,Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Laszlo Szidonya
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA.,Neuro-Oncology Program, Oregon Health & Science University, Portland, Oregon, USA.,Heart and Vascular Center, Diagnostic Radiology, Semmelweis University, Budapest, Hungary
| | - Ramon F Barajas
- Department of Radiology, Oregon Health & Science University, Portland, Oregon, USA.,Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA.,Knight Cancer Institute Translational Oncology Program, Oregon Health & Science University, Portland, Oregon, USA
| | - Prakash Ambady
- Neuro-Oncology Program, Oregon Health & Science University, Portland, Oregon, USA
| | | | - Edward A Neuwelt
- Neuro-Oncology Program, Oregon Health & Science University, Portland, Oregon, USA.,Department of Neurosurgery, Oregon Health and Sciences University, Portland, Oregon, USA.,Office of Research and Development, Department of Veterans Affairs Medical Center, Portland, Oregon, USA
| |
Collapse
|
44
|
Li Y, Ma Y, Wu Z, Xie R, Zeng F, Cai H, Lui S, Song B, Chen L, Wu M. Advanced Imaging Techniques for Differentiating Pseudoprogression and Tumor Recurrence After Immunotherapy for Glioblastoma. Front Immunol 2021; 12:790674. [PMID: 34899760 PMCID: PMC8656432 DOI: 10.3389/fimmu.2021.790674] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 02/05/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system with poor prognosis. Although the field of immunotherapy in glioma is developing rapidly, glioblastoma is still prone to recurrence under strong immune intervention. The major challenges in the process of immunotherapy are evaluating the curative effect, accurately distinguishing between treatment-related reactions and tumor recurrence, and providing guidance for clinical decision-making. Since the conventional magnetic resonance imaging (MRI) is usually difficult to distinguish between pseudoprogression and the true tumor progression, many studies have used various advanced imaging techniques to evaluate treatment-related responses. Meanwhile, criteria for efficacy evaluation of immunotherapy are constantly updated and improved. A standard imaging scheme to evaluate immunotherapeutic response will benefit patients finally. This review mainly summarizes the application status and future trend of several advanced imaging techniques in evaluating the efficacy of GBM immunotherapy.
Collapse
Affiliation(s)
- Yan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqi Ma
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Zijun Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Ruoxi Xie
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Fanxin Zeng
- Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China
| | - Huawei Cai
- Laboratory of Clinical Nuclear Medicine, Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Song
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.,Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Min Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.,Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China
| |
Collapse
|
45
|
Eisenhut F, Engelhorn T, Arinrad S, Brandner S, Coras R, Putz F, Fietkau R, Doerfler A, Schmidt MA. A Comparison of Single- and Multiparametric MRI Models for Differentiation of Recurrent Glioblastoma from Treatment-Related Change. Diagnostics (Basel) 2021; 11:diagnostics11122281. [PMID: 34943518 PMCID: PMC8700236 DOI: 10.3390/diagnostics11122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 12/02/2022] Open
Abstract
To evaluate single- and multiparametric MRI models to differentiate recurrent glioblastoma (GBM) and treatment-related changes (TRC) in clinical routine imaging. Selective and unselective apparent diffusion coefficient (ADC) and minimum, mean, and maximum cerebral blood volume (CBV) measurements in the lesion were performed. Minimum, mean, and maximum ratiosCBV (CBVlesion to CBVhealthy white matter) were computed. All data were tested for lesion discrimination. A multiparametric model was compiled via multiple logistic regression using data demonstrating significant difference between GBM and TRC and tested for its diagnostic strength in an independent patient cohort. A total of 34 patients (17 patients with recurrent GBM and 17 patients with TRC) were included. ADC measurements showed no significant difference between both entities. All CBV and ratiosCBV measurements were significantly higher in patients with recurrent GBM than TRC. A minimum CBV of 8.5, mean CBV of 116.5, maximum CBV of 327 and ratioCBV minimum of 0.17, ratioCBV mean of 2.26 and ratioCBV maximum of 3.82 were computed as optimal cut-off values. By integrating these parameters in a multiparametric model and testing it in an independent patient cohort, 9 of 10 patients, i.e., 90%, were classified correctly. The multiparametric model further improves radiological discrimination of GBM from TRC in comparison to single-parameter approaches and enables reliable identification of recurrent tumors.
Collapse
Affiliation(s)
- Felix Eisenhut
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (T.E.); (A.D.); (M.A.S.)
- Correspondence: ; Tel.: +49-913185-44838
| | - Tobias Engelhorn
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (T.E.); (A.D.); (M.A.S.)
| | - Soheil Arinrad
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (S.A.); (S.B.)
| | - Sebastian Brandner
- Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (S.A.); (S.B.)
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany;
| | - Florian Putz
- Department of Radiation Oncology, University Hospital Erlangen, Universitaetsstrasse 27, 91054 Erlangen, Germany; (F.P.); (R.F.)
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Universitaetsstrasse 27, 91054 Erlangen, Germany; (F.P.); (R.F.)
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (T.E.); (A.D.); (M.A.S.)
| | - Manuel A. Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany; (T.E.); (A.D.); (M.A.S.)
| |
Collapse
|
46
|
Fathi Kazerooni A, Bagley SJ, Akbari H, Saxena S, Bagheri S, Guo J, Chawla S, Nabavizadeh A, Mohan S, Bakas S, Davatzikos C, Nasrallah MP. Applications of Radiomics and Radiogenomics in High-Grade Gliomas in the Era of Precision Medicine. Cancers (Basel) 2021; 13:cancers13235921. [PMID: 34885031 PMCID: PMC8656630 DOI: 10.3390/cancers13235921] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Radiomics and radiogenomics offer new insight into high-grade glioma biology, as well as into glioma behavior in response to standard therapies. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the role of radiomics in providing more accurate diagnoses, prognostication, and surveillance of patients with high-grade glioma, and on the potential application of radiomics in clinical practice, with the overarching goal of advancing precision medicine for optimal patient care. Abstract Machine learning (ML) integrated with medical imaging has introduced new perspectives in precision diagnostics of high-grade gliomas, through radiomics and radiogenomics. This has raised hopes for characterizing noninvasive and in vivo biomarkers for prediction of patient survival, tumor recurrence, and genomics and therefore encouraging treatments tailored to individualized needs. Characterization of tumor infiltration based on pre-operative multi-parametric magnetic resonance imaging (MP-MRI) scans may allow prediction of the loci of future tumor recurrence and thereby aid in planning the course of treatment for the patients, such as optimizing the extent of resection and the dose and target area of radiation. Imaging signatures of tumor genomics can help in identifying the patients who benefit from certain targeted therapies. Specifying molecular properties of gliomas and prediction of their changes over time and with treatment would allow optimization of treatment. In this article, we provide neuro-oncology, neuropathology, and computational perspectives on the promise of radiomics and radiogenomics for allowing personalized treatments of patients with gliomas and discuss the challenges and limitations of these methods in multi-institutional clinical trials and suggestions to mitigate the issues and the future directions.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Stephen J. Bagley
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamed Akbari
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Sanjay Saxena
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Sina Bagheri
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Jun Guo
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Ali Nabavizadeh
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Suyash Mohan
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - Spyridon Bakas
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA 19104, USA; (A.F.K.); (H.A.); (S.S.); (J.G.); (A.N.); (S.M.); (S.B.); (C.D.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.B.); (S.C.)
| | - MacLean P. Nasrallah
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
47
|
Shi W, Qu C, Wang X, Liang X, Tan Y, Zhang H. Diffusion kurtosis imaging combined with dynamic susceptibility contrast-enhanced MRI in differentiating high-grade glioma recurrence from pseudoprogression. Eur J Radiol 2021; 144:109941. [PMID: 34735828 DOI: 10.1016/j.ejrad.2021.109941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To compare the added value of diffusion kurtosis imaging (DKI) with the combination of dynamic susceptibility contrast-enhanced (DSC) MRI in differentiating glioma recurrence from pseudoprogression. METHODS Thirty-four patients with high-grade gliomas developing new and/or increasing enhanced lesions within six months after surgery and chemoradiotherapy were retrospectively analyzed. All patients were pathologically confirmed to have recurrent glioma (n = 22) or pseudoprogression (n = 12). The DKI and DSC MRI parameters were calculated based on the enhanced lesions on contrast-enhanced T1WI. ROC analysis was performed on significant variables to determine their diagnostic performance. Multivariate logistic regression was used to determine the best prediction model for discrimination. RESULTS The relative mean kurtosis (rMK), relative axial kurtosis (rKa), relative cerebral blood volume (rCBV), and relative mean transit time (rMTT) of glioma recurrence were higher than those of pseudoprogression (all, P < 0.05). The AUCs and diagnostic accuracy were 0.879 and 82.35% for rMK, 0.723 and 70.59% for rKa, 0.890 and 82.35% for rCBV, 0.765 and 73.53% for rMTT, respectively. A multivariate logistic regression model showed a significant contribution of rMK (P = 0.006) and rCBV (P = 0.009) as independent imaging classifiers for discrimination. The combined use of rMK and rCBV improved the AUC to 0.924 (P < 0.001) and the diagnostic accuracy to 88.24%. CONCLUSION DKI may be a valuable non-invasive tool in differentiating glioma recurrence from pseudoprogression, and its use in combination with DSC MRI can improve diagnostic performance in assessing treatment response compared with either technique alone.
Collapse
Affiliation(s)
- Wenwei Shi
- Department of Radiology, Zhongda Hospital, Southeast University, No. 87 Dingjiaqiao, Nanjing 210009, Jiangsu Province, PR China
| | - Chongxiao Qu
- Department of Pathology, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, No. 29 of Twin Towers Temple Street, Taiyuan 030012, Shanxi Province, PR China
| | - Xiaochun Wang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, Shanxi Province, PR China
| | - Xiao Liang
- Department of Radiology, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, No. 29 of Twin Towers Temple Street, Taiyuan 030012, Shanxi Province, PR China
| | - Yan Tan
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, Shanxi Province, PR China.
| | - Hui Zhang
- Department of Radiology, First Clinical Medical College, Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
48
|
Jabeen S, Arbind A, Kumar D, Singh PK, Saini J, Sadashiva N, Krishna U, Arimappamagan A, Santosh V, Nagaraj C. Combined amino acid PET-MRI for identifying recurrence in post-treatment gliomas: together we grow. Eur J Hybrid Imaging 2021; 5:15. [PMID: 34405282 PMCID: PMC8371055 DOI: 10.1186/s41824-021-00109-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 07/21/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE The aim of this study is to compare the diagnostic accuracy of amino acid PET, MR perfusion and diffusion as stand-alone modalities and in combination in identifying recurrence in post-treatment gliomas and to qualitatively assess spatial concordance between the three modalities using simultaneous PET-MR acquisition. METHODS A retrospective review of 48 cases of post-treatment gliomas who underwent simultaneous PET-MRI using C11 methionine as radiotracer was performed. MR perfusion and diffusion sequences were acquired during the PET study. The following parameters were obtained: TBRmax, TBRmean, SUVmax, and SUVmean from the PET images; rCBV from perfusion; and ADCmean and ADCratio from the diffusion images. The final diagnosis was based on clinical/imaging follow-up and histopathology when available. ROC curve analysis in combination with logistic regression analysis was used to compare the diagnostic performance. Spatial concordance between modalities was graded as 0, 1, and 2 representing discordance, < 50% and > 50% concordance respectively. RESULTS There were 35 cases of recurrence and 13 cases of post-treatment changes without recurrence. The highest area under curve (AUC) was obtained for TBRmax followed by rCBV and ADCratio. The AUC increased significantly with a combination of rCBV and TBRmax. Amino acid PET showed the highest diagnostic accuracy and maximum agreement with the final diagnosis. There was discordance between ADC and PET in 22.9%, between rCBV and PET in 16.7% and between PET and contrast enhancement in 14.6% cases. CONCLUSION Amino acid PET had the highest diagnostic accuracy in identifying recurrence in post-treatment gliomas. Combination of PET with MRI further increased the AUC thus improving the diagnostic performance.
Collapse
Affiliation(s)
- Shumyla Jabeen
- Sher-i-Kashmir Institute of Medical Sciences, Srinagar, Kashmir, 190001, India
| | - Arpana Arbind
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, 560029, India
| | - Dinesh Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, 560029, India
| | - Pardeep Kumar Singh
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, 560029, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, 560029, India
| | - Nishanth Sadashiva
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, 560029, India
| | - Uday Krishna
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bengaluru, Karnataka, 560029, India
| | - Arivazhagan Arimappamagan
- Department of Neurosurgery, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, 560029, India
| | - Vani Santosh
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, 560029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, 560029, India.
| |
Collapse
|
49
|
Wang C, Padgett KR, Su MY, Mellon EA, Maziero D, Chang Z. Multi-parametric MRI (mpMRI) for treatment response assessment of radiation therapy. Med Phys 2021; 49:2794-2819. [PMID: 34374098 DOI: 10.1002/mp.15130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) plays an important role in the modern radiation therapy (RT) workflow. In comparison with computed tomography (CT) imaging, which is the dominant imaging modality in RT, MRI possesses excellent soft-tissue contrast for radiographic evaluation. Based on quantitative models, MRI can be used to assess tissue functional and physiological information. With the developments of scanner design, acquisition strategy, advanced data analysis, and modeling, multiparametric MRI (mpMRI), a combination of morphologic and functional imaging modalities, has been increasingly adopted for disease detection, localization, and characterization. Integration of mpMRI techniques into RT enriches the opportunities to individualize RT. In particular, RT response assessment using mpMRI allows for accurate characterization of both tissue anatomical and biochemical changes to support decision-making in monotherapy of radiation treatment and/or systematic cancer management. In recent years, accumulating evidence have, indeed, demonstrated the potentials of mpMRI in RT response assessment regarding patient stratification, trial benchmarking, early treatment intervention, and outcome modeling. Clinical application of mpMRI for treatment response assessment in routine radiation oncology workflow, however, is more complex than implementing an additional imaging protocol; mpMRI requires additional focus on optimal study design, practice standardization, and unified statistical reporting strategy to realize its full potential in the context of RT. In this article, the mpMRI theories, including image mechanism, protocol design, and data analysis, will be reviewed with a focus on the radiation oncology field. Representative works will be discussed to demonstrate how mpMRI can be used for RT response assessment. Additionally, issues and limits of current works, as well as challenges and potential future research directions, will also be discussed.
Collapse
Affiliation(s)
- Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Miami, Miami, Florida, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California, USA.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Danilo Maziero
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
50
|
Mohan S, Wang S, Chawla S, Abdullah K, Desai A, Maloney E, Brem S. Multiparametric MRI assessment of response to convection-enhanced intratumoral delivery of MDNA55, an interleukin-4 receptor targeted immunotherapy, for recurrent glioblastoma. Surg Neurol Int 2021; 12:337. [PMID: 34345478 PMCID: PMC8326072 DOI: 10.25259/sni_353_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/09/2021] [Indexed: 11/04/2022] Open
Abstract
Background Glioblastoma (GBM) is the most common malignant brain tumor and carries a dismal prognosis. Attempts to develop biologically targeted therapies are challenging as the blood-brain barrier can limit drugs from reaching their target when administered through conventional (intravenous or oral) routes. Furthermore, systemic toxicity of drugs often limits their therapeutic potential. To circumvent these problems, convection-enhanced delivery (CED) provides direct, targeted, intralesional therapy with a secondary objective to alter the tumor microenvironment from an immunologically "cold" (nonresponsive) to an "inflamed" (immunoresponsive) tumor. Case Description We report a patient with right occipital recurrent GBM harboring poor prognostic genotypes who was treated with MRI-guided CED of a fusion protein MDNA55 (a targeted toxin directed toward the interleukin-4 receptor). The patient underwent serial anatomical, diffusion, and perfusion MRI scans before initiation of targeted therapy and at 1, 3-month posttherapy. Increased mean diffusivity along with decreased fractional anisotropy and maximum relative cerebral blood volume was noted at follow-up periods relative to baseline. Conclusion Our findings suggest that diffusion and perfusion MRI techniques may be useful in evaluating early response to CED of MDNA55 in recurrent GBM patients.
Collapse
Affiliation(s)
- Suyash Mohan
- Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sumei Wang
- Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sanjeev Chawla
- Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Kalil Abdullah
- Department of Neurosurgery, University of Texas-Southwestern Medical Center, Dallas, Texas, United States
| | - Arati Desai
- Department of Medicine Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Eileen Maloney
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Steven Brem
- Department of Neurosurgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|