1
|
Baldi O, Kinnett K, Schrader R, Denger B, Truba N, Sorensen S, Veerapandiyan A, Colvin MK. Gaps in the Assessment and Care of Neurodevelopmental and Psychiatric Conditions Associated With Dystrophinopathy. Muscle Nerve 2025; 71:377-383. [PMID: 39719374 DOI: 10.1002/mus.28316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/26/2024]
Abstract
INTRODUCTION/AIMS While dystrophinopathies are primarily characterized by progressive muscle weakness with onset during childhood, dystrophin also plays a role in brain development. This study aimed to characterize how neurodevelopmental and psychiatric disorders are currently identified and managed in clinical care of those with Becker and Duchenne muscular dystrophy (BDMD). METHODS Parent Project Muscular Dystrophy (PPMD) disseminated surveys to caregivers and health care providers (HCPs) in the United States to assess the frequency and management of neurodevelopmental and psychiatric disorders of those with dystrophinopathy. RESULTS 320 caregivers (C) and 74 HCPs responded to surveys. Caregivers indicated higher rates of neurodevelopmental and psychiatric disorders than HCPs, including anxiety (50.5% C, n = 112; 17.8% HCP, n = 19), attention-deficit hyperactivity disorder (ADHD) (32.0% C, n = 73; 15.9% HCP, n = 17), obsessive-compulsive disorder (OCD) (25.9% C, n = 57; 11.2% HCP, n = 12), depression (21.6% C, n = 48; 18.7% HCP, n = 20), and autism spectrum disorder (ASD) (21.0% C, n = 47; 10.3% HCP, n = 11). Results also indicated gaps in the assessment and care of these conditions, including lack of routine screening, reduced access to psychologists and psychiatrists, and lack of clarity amongst HCPs about who should manage neurodevelopmental and psychiatric concerns in those with dystrophinopathy. DISCUSSION Closing the identified gaps in assessment, perception, and care will require increased awareness of neurodevelopmental and psychiatric conditions in dystrophinopathy and screening tools to facilitate early identification of these conditions during routine clinical care.
Collapse
Affiliation(s)
- Olivia Baldi
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Graduate School of Education, Cambridge, Massachusetts, USA
| | - Kathi Kinnett
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | | | - Brian Denger
- Parent Project Muscular Dystrophy, Washington, DC, USA
| | - Natalie Truba
- Departments of Psychology and Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA
| | - Seth Sorensen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Arkansas, USA
| | - Aravindhan Veerapandiyan
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Hospital, Little Rock, Arkansas, USA
| | - Mary K Colvin
- Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Vaillend C, Aoki Y, Mercuri E, Hendriksen J, Tetorou K, Goyenvalle A, Muntoni F. Duchenne muscular dystrophy: recent insights in brain related comorbidities. Nat Commun 2025; 16:1298. [PMID: 39900900 PMCID: PMC11790952 DOI: 10.1038/s41467-025-56644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025] Open
Abstract
Duchenne muscular dystrophy (DMD), the most common childhood muscular dystrophy, arises from DMD gene mutations, affecting the production of muscle dystrophin protein. Brain dystrophin-gene products are also transcribed via internal promoters. Their deficiency contributes to comorbidities, including intellectual disability ( ~ 22% of patients), autism ( ~ 6%) and attention deficit disorders ( ~ 18%), representing a major unmet need for patients and families. Thus, improvement of their diagnosis and treatment is needed. Dystrophic mouse models exhibit similar phenotypes, where genetic therapies restoring brain dystrophins improve their behaviour. This suggests that future genetic therapies could address both muscle and brain dysfunction in DMD patients.
Collapse
Affiliation(s)
- Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, Paris, France
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, 187-8502, Japan
| | - Eugenio Mercuri
- Department of Paediatric Neurology, Catholic University, Rome, Italy
| | - Jos Hendriksen
- Kempenhaeghe Centre for Neurological Learning Disabilities, Heeze, the Netherlands; Maastricht University, School for Mental Health and Neuroscience, Maastricht, the Netherlands.
| | - Konstantina Tetorou
- University College London Great Ormond Street Institute of Child Health, London, UK
| | - Aurelie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000, Versailles, France.
| | - Francesco Muntoni
- University College London Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
3
|
Goutal S, Lancien M, Rivier F, Tournier N, Vaillend C. Brain glucose metabolism as a neuronal substrate of the abnormal behavioral response to stress in the mdx mouse, a model of Duchenne muscular dystrophy. Neurobiol Dis 2025; 204:106771. [PMID: 39701189 DOI: 10.1016/j.nbd.2024.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is associated with a range of cognitive and behavioral problems. Brain-related comorbidities show clinical heterogeneity depending on the position of the mutation within the multi-promoter dystrophin (DMD) gene, likely due to the differential impact of mutations on the expression of distinct brain dystrophins. A deficiency of the full-length brain dystrophin, Dp427, has been associated with enhanced stress reactivity, characterized by abnormal fear responses in both patients and mdx mouse model. However, the neural substrates of this phenotype are still unknown. Here, we undertook the first functional imaging study of the mdx mouse brain, following expression of the typical unconditioned fear response expressed by mdx mice after a short scruff restraint and one week later after recovery from stress. We compared the brain glucose metabolism in 12 brain structures of mdx and WT littermate male mice using [18F]FDG PET imaging. Restraint-stress induced a global decrease in [18F]FDG uptake in mdx mice, while no difference was found between genotypes when mice were tested one week later under non-stressful conditions. A subset of brain structures were particularly affected by stress in mdx mice, and we identified abnormal correlations between fear responses and metabolism in specific structures, and altered co-activation of the hypothalamus with several subcortical structures. Our data support the hypothesis that enhanced stress reactivity due to loss of brain Dp427 relies on abnormal activation of the brain fear circuit and deregulation of a hypothalamus-dependent pathway.
Collapse
Affiliation(s)
- Sébastien Goutal
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Marion Lancien
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France; PhyMedExp, CNRS UMR 9214, INSERM U1046, University of Montpellier, CHU de Montpellier, France.
| | - François Rivier
- PhyMedExp, CNRS UMR 9214, INSERM U1046, University of Montpellier, CHU de Montpellier, France.
| | - Nicolas Tournier
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France.
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France.
| |
Collapse
|
4
|
Geuens S, Van Dessel J, Kan HE, Govaarts R, Niks EH, Goemans N, Lemiere J, Doorenweerd N, De Waele L. Genotype and corticosteroid treatment are distinctively associated with gray matter characteristics in patients with Duchenne muscular dystrophy. Neuromuscul Disord 2024; 45:105238. [PMID: 39522443 DOI: 10.1016/j.nmd.2024.105238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
This study investigated if structural variation in specific gray matter areas is associated with corticosteroid treatment or genotype, and if cerebral morphological variations are related to neuropsychological and behavioral outcomes. The CAT12 toolbox in SPM was used for MRI segmentations, assessing subcortical structures, cortical thickness, gyrification, and sulci depths for DMD patients (n = 40; 9-18 years) and age-matched controls (n = 40). Comparisons were made between DMD vs. controls, daily vs. intermittent corticosteroid treatment (n = 20 each), and Dp140+ vs. Dp140- gene mutations (n = 15 vs. 25). MANCOVA, CAT12 3D statistics and Pearson correlations were conducted. DMD patients showed differences in volumes of distinct subcortical structures, left hemisphere cortical thickness, and gyrification in multiple brain areas compared with healthy controls. The daily treated DMD group exhibited differences in subcortical volumes and different patterns of cortical thickness, sulci depth, and gyrification compared to the intermittent treated DMD group. DMD Dp140+ patients displayed altered gyrification and sulci depth compared to DMD Dp140- patients. Finally, we found correlations between neurobehavioral outcomes and brain areas that showed differences in cortical morphology associated with corticosteroid treatment. Both genotype and corticosteroid treatment are associated with variations in subcortical volumes and cortical morphology, albeit in different ways. Corticosteroid treatment appears to have a more profound association with differences in gray matter characteristics of brain regions that are associated with functional outcomes.
Collapse
Affiliation(s)
- Sam Geuens
- University Hospitals Leuven, Child Neurology, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, Leuven, Belgium.
| | - Jeroen Van Dessel
- Center for Developmental Psychiatry, Department of Neurosciences, UPC-KU Leuven, Belgium
| | - Hermien E Kan
- Leiden University Medical Center, C.J. Gorter MRI Center, Department of Radiology, Netherlands; Duchenne Center Netherlands
| | - Rosanne Govaarts
- Leiden University Medical Center, C.J. Gorter MRI Center, Department of Radiology, Netherlands; Duchenne Center Netherlands
| | - Erik H Niks
- Duchenne Center Netherlands; Leiden University Medical Center, Department of Neurology, Netherlands
| | | | - Jurgen Lemiere
- University Hospitals Leuven, Pediatric Hemato-Oncology, Belgium; KU Leuven, Department Oncology, Pediatric Oncology, Belgium
| | - Nathalie Doorenweerd
- Leiden University Medical Center, C.J. Gorter MRI Center, Department of Radiology, Netherlands
| | - Liesbeth De Waele
- University Hospitals Leuven, Child Neurology, Leuven, Belgium; KU Leuven, Department of Development and Regeneration, Leuven, Belgium
| |
Collapse
|
5
|
Neuhoff K, Kilicarslan OA, Preuße C, Zaum AK, Kölbel H, Lochmüller H, Schara-Schmidt U, Polavarapu K, Roos A, Gangfuß A. Expanding the Molecular Genetic Landscape of Dystrophinopathies and Associated Phenotypes. Biomedicines 2024; 12:2738. [PMID: 39767645 PMCID: PMC11727156 DOI: 10.3390/biomedicines12122738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: X-linked dystrophinopathies are a group of neuromuscular diseases caused by pathogenic variants in the DMD gene (MIM *300377). Duchenne muscular dystrophy (DMD; MIM #310200) is the most common inherited muscular dystrophy. Methods: We screened datasets of 403 male, genetically confirmed X-linked dystrophinopathy patients and identified 13 pathogenic variants of the DMD gene that have not been described in the literature thus far. For all patients we provide additional data on the clinical course, genotype-phenotype correlations as well as histological datasets of nine patients. In two cases, we used RNA-Seq analyses, showing that this method can be particularly helpful in cases of deep intrinsic variants. Results: We were able to show, that a combination of the different datasets is helpful to counsel families and provides a better understanding of the underlying pathophysiology. Conclusions: Overall, we elaborated upon the persistent challenge of determining the course of disease from genetic analysis alone, rather supporting the concept of a clinical continuum of dystrophinopathies with our combined clinical, histological and molecular genetic findings.
Collapse
Affiliation(s)
- Katja Neuhoff
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (K.N.); (H.K.); (U.S.-S.); (A.R.)
| | - Ozge Aksel Kilicarslan
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada; (O.A.K.); (H.L.)
| | - Corinna Preuße
- Department of Neuropathology, Charité-University Medicine Berlin, 10117 Berlin, Germany;
| | - Ann-Kathrin Zaum
- Institute of Human Genetics, University of Würzburg, 97074 Würzburg, Germany;
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (K.N.); (H.K.); (U.S.-S.); (A.R.)
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada; (O.A.K.); (H.L.)
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8L6, Canada
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Ulrike Schara-Schmidt
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (K.N.); (H.K.); (U.S.-S.); (A.R.)
| | - Kiran Polavarapu
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada; (O.A.K.); (H.L.)
| | - Andreas Roos
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (K.N.); (H.K.); (U.S.-S.); (A.R.)
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 5B2, Canada; (O.A.K.); (H.L.)
- Department of Neurology, Medical Faculty, Heinrich Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Andrea Gangfuß
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany; (K.N.); (H.K.); (U.S.-S.); (A.R.)
| |
Collapse
|
6
|
Govaarts R, Doorenweerd N, Najac CF, Broek EM, Tamsma ME, Hollingsworth KG, Niks EH, Ronen I, Straub V, Kan HE. Probing diffusion of water and metabolites to assess white matter microstructure in Duchenne muscular dystrophy. NMR IN BIOMEDICINE 2024; 37:e5212. [PMID: 39005110 DOI: 10.1002/nbm.5212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/15/2024] [Accepted: 06/15/2024] [Indexed: 07/16/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a progressive X-linked neuromuscular disorder caused by the absence of functional dystrophin protein. In addition to muscle, dystrophin is expressed in the brain in both neurons and glial cells. Previous studies have shown altered white matter microstructure in patients with DMD using diffusion tensor imaging (DTI). However, DTI measures the diffusion properties of water, a ubiquitous molecule, making it difficult to unravel the underlying pathology. Diffusion-weighted spectroscopy (DWS) is a complementary technique which measures diffusion properties of cell-specific intracellular metabolites. Here we performed both DWS and DTI measurements to disentangle intra- and extracellular contributions to white matter changes in patients with DMD. Scans were conducted in patients with DMD (15.5 ± 4.6 y/o) and age- and sex-matched healthy controls (16.3 ± 3.3 y/o). DWS measurements were obtained in a volume of interest (VOI) positioned in the left parietal white matter. Apparent diffusion coefficients (ADCs) were calculated for total N-acetylaspartate (tNAA), choline compounds (tCho), and total creatine (tCr). The tNAA/tCr and tCho/tCr ratios were calculated from the non-diffusion-weighted spectrum. Mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD), and fractional anisotropy of water within the VOI were extracted from DTI measurements. DWS and DTI data from patients with DMD (respectively n = 20 and n = 18) and n = 10 healthy controls were included. No differences in metabolite ADC or in concentration ratios were found between patients with DMD and controls. In contrast, water diffusion (MD, t = -2.727, p = 0.011; RD, t = -2.720, p = 0.011; AD, t = -2.715, p = 0.012) within the VOI was significantly higher in patients compared with healthy controls. Taken together, our study illustrates the potential of combining DTI and DWS to gain a better understanding of microstructural changes and their association with disease mechanisms in a clinical setting.
Collapse
Affiliation(s)
- Rosanne Govaarts
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Duchenne Centre Netherlands, Leiden, The Netherlands
| | - Nathalie Doorenweerd
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Chloé F Najac
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emma M Broek
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maud E Tamsma
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kieren G Hollingsworth
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Duchenne Centre Netherlands, Leiden, The Netherlands
| | - Itamar Ronen
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hermien E Kan
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Duchenne Centre Netherlands, Leiden, The Netherlands
| |
Collapse
|
7
|
Peruzzo D, Ciceri T, Mascheretti S, Lampis V, Arrigoni F, Agarwal N, Giubergia A, Villa FM, Crippa A, Nobile M, Mani E, Russo A, D'Angelo MG. Brain Alteration Patterns in Children with Duchenne Muscular Dystrophy: A Machine Learning Approach to Magnetic Resonance Imaging. J Neuromuscul Dis 2024:JND230075. [PMID: 38578898 DOI: 10.3233/jnd-230075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
BACKGROUND Duchenne Muscular Dystrophy (DMD) is a genetic disease in which lack of the dystrophin protein causes progressive muscular weakness, cardiomyopathy and respiratory insufficiency. DMD is often associated with other cognitive and behavioral impairments, however the correlation of abnormal dystrophin expression in the central nervous system with brain structure and functioning remains still unclear. OBJECTIVE To investigate brain involvement in patients with DMD through a multimodal and multivariate approach accounting for potential comorbidities. METHODS We acquired T1-weighted and Diffusion Tensor Imaging data from 18 patients with DMD and 18 age- and sex-matched controls with similar cognitive and behavioral profiles. Cortical thickness, structure volume, fractional anisotropy and mean diffusivity measures were used in a multivariate analysis performed using a Support Vector Machine classifier accounting for potential comorbidities in patients and controls. RESULTS the classification experiment significantly discriminates between the two populations (97.2% accuracy) and the forward model weights showed that DMD mostly affects the microstructural integrity of long fiber bundles, in particular in the cerebellar peduncles (bilaterally), in the posterior thalamic radiation (bilaterally), in the fornix and in the medial lemniscus (bilaterally). We also reported a reduced cortical thickness, mainly in the motor cortex, cingulate cortex, hippocampal area and insula. CONCLUSIONS Our study identified a small pattern of alterations in the CNS likely associated with the DMD diagnosis.
Collapse
Affiliation(s)
- Denis Peruzzo
- Neuroimaging Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Tommaso Ciceri
- Neuroimaging Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Sara Mascheretti
- Child Psychopathology Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia (PV), Italy
| | - Valentina Lampis
- Child Psychopathology Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia (PV), Italy
| | - Filippo Arrigoni
- Neuroimaging Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
- Paediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Nivedita Agarwal
- Diagnostic Imaging and Neuroradiology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Alice Giubergia
- Neuroimaging Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Filippo Maria Villa
- Child Psychopathology Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Alessandro Crippa
- Child Psychopathology Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Maria Nobile
- Child Psychopathology Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Elisa Mani
- Child Psychopathology Unit,Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Annamaria Russo
- Unit of Rehabilitation of Rare Diseases of the Central and Peripheral Nervous System, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Maria Grazia D'Angelo
- Unit of Rehabilitation of Rare Diseases of the Central and Peripheral Nervous System, Scientific Institute, IRCCS Eugenio Medea, Bosisio Parini, Italy
| |
Collapse
|
8
|
Arreguin AJ, Shao Z, Colognato H. Dmd mdx mice have defective oligodendrogenesis, delayed myelin compaction and persistent hypomyelination. Dis Model Mech 2024; 17:dmm050115. [PMID: 38721692 PMCID: PMC11095635 DOI: 10.1242/dmm.050115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.
Collapse
Affiliation(s)
- Andrea J. Arreguin
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Zijian Shao
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
9
|
Maki H, Mori-Yoshimura M, Matsuda H, Hashimoto Y, Ota M, Kimura Y, Shigemoto Y, Ishihara N, Kan H, Chiba E, Arizono E, Yoshida S, Takahashi Y, Sato N. Brain Abnormalities in Becker Muscular Dystrophy: Evaluation by Voxel-Based DTI and Morphometric Analysis. AJNR Am J Neuroradiol 2023; 44:1405-1410. [PMID: 37945525 PMCID: PMC10714854 DOI: 10.3174/ajnr.a8041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND PURPOSE Although various neuropsychological problems in Becker muscular dystrophy have attracted attention, there have been few related neuroimaging studies. We investigated brain abnormalities in patients with Becker muscular dystrophy using 3D T1WI and DTI. MATERIALS AND METHODS MR images were obtained for 30 male patients and 30 age-matched healthy male controls. We classified patients into Dp140+ and Dp140- subgroups based on their predicted dystrophin Dp140 isoform expression and performed voxel-based comparisons of gray and white matter volumes and DTI metrics among the patients, patient subgroups, and controls. ROI-based DTI analyses were also performed. RESULTS Significantly decreased fractional anisotropy was observed in the left planum temporale and right superior parietal lobule compared between the Becker muscular dystrophy and control groups. In the Dp140- subgroup, decreased fractional anisotropy was observed in the left planum temporale, but no significant changes were seen in the Dp140+ subgroup. The ROI-based analysis obtained the same results. No significant differences were evident in the gray or white matter volumes or the DTI metrics other than fractional anisotropy between the groups. CONCLUSIONS A DTI metric analysis is useful to detect white-matter microstructural abnormalities in Becker muscular dystrophy that may be affected by the Dp140 isoform expression.
Collapse
Affiliation(s)
- Hiroyuki Maki
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology (M.M.-Y., Y.T.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging (H. Matsuda), Fukushima Medical University, Fukushima, Japan
| | - Yasumasa Hashimoto
- Department of Neurology (Y.H.), Kansai Medical University, Osaka, Japan
- Department of Molecular Therapy (Y.H.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Department of Neuropsychiatry (M.O.), University of Tsukuba, Ibaraki, Japan
| | - Yukio Kimura
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoko Ishihara
- Medical Genome Center (N.I., S.Y.), National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences (H.K.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Emiko Chiba
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Elly Arizono
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Sumiko Yoshida
- Medical Genome Center (N.I., S.Y.), National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatric Rehabilitation (S.Y.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology (M.M.-Y., Y.T.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
10
|
Geuens S, Van Dessel J, Govaarts R, Ikelaar NA, Meijer OC, Kan HE, Niks EH, Goemans N, Lemiere J, Doorenweerd N, De Waele L. Comparison of two corticosteroid regimens on brain volumetrics in patients with Duchenne muscular dystrophy. Ann Clin Transl Neurol 2023; 10:2324-2333. [PMID: 37822297 PMCID: PMC10723242 DOI: 10.1002/acn3.51922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE Duchenne muscular dystrophy (DMD) is a neuromuscular disorder in which many patients also have neurobehavioral problems. Corticosteroids, the primary pharmacological treatment for DMD, have been shown to affect brain morphology in other conditions, but data in DMD are lacking. This study aimed to investigate the impact of two corticosteroid regimens on brain volumetrics in DMD using magnetic resonance imaging (MRI). METHODS In a cross-sectional, two-center study, T1-weighted MRI scans were obtained from three age-matched groups (9-18 years): DMD patients treated daily with deflazacort (DMDd, n = 20, scan site: Leuven), DMD patients treated intermittently with prednisone (DMDi, n = 20, scan site: Leiden), and healthy controls (n = 40, both scan sites). FSL was used to perform voxel-based morphometry analyses and to calculate intracranial, total brain, gray matter, white matter, and cerebrospinal fluid volumes. A MANCOVA was employed to compare global volumetrics between groups, with site as covariate. RESULTS Both patient groups displayed regional differences in gray matter volumes compared to the control group. The DMDd group showed a wider extent of brain regions affected and a greater difference overall. This was substantiated by the global volume quantification: the DMDd group, but not the DMDi group, showed significant differences in gray matter, white matter, and cerebrospinal fluid volumes compared to the control group, after correction for intracranial volume. INTERPRETATION Volumetric differences in the brain are considered part of the DMD phenotype. This study suggests an additional impact of corticosteroid treatment showing a contrast between pronounced alterations seen in patients receiving daily corticosteroid treatment and more subtle differences in those treated intermittently.
Collapse
Affiliation(s)
- Sam Geuens
- Child NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| | - Jeroen Van Dessel
- Department of Neurosciences, Center for Developmental PsychiatryUPC‐KU LeuvenLeuvenBelgium
| | - Rosanne Govaarts
- C.J. Gorter MRI Center, RadiologyLeiden University Medical CenterLeidenNetherlands
- Duchenne Center NetherlandsLeidenNetherlands
| | - Nadine A. Ikelaar
- Duchenne Center NetherlandsLeidenNetherlands
- Department of NeurologyLeiden University Medical CenterLeidenNetherlands
| | - Onno C. Meijer
- Department of MedicineLeiden University Medical CenterLeidenNetherlands
| | - Hermien E. Kan
- C.J. Gorter MRI Center, RadiologyLeiden University Medical CenterLeidenNetherlands
- Duchenne Center NetherlandsLeidenNetherlands
| | - Erik H. Niks
- Duchenne Center NetherlandsLeidenNetherlands
- Department of NeurologyLeiden University Medical CenterLeidenNetherlands
| | | | - Jurgen Lemiere
- Pediatric Hemato‐OncologyUniversity Hospitals LeuvenLeuvenBelgium
- Department Oncology, Pediatric OncologyKU LeuvenLeuvenBelgium
| | - Nathalie Doorenweerd
- C.J. Gorter MRI Center, RadiologyLeiden University Medical CenterLeidenNetherlands
| | - Liesbeth De Waele
- Child NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| |
Collapse
|
11
|
Crawford AH, Hornby NL, de la Fuente AG, Piercy RJ. Brain magnetic resonance imaging in the DE50-MD dog model of Duchenne muscular dystrophy reveals regional reductions in cerebral gray matter. BMC Neurosci 2023; 24:21. [PMID: 36932329 PMCID: PMC10024360 DOI: 10.1186/s12868-023-00788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/24/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy is a X-linked disease characterized by severe and progressive muscle weakness, alongside cognitive impairment and a range of neurobehavioral disorders secondary to brain dystrophin deficiency. Duchenne muscular dystrophy patients have reduced cerebral gray matter and altered white matter ultrastructure (detected by magnetic resonance imaging) compared to age-matched controls. METHODS We studied the DE50-MD canine model of Duchenne muscular dystrophy, which is deficient in full length brain dystrophin (Dp427) isoforms and has a neurocognitive phenotype. Eight DE50-MD and 6 age-matched littermate wild type male dogs underwent serial brain magnetic resonance imaging from 14 to 33 months of age. RESULTS Reduced regional gray matter was detected in DE50-MD dogs compared with wildtype, including the piriform lobe, hippocampus and cingulate gyrus. Lateral ventricle volume was larger in DE50-MD dogs. Differences did not progress over time. White matter volume did not differ between DE50-MD and wildtype dogs. There was no difference in brain nor cranial vault volume between DE50-MD and wildtype dogs. CONCLUSION Dystrophin deficiency in the canine brain results in structural changes that likely contribute to the neurocognitive phenotype.
Collapse
Affiliation(s)
- Abbe H. Crawford
- grid.20931.390000 0004 0425 573XComparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| | - Natasha L. Hornby
- grid.20931.390000 0004 0425 573XComparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| | - Alerie G. de la Fuente
- grid.513062.30000 0004 8516 8274Institute of Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neurosciences CSIC-UMH, San Juan de Alicante, Spain
- grid.4777.30000 0004 0374 7521Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, UK
| | - Richard J. Piercy
- grid.20931.390000 0004 0425 573XComparative Neuromuscular Diseases Laboratory, Department of Clinical Science and Services, Royal Veterinary College, London, UK
| |
Collapse
|
12
|
Colvin MK, Truba N, Sorensen S, Henricson E, Kinnett K. Dystrophinopathy and the brain: A parent project muscular dystrophy (PPMD) meeting report November 11-12, 2021, New York City, NY. Neuromuscul Disord 2022; 32:935-944. [PMID: 36323606 DOI: 10.1016/j.nmd.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Mary K Colvin
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
| | - Natalie Truba
- Department of Psychology and Neurology, Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | - Kathi Kinnett
- Parent Project Muscular Dystrophy, Washington DC, USA
| |
Collapse
|
13
|
Stefano MED, Ferretti V, Mozzetta C. Synaptic alterations as a neurodevelopmental trait of Duchenne muscular dystrophy. Neurobiol Dis 2022; 168:105718. [PMID: 35390481 DOI: 10.1016/j.nbd.2022.105718] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/14/2023] Open
Abstract
Dystrophinopaties, e.g., Duchenne muscular dystrophy (DMD), Becker muscular dystrophy and X-linked dilated cardiomyopathy are inherited neuromuscular diseases, characterized by progressive muscular degeneration, which however associate with a significant impact on general system physiology. The more severe is the pathology and its diversified manifestations, the heavier are its effects on organs, systems, and tissues other than muscles (skeletal, cardiac and smooth muscles). All dystrophinopaties are characterized by mutations in a single gene located on the X chromosome encoding dystrophin (Dp427) and its shorter isoforms, but DMD is the most devasting: muscular degenerations manifests within the first 4 years of life, progressively affecting motility and other muscular functions, and leads to a fatal outcome between the 20s and 40s. To date, after years of studies on both DMD patients and animal models of the disease, it has been clearly demonstrated that a significant percentage of DMD patients are also afflicted by cognitive, neurological, and autonomic disorders, of varying degree of severity. The anatomical correlates underlying neural functional damages are established during embryonic development and the early stages of postnatal life, when brain circuits, sensory and motor connections are still maturing. The impact of the absence of Dp427 on the development, differentiation, and consolidation of specific cerebral circuits (hippocampus, cerebellum, prefrontal cortex, amygdala) is significant, and amplified by the frequent lack of one or more of its lower molecular mass isoforms. The most relevant aspect, which characterizes DMD-associated neurological disorders, is based on morpho-functional alterations of selective synaptic connections within the affected brain areas. This pathological feature correlates neurological conditions of DMD to other severe neurological disorders, such as schizophrenia, epilepsy and autistic spectrum disorders, among others. This review discusses the organization and the role of the dystrophin-dystroglycan complex in muscles and neurons, focusing on the neurological aspect of DMD and on the most relevant morphological and functional synaptic alterations, in both central and autonomic nervous systems, described in the pathology and its animal models.
Collapse
Affiliation(s)
- Maria Egle De Stefano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy.
| | - Valentina Ferretti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy; Center for Research in Neurobiology Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Chiara Mozzetta
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR) of Italy c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
14
|
Mori-Yoshimura M, Aizawa K, Shigemoto Y, Ishihara N, Minami N, Nishino I, Yoshida S, Sato N, Takahashi Y. Frontal lobe-dominant cerebral blood flow reduction and atrophy can be progressive in Duchenne muscular dystrophy. Neuromuscul Disord 2022; 32:477-485. [DOI: 10.1016/j.nmd.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 10/19/2022]
|
15
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
16
|
Preethish-Kumar V, Shah A, Polavarapu K, Kumar M, Safai A, Vengalil S, Nashi S, Deepha S, Govindaraj P, Afsar M, Rajeswaran J, Nalini A, Saini J, Ingalhalikar M. Disrupted structural connectome and neurocognitive functions in Duchenne muscular dystrophy: classifying and subtyping based on Dp140 dystrophin isoform. J Neurol 2021; 269:2113-2125. [PMID: 34505932 DOI: 10.1007/s00415-021-10789-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Neurocognitive disabilities in Duchenne muscular dystrophy (DMD) children beginning in early childhood and distal DMD gene deletions involving disruption of Dp140 isoform are more likely to manifest significant neurocognitive impairments. MRI data analysis techniques like brain-network metrics can provide information on microstructural integrity and underlying pathophysiology. METHODS A prospective study on 95 participants [DMD = 57, and healthy controls (HC) = 38]. The muscular dystrophy functional rating scale (MDFRS) scores, neuropsychology batteries, and multiplex ligand-dependent probe amplification (MLPA) testing were used for clinical assessment, IQ estimation, and genotypic classification. Diffusion MRI and network-based statistics were used to analyze structural connectomes at various levels and correlate with clinical markers. RESULTS Motor and executive sub-networks were extracted and analyzed. Out of 57 DMD children, 23 belong to Dp140 + and 34 to Dp140- subgroup. Motor disabilities are pronounced in Dp140- subgroup as reflected by lower MDFRS scores. IQ parameters are significantly low in all-DMD cases; however, the Dp140- has specifically lowest scores. Significant differences were observed in global efficiency, transitivity, and characteristic path length between HC and DMD. Subgroup analysis demonstrates that the significance is mainly driven by participants with Dp140- than Dp140 + isoform. Finally, a random forest classifier model illustrated an accuracy of 79% between HC and DMD and 90% between DMD- subgroups. CONCLUSIONS Current findings demonstrate structural network-based characterization of abnormalities in DMD, especially prominent in Dp140-. Our observations suggest that participants with Dp140 + have relatively intact connectivity while Dp140- show widespread connectivity alterations at global, nodal, and edge levels. This study provides valuable insights supporting the genotype-phenotype correlation of brain-behavior involvement in DMD children.
Collapse
Affiliation(s)
| | - Apurva Shah
- Symbiosis Centre for Medical Image Analysis, Symbiosis International University, Mulshi, Pune, Maharashtra, India
| | - Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Apoorva Safai
- Symbiosis Centre for Medical Image Analysis, Symbiosis International University, Mulshi, Pune, Maharashtra, India
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sekar Deepha
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Periyasamy Govindaraj
- Neuromuscular Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Mohammad Afsar
- Department of Neuropsychology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jamuna Rajeswaran
- Department of Neuropsychology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Madhura Ingalhalikar
- Symbiosis Centre for Medical Image Analysis, Symbiosis International University, Mulshi, Pune, Maharashtra, India.
| |
Collapse
|
17
|
Tyagi R, Arvind H, Goyal M, Anand A, Mohanty M. Working Memory Alterations Plays an Essential Role in Developing Global Neuropsychological Impairment in Duchenne Muscular Dystrophy. Front Psychol 2021; 11:613242. [PMID: 33519636 PMCID: PMC7843380 DOI: 10.3389/fpsyg.2020.613242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Background Neuropsychological profile of Indian Duchenne muscular dystrophy (DMD) subjects remains unidentified and needs to be evaluated. Methods A total of 69 DMD and 66 controls were subjected to detailed intelligence and neuropsychological assessment. The factor indexes were derived from various components of Malin's Intelligence Scale for Indian Children (MISIC) and Rey Auditory Verbal Learning Test (RAVLT). Results Poor verbal and visual memory profiles were demonstrated by DMDs, which include RAVLT-immediate recall (IR) (p = 0.042), RAVLT-delayed recall (DR) (p = 0.009), Rey-Osterrieth complex figure test (RCFT)-IR (p = 0.001), and RCFT-DR (p = 0.001). RAVLT-memory efficiency index demonstrated poor verbal memory efficiency (p = 0.008). Significant differences in the functioning of working memory axis [RAVLT T1 (p = 0.015), recency T1 (p = 0.004), Digit Span Backward (p = 0.103)] were observed along with reduced performance in visuomotor coordination, visuospatial, and visual recognition abilities. Block designing efficiency index and attention fraction showed a normal performance in DMD kids. Conclusion Working memory deficits were found to be the crucial element of cognitive functioning in DMD cases. Working memory interventions may be beneficial to improve the neuropsychological profile in DMD.
Collapse
Affiliation(s)
- Rahul Tyagi
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harshita Arvind
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manoj Goyal
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manju Mohanty
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|