1
|
Saravanan S, Aghoram R, Narayan SK, Saibaba J, Madhan R. Central nervous system vasculopathy: inherited or acquired? The DADA2 conundrum. Pract Neurol 2025; 25:250-252. [PMID: 39778928 DOI: 10.1136/pn-2024-004441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Young people with stroke require detailed investigation because uncommon causes are more likely. A 19-year-old woman presented with multiple cortical and subcortical infarcts, arterial aneurysms, anaemia and hypertension. Further evaluation identified a systemic vasculopathy secondary to a deficiency of adenosine deaminase 2, a rare treatable monogenic disorder.
Collapse
Affiliation(s)
- Sowmya Saravanan
- Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, Tamil Nadu, India
| | - Rajeswari Aghoram
- Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, Tamil Nadu, India
| | - Sunil K Narayan
- Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, Tamil Nadu, India
| | - Jayaram Saibaba
- Neurology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, Tamil Nadu, India
| | - R Madhan
- Radiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, Tamil Nadu, India
| |
Collapse
|
2
|
Bello F, Fagni F, Bagni G, Hill CL, Mohammad AJ, Moiseev S, Olivotto I, Seyahi E, Emmi G. Arterial and venous thrombosis in systemic and monogenic vasculitis. Nat Rev Rheumatol 2025:10.1038/s41584-025-01252-7. [PMID: 40329108 DOI: 10.1038/s41584-025-01252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/08/2025]
Abstract
Systemic vasculitis, common forms of which include anti-neutrophil cytoplasmic antibody-associated small-vessel vasculitis, large-vessel vasculitis and Behçet syndrome, are frequently complicated by arterial or venous thrombotic events (AVTEs). Newly identified entities such as DADA2 (deficiency of adenosine deaminase 2) and VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome, which are driven by genetic mutations, also exhibit vasculitic features and are associated with a high risk of AVTEs. AVTEs in systemic vasculitis, including monogenic forms of vasculitis, are due to the complex interaction of inflammation and coagulation. New insights into the pathogenetic mechanisms implicate endothelial dysfunction, immune complex deposition and the interplay of pro-inflammatory cytokines with prothrombotic factors, which collectively promote thrombus formation. AVTEs impose a substantial disease burden, complicate diagnosis and negatively affect prognosis by increasing the risk of morbidity and mortality. Early diagnosis and treatment are crucial to prevent lasting damage. Management strategies should target both thrombosis and underlying inflammation. Antithrombotic therapies, including low-dose aspirin, or oral anticoagulants should be used on the basis of individual thrombotic risk assessment. Immunosuppressive therapy is the cornerstone of treatment for arterial and venous thrombosis, particularly in Behçet syndrome, in which vascular inflammation has a crucial role in thrombotic complications.
Collapse
Affiliation(s)
- Federica Bello
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Giacomo Bagni
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Catherine L Hill
- Rheumatology Unit, The Queen Elizabeth Hospital, Woodville, South Australia, Australia
- Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Aladdin J Mohammad
- Department of Clinical Sciences, Rheumatology, Lund University, Lund, Sweden
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Sergey Moiseev
- Tareev Clinic of Internal Disease, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Meyer Children's Hospital IRCCS, Florence, Italy
| | - Emire Seyahi
- Division of Rheumatology, Department of Internal Medicine and Behçet's Disease Research Centre, Istanbul University-Cerrahpasa, School of Medicine, Istanbul, Turkey
| | - Giacomo Emmi
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
- Clinical Medicine and Rheumatology Unit, Cattinara University Hospital, Trieste, Italy.
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Fileva N, Bertamino M, Tortora D, Severino M. Arterial Ischemic Stroke in Children. Neuroimaging Clin N Am 2024; 34:579-599. [PMID: 39461766 DOI: 10.1016/j.nic.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Arterial ischemic stroke (AIS) in children has a high mortality and life-long disability rate in surviving patients. Diagnostic delays are longer and risk factors are different compared with AIS in the adult population. Congenital heart disease, cervical arterial dissection, and intracranial arteriopathies are the main causes of AIS in children. New revascularization time windows in children require the definition of diagnostic protocols for stroke in each referral center. In this article, we discuss the neuroimaging techniques and protocols, describe the main underlying causes, and review the current treatment options for pediatric and perinatal AIS.
Collapse
Affiliation(s)
- Nevena Fileva
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, Genova 16147, Italy; Diagnostic Imaging Department, UMHAT Aleksandrovska, Bul G.Sofiiski 1, Sofia 1431, Bulgaria
| | - Marta Bertamino
- Physical Medicine and Rehabilitation Unit, IRCCS Instituto Giannina Gaslini, Via Gaslini 5, Genoa, Italy
| | - Domenico Tortora
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, Genova 16147, Italy
| | - Mariasavina Severino
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, Genova 16147, Italy.
| |
Collapse
|
4
|
Tartarin H, Morotti A, Van Etten ES, Hausman-Kedem M, Charidimou A, Jouvent E, Susen S, Cordonnier C, Pasi M, Boulouis G. Uncommon Causes of Nontraumatic Intracerebral Hemorrhage. Stroke 2024; 55:1416-1427. [PMID: 38572651 DOI: 10.1161/strokeaha.123.043917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Nontraumatic intracerebral hemorrhage is an important health issue. Although common causes such as hypertension and cerebral amyloid angiopathy predominantly affect the elderly, there exists a spectrum of uncommon etiologies that contribute to the overall incidence of intracerebral hemorrhage. The identification of these rare causes is essential for targeted clinical management, informed prognostication, and strategic secondary prevention where relevant. This topical review explores the uncommon intracerebral hemorrhage causes and provides practical clues for their clinical and imaging identification. By expanding the clinician's differential diagnosis, this review aims to bridge the gap between standard intracerebral hemorrhage classification systems and the nuanced reality of clinical practice.
Collapse
Affiliation(s)
- Hugo Tartarin
- Diagnostic and Interventional Neuroradiology, University Hospital, Tours, France (H.T., G.B.)
| | - Andrea Morotti
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Italy (A.M.)
| | - Ellis S Van Etten
- Department of Neurology, Leiden University Medical Center, the Netherlands (E.S.V.E.)
| | - Moran Hausman-Kedem
- Pediatric Neurology Institute, Dana-Dewk Children's Hospital, Tel Aviv Sourasky Medical Center, Faculty of Medicine, Tel Aviv Unisversity, Israel (M.H.-K.)
| | | | - Eric Jouvent
- Neurology Department, Lariboisière Hosp, APHP and Université Paris Cité, France (E.J.)
| | - Sophie Susen
- Hematology and Transfusion Department, Centre Hospitalier Universitaire de Lille, France (S.S.)
| | - Charlotte Cordonnier
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience and Cognition, France (C.C.)
| | - Marco Pasi
- Stroke unit, CHU Tours, Centre Val de Loire, France (M.P.)
| | - Grégoire Boulouis
- Diagnostic and Interventional Neuroradiology, University Hospital, Tours, France (H.T., G.B.)
- INSERM 1253 iBrain, Tours, Centre Val de Loire, France (G.B.)
- CIC-IT 14.15, Tours, Centre Val de Loire, France (G.B.)
| |
Collapse
|
5
|
Gupta N, Miller E, Bhatia A, Richer J, Aviv RI, Wilson N. Imaging Review of Pediatric Monogenic CNS Vasculopathy with Genetic Correlation. Radiographics 2024; 44:e230087. [PMID: 38573816 DOI: 10.1148/rg.230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Monogenic cerebral vasculopathy is a rare but progressively recognizable cause of pediatric cerebral vasculopathy manifesting as early as fetal life. These monogenic cerebral vasculopathies can be silent or manifest variably as fetal or neonatal distress, neurologic deficit, developmental delay, cerebral palsy, seizures, or stroke. The radiologic findings can be nonspecific, but the presence of disease-specific cerebral and extracerebral imaging features can point to a diagnosis and guide genetic testing, allowing targeted treatment. The authors review the existing literature describing the frequently encountered and rare monogenic cerebral vascular disorders affecting young patients and describe the relevant pathogenesis, with an attempt to categorize them based on the defective step in vascular homeostasis and/or signaling pathways and characteristic cerebrovascular imaging findings. The authors also highlight the role of imaging and a dedicated imaging protocol in identification of distinct cerebral and extracerebral findings crucial in the diagnostic algorithm and selection of genetic testing. Early and precise recognition of these entities allows timely intervention, preventing or delaying complications and thereby improving quality of life. It is also imperative to identify the specific pathogenic variant and pattern of inheritance for satisfactory genetic counseling and care of at-risk family members. Last, the authors present an image-based approach to these young-onset monogenic cerebral vasculopathies that is guided by the size and predominant radiologic characteristics of the affected vessel with reasonable overlap. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Neetika Gupta
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Elka Miller
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Aashim Bhatia
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Julie Richer
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Richard I Aviv
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| | - Nagwa Wilson
- From the Department of Diagnostic and Interventional Radiology, Divisions of ER (N.G.) and Neuroradiology (E.M.), The Hospital for Sick Children, University of Toronto, 170 Elizabeth St, Toronto, ON, Canada M5G 1E8; Departments of Medical Imaging (N.G., N.W.) and Genetics (J.R.), Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada; Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pa (A.B.); and Department of Radiology, Radiation Oncology, and Medical Physics, Division of Neuroradiology, Civic and General Campus, University of Ottawa, The Ottawa Hospital, Ottawa, Canada (R.I.A.)
| |
Collapse
|
6
|
Enokizono M, Kurokawa R, Yagishita A, Nakata Y, Koyasu S, Nihira H, Kuwashima S, Aida N, Kono T, Mori H. Clinical and neuroimaging review of monogenic cerebral small vessel disease from the prenatal to adolescent developmental stage. Jpn J Radiol 2024; 42:109-125. [PMID: 37847489 PMCID: PMC10810974 DOI: 10.1007/s11604-023-01493-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 10/18/2023]
Abstract
Cerebral small vessel disease (cSVD) refers to a group of pathological processes with various etiologies affecting the small vessels of the brain. Most cases are sporadic, with age-related and hypertension-related sSVD and cerebral amyloid angiopathy being the most prevalent forms. Monogenic cSVD accounts for up to 5% of causes of stroke. Several causative genes have been identified. Sporadic cSVD has been widely studied whereas monogenic cSVD is still poorly characterized and understood. The majority of cases of both the sporadic and monogenic types, including cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), typically have their onset in adulthood. Types of cSVD with infantile and childhood onset are rare, and their diagnosis is often challenging. The present review discusses the clinical and neuroimaging findings of monogenic cSVD from the prenatal to adolescent period of development. Early diagnosis is crucial to enabling timely interventions and family counseling.
Collapse
Affiliation(s)
- Mikako Enokizono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan.
| | - Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Akira Yagishita
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo, Japan
| | - Sho Koyasu
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shigeko Kuwashima
- Department of Radiology, Dokkyo Medical University, Shimotsuga-gun, Tochigi, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Kanagawa, Japan
| | - Tatsuo Kono
- Department of Radiology, Tokyo Metropolitan Children's Medical Center, 2-8-29 Musashidai, Fuchu, Tokyo, 183-8561, Japan
| | - Harushi Mori
- Department of Radiology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
7
|
Verschoof MA, van Meenen LCC, Andriessen MVE, Brinkman DMC, Kamphuis S, Kuijpers TW, Leavis HL, Legger GE, Mulders‐Manders CM, de Pagter APJ, Rutgers A, van Well GTJ, Coutinho JM, Hak AE, van Montfrans JM, Klouwer FCC. Neurological phenotype of adenosine deaminase 2 deficient patients: a cohort study. Eur J Neurol 2024; 31:e16043. [PMID: 37584090 PMCID: PMC11235617 DOI: 10.1111/ene.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/22/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND AND PURPOSE Patients with adenosine deaminase 2 (ADA2) deficiency can present with various neurological manifestations due to vasculopathies and autoinflammation. These include ischaemic and hemorrhagic stroke, but less clearly defined neurological symptoms have also been reported. METHODS In this cohort study, patients with confirmed ADA2 deficiency from seven university hospitals in the Netherlands were included. The frequency and recurrence rates of neurological manifestations before and after initiation of tumor necrosis factor α (TNF-α) inhibiting therapy were analyzed. RESULTS Twenty-nine patients were included with a median age at presentation of 5 years (interquartile range 1-17). Neurological manifestations occurred in 19/29 (66%) patients and were the presenting symptom in 9/29 (31%) patients. Transient ischaemic attack (TIA)/ischaemic stroke occurred in 12/29 (41%) patients and was the presenting symptom in 8/29 (28%) patients. In total, 25 TIAs/ischaemic strokes occurred in 12 patients, one after initiation of TNF-α inhibiting therapy and one whilst switching between TNF-α inhibitors. None was large-vessel occlusion stroke. Two hemorrhagic strokes occurred: one aneurysmatic subarachnoid hemorrhage and one spontaneous intracerebral hemorrhage. Most neurological symptoms, including cranial nerve deficits, vertigo, ataxia and seizures, were caused by TIAs/ischaemic strokes and seldom recurred after initiation of TNF-α inhibiting therapy. CONCLUSIONS Neurological manifestations, especially TIA/ischaemic stroke, are common in patients with ADA2 deficiency and frequently are the presenting symptom. Because it is a treatable cause of young stroke, for which antiplatelet and anticoagulant therapy are considered contraindicated, awareness amongst neurologists and pediatricians is important. Screening for ADA2 deficiency in young patients with small-vessel ischaemic stroke without an identified cause should be considered.
Collapse
Affiliation(s)
| | | | - M. Valérie E. Andriessen
- Department of Pediatric Immunology and Infectious DiseasesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Daniëlle M. C. Brinkman
- Department of PediatricsWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Sylvia Kamphuis
- Department of Pediatric RheumatologySophia Children's Hospital, Erasmus University Medical Center RotterdamRotterdamThe Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Immunology and Infectious DiseasesAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Helen L. Leavis
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center and Utrecht UniversityUtrechtThe Netherlands
| | - G. Elizabeth Legger
- Department of Pediatric Rheumatology and ImmunologyUniversity Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Catharina M. Mulders‐Manders
- Department of Internal Medicine, Radboud Expertise Center for Immunodeficiency and AutoinflammationRadboud University Medical CenterNijmegenThe Netherlands
| | - Anne P. J. de Pagter
- Department of PediatricsWillem‐Alexander Children's Hospital, Leiden University Medical CenterLeidenThe Netherlands
| | - Abraham Rutgers
- Department of Rheumatology and Clinical ImmunologyUniversity Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Gijs T. J. van Well
- Division of Pediatric Infectious Diseases, Immunology & Rheumatology, Department of PediatricsMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jonathan M. Coutinho
- Department of NeurologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - A. Elisabeth Hak
- Departments of Internal Medicine and Rheumatology and Clinical ImmunologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Joris M. van Montfrans
- Department of Pediatric Immunology and Infectious DiseasesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Femke C. C. Klouwer
- Department of NeurologyAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of Pediatric NeurologyEmma Children's Hospital, Amsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
8
|
Grim A, Veiga KR, Saad N. Deficiency of Adenosine Deaminase 2: Clinical Manifestations, Diagnosis, and Treatment. Rheum Dis Clin North Am 2023; 49:773-787. [PMID: 37821195 DOI: 10.1016/j.rdc.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Deficiency of adenosine deaminase 2 (DADA2) is a monogenic vasculitis syndrome caused by biallelic mutations in the adenosine deaminase 2 gene. The diagnosis of DADA2 is confirmed by decreased enzymatic activity of ADA2 and genetic testing. Symptoms range from cutaneous vasculitis and polyarteritis nodosa-like lesions to stroke. The vasculopathy of DADA2 can affect many organ systems, including the gastrointestinal and renal systems. Hematologic manifestations occur early with hypogammaglobulinemia, lymphopenia, pure red cell aplasia, or pancytopenia. Treatment can be challenging. Tumor necrosis factor inhibitors are helpful to control inflammatory symptoms. Hematopoietic stem cell transplant may be needed to treat refractory cytopenias, vasculopathy, or immunodeficiency.
Collapse
Affiliation(s)
- Andrew Grim
- Division of Pediatric Rheumatology, Department of Pediatrics, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Keila R Veiga
- Division of Pediatric Rheumatology, Department of Pediatrics, New York Medical College/Maria Fareri Children's Hospital, 100 Woods Road, Valhalla, NY 10595, USA
| | - Nadine Saad
- Division of Pediatric Rheumatology, Department of Pediatrics, Michigan Medicine, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Agajany N, Horev L, Agajany N, Kenan G. Cerebral Aneurysms and Recurrent TIAs in a 42-Year-Old Patient With DADA2 Mutation: A Case Report. Neurol Genet 2023; 9:e200097. [PMID: 37646004 PMCID: PMC10461712 DOI: 10.1212/nxg.0000000000200097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023]
Abstract
Objectives Deficiency of adenosine deaminase 2 (DADA2) is a rare, recessively inherited autoinflammatory disease with a wide clinical spectrum of manifestations, including strokes and vasculitis. Methods We report a case of a patient with DADA2 who presented with neurologic manifestations. Results A 42-year-old woman with a known diagnosis of polyarteritis nodosa experienced several episodes of TIAs. Neuroimaging revealed 2 aneurysms in unusual locations. Her young age, ethnic origin, absent of cardiovascular risk factors, and skin involvement raised the suspicion of DADA2. Genetic testing confirmed the diagnosis, and a directed treatment with anti-TNF was initiated. Discussion DADA2, although thought to be rare, needs to be borne in mind when evaluating patients with a combination of neurologic and systemic symptoms, as early diagnosis and treatment are imperative in preventing permanent disability.
Collapse
Affiliation(s)
- Netta Agajany
- From the Departments of Neurology (Netta Agajany, G.K.) and Dermatology (L.H.) and Pediatrics (Netanel Agajany), Shamir Medical Center
| | - Liran Horev
- From the Departments of Neurology (Netta Agajany, G.K.) and Dermatology (L.H.) and Pediatrics (Netanel Agajany), Shamir Medical Center
| | - Netanel Agajany
- From the Departments of Neurology (Netta Agajany, G.K.) and Dermatology (L.H.) and Pediatrics (Netanel Agajany), Shamir Medical Center
| | - Gilad Kenan
- From the Departments of Neurology (Netta Agajany, G.K.) and Dermatology (L.H.) and Pediatrics (Netanel Agajany), Shamir Medical Center
| |
Collapse
|
10
|
Camici M, Garcia-Gil M, Allegrini S, Pesi R, Bernardini G, Micheli V, Tozzi MG. Inborn Errors of Purine Salvage and Catabolism. Metabolites 2023; 13:787. [PMID: 37512494 PMCID: PMC10383617 DOI: 10.3390/metabo13070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cellular purine nucleotides derive mainly from de novo synthesis or nucleic acid turnover and, only marginally, from dietary intake. They are subjected to catabolism, eventually forming uric acid in humans, while bases and nucleosides may be converted back to nucleotides through the salvage pathways. Inborn errors of the purine salvage pathway and catabolism have been described by several researchers and are usually referred to as rare diseases. Since purine compounds play a fundamental role, it is not surprising that their dysmetabolism is accompanied by devastating symptoms. Nevertheless, some of these manifestations are unexpected and, so far, have no explanation or therapy. Herein, we describe several known inborn errors of purine metabolism, highlighting their unexplained pathological aspects. Our intent is to offer new points of view on this topic and suggest diagnostic tools that may possibly indicate to clinicians that the inborn errors of purine metabolism may not be very rare diseases after all.
Collapse
Affiliation(s)
- Marcella Camici
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Mercedes Garcia-Gil
- Unità di Fisiologia Generale, Dipartimento di Biologia, Università di Pisa, Via San Zeno 31, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Simone Allegrini
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
- CISUP, Centro per l'Integrazione Della Strumentazione Dell'Università di Pisa, 56127 Pisa, Italy
- Centro di Ricerca Interdipartimentale Nutrafood "Nutraceuticals and Food for Health", Università di Pisa, 56126 Pisa, Italy
| | - Rossana Pesi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Vanna Micheli
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy
- LND Famiglie Italiane ODV-Via Giovanetti 15-20, 16149 Genova, Italy
| | - Maria Grazia Tozzi
- Unità di Biochimica, Dipartimento di Biologia, Università di Pisa, Via San Zeno 51, 56127 Pisa, Italy
| |
Collapse
|
11
|
Diprose WK, Jordan A, Anderson NE. Autoinflammatory syndromes in neurology: when our first line of defence misbehaves. Pract Neurol 2022; 22:145-153. [PMID: 34599092 DOI: 10.1136/practneurol-2021-003031] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 02/03/2023]
Abstract
Autoinflammatory syndromes result from a defective innate immune system. They are characterised by unexplained fever and systemic inflammation involving the skin, muscle, joints, serosa and eyes, along with elevated acute phase reactants. Autoinflammatory syndromes are increasingly recognised as a cause of neurological disease with a diverse range of manifestations. Corticosteroids, colchicine and targeted therapies are effective if started early, and hence the importance of recognising these syndromes. Here, we review the neurological features of specific autoinflammatory syndromes and our approach (as adult neurologists) to their diagnosis.
Collapse
Affiliation(s)
- William K Diprose
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Anthony Jordan
- Department of Clinical Immunology and Allergy, Auckland City Hospital, Auckland, New Zealand
| | - Neil E Anderson
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
12
|
Lee PY, Aksentijevich I, Zhou Q. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2). Semin Immunopathol 2022; 44:269-280. [PMID: 35178658 DOI: 10.1007/s00281-022-00918-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Abstract
Deficiency of adenosine deaminase 2 (DADA2) was first described as a monogenic form of systemic vasculitis that closely resembles polyarteritis nodosa (PAN). The phenotypic spectrum of DADA2 has vastly expanded in recent years and now includes pure red cell aplasia, bone marrow failure syndrome, lymphoproliferative disease, and humoral immunodeficiency. Vasculitis remains the most common presentation of DADA2, and treatment with tumor necrosis factor inhibitors (TNFi) has shown remarkable efficacy in preventing stroke and ameliorating features of systemic inflammation. The precise function of ADA2 has not been elucidated, and how absence of ADA2 ignites inflammation is an active area of research. In this review, we will discuss the current understanding of DADA2 from research and clinical perspectives. We will evaluate several proposed functions of ADA2, including polarization of monocyte phenotype, regulation of neutrophil extracellular trap formation, and modulation of innate immunity. We will also review the role of inflammatory cytokines including TNF and type I interferons. Lastly, we will provide future perspectives on understanding the phenotypic heterogeneity of DADA2 and discuss potential treatment options.
Collapse
Affiliation(s)
- Pui Y Lee
- Division of Immunology, Boston Childrens Hospital, Harvard Medical School, Boston, MA, USA.
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD, USA
| | - Qing Zhou
- The MOE Key Laboratory of Biosystems Homeostasis and Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Barron KS, Aksentijevich I, Deuitch NT, Stone DL, Hoffmann P, Videgar-Laird R, Soldatos A, Bergerson J, Toro C, Cudrici C, Nehrebecky M, Romeo T, Jones A, Boehm M, Kanakry JA, Dimitrova D, Calvo KR, Alao H, Kapuria D, Ben-Yakov G, Pichard DC, Hathaway L, Brofferio A, McRae E, Moura NS, Schnappauf O, Rosenzweig S, Heller T, Cowen EW, Kastner DL, Ombrello AK. The Spectrum of the Deficiency of Adenosine Deaminase 2: An Observational Analysis of a 60 Patient Cohort. Front Immunol 2022; 12:811473. [PMID: 35095905 PMCID: PMC8790931 DOI: 10.3389/fimmu.2021.811473] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/08/2021] [Indexed: 11/21/2022] Open
Abstract
The deficiency of adenosine deaminase 2 (DADA2) is an autosomal recessively inherited disease that has undergone extensive phenotypic expansion since being first described in patients with fevers, recurrent strokes, livedo racemosa, and polyarteritis nodosa in 2014. It is now recognized that patients may develop multisystem disease that spans multiple medical subspecialties. Here, we describe the findings from a large single center longitudinal cohort of 60 patients, the broad phenotypic presentation, as well as highlight the cohort’s experience with hematopoietic cell transplantation and COVID-19. Disease manifestations could be separated into three major phenotypes: inflammatory/vascular, immune dysregulatory, and hematologic, however, most patients presented with significant overlap between these three phenotype groups. The cardinal features of the inflammatory/vascular group included cutaneous manifestations and stroke. Evidence of immune dysregulation was commonly observed, including hypogammaglobulinemia, absent to low class-switched memory B cells, and inadequate response to vaccination. Despite these findings, infectious complications were exceedingly rare in this cohort. Hematologic findings including pure red cell aplasia (PRCA), immune-mediated neutropenia, and pancytopenia were observed in half of patients. We significantly extended our experience using anti-TNF agents, with no strokes observed in 2026 patient months on TNF inhibitors. Meanwhile, hematologic and immune features had a more varied response to anti-TNF therapy. Six patients received a total of 10 allogeneic hematopoietic cell transplant (HCT) procedures, with secondary graft failure necessitating repeat HCTs in three patients, as well as unplanned donor cell infusions to avoid graft rejection. All transplanted patients had been on anti-TNF agents prior to HCT and received varying degrees of reduced-intensity or non-myeloablative conditioning. All transplanted patients are still alive and have discontinued anti-TNF therapy. The long-term follow up afforded by this large single-center study underscores the clinical heterogeneity of DADA2 and the potential for phenotypes to evolve in any individual patient.
Collapse
Affiliation(s)
- Karyl S Barron
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Natalie T Deuitch
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Deborah L Stone
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Patrycja Hoffmann
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ryan Videgar-Laird
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ariane Soldatos
- National Institute of Neurological Diseases and Strokes, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jenna Bergerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Camilo Toro
- Undiagnosed Disease Program, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cornelia Cudrici
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Michele Nehrebecky
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tina Romeo
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Anne Jones
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Jennifer A Kanakry
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dimana Dimitrova
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Hawwa Alao
- National Institute of Digestive Diseases and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Devika Kapuria
- National Institute of Digestive Diseases and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Gil Ben-Yakov
- National Institute of Digestive Diseases and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Dominique C Pichard
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Londa Hathaway
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alessandra Brofferio
- National Heart, Lung, and Blood Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Elisa McRae
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Natalia Sampaio Moura
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sofia Rosenzweig
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Theo Heller
- National Institute of Digestive Diseases and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Edward W Cowen
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniel L Kastner
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Amanda K Ombrello
- National Human Genome Research Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
14
|
Wilson JL, Dowling M, Fullerton HJ. Stroke in Children. Stroke 2021; 52:3388-3390. [PMID: 34470487 DOI: 10.1161/strokeaha.121.033967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jenny L Wilson
- Pediatric Neurology, Oregon Health & Science University, Portland (J.L.W.)
| | - Michael Dowling
- Departments of Pediatrics and Neurology, University of Texas Southwestern Medical Center, Dallas (M.D.)
| | - Heather J Fullerton
- Departments of Neurology and Pediatrics, University of California, San Francisco (H.J.F.)
| |
Collapse
|