1
|
Wang Y, Li XY, Wu SL, Gongpan P, Yang Y, Huang M, Li DH, Geng CA. Antidiabetic diarylheptanoids from the leaves of Amomum tsao-ko and their inhibition mechanism against α-glucosidase. Fitoterapia 2025; 183:106566. [PMID: 40280249 DOI: 10.1016/j.fitote.2025.106566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Thirteen diarylheptanoids, including four undescribed ones (1-4), were isolated from the leaves of Amomum tsao-ko. Compounds 1 and 2 are two unusual diarylheptanoid-phenylpropanoid hybrids. Several of the isolates were tested for their biological activity in promoting GLP-1 secretion and inhibiting multiple type 2 diabetes-related enzymes. 2-Hydroxymusaitinerin A (1) demonstrated broad inhibitory activity against GPa, PTP1B and α-glucosidase with inhibition rates of 99.0 %, 59.4 % and 55.9 %, respectively at 200 μM. Platyphyllone (12) is a mixed-type inhibitor of α-glucosidase (IC50 = 25.8 μM), inhibiting the enzyme through both non-competitive and anti-competitive modes, as shown by enzyme kinetic study. Fluorescence quenching test confirmed that compound 12 directly interacted with α-glucosidase, forming a basal complex via a single binding site. Molecular docking predicted hydrogen-bonding interactions between OH-4'', OH-5 and 3‑carbonyl groups of 12 and α-glucosidase. This study highlights that the leaves of Amomum tsao-ko are a rich source of diarylheptanoids with multi-enzyme inhibitory effects.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xin-Yu Li
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Sheng-Li Wu
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Pianchou Gongpan
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yi Yang
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, People's Republic of China
| | - Mei Huang
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan 673100, People's Republic of China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
2
|
Wang Y, Wu SL, Li XY, Gongpan P, Fu H, Liao XM, Yang Y, Huang M, Huang XY, Ma YB, Li DH, Geng CA. Isospongian Diterpenoids from the Leaves of Amomum tsao-ko Promote GLP-1 Secretion via Ca 2+/CaMKII and PKA Pathways and Inhibit DPP-4 Enzyme. Chem Biodivers 2024; 21:e202401407. [PMID: 39072979 DOI: 10.1002/cbdv.202401407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Three uncommon isospongian diterpenoids including a new one, 3-epi-kravanhin A (2), were isolated from the leaves of Amomum tsao-ko. Compounds 2 and 3 dose-dependently promoted GLP-1 secretion on STC-1 cells with promotion ratios of 109.7 % and 186.1 % (60 μM). Mechanism study demonstrated that the GLP-1 stimulative effects of 2 and 3 were closely related with Ca2+/CaMKII and PKA pathways, but irrelevant to GPBAR1 and GPR119 receptors. Moreover, compound 1 showed DPP-4 inhibitory activity with an IC50 value of 311.0 μM. Molecular docking verified the binding affinity of 1 with DPP-4 by hydrogen bonds between the γ-lactone carbonyl (C-15) and Arg61 residue. Bioinformatics study indicated that compound 1 exerted antidiabetic effects by improving inflammation, oxidative stress and insulin resistance. This study first disclosed the presence of isospongian diterpenoids in A. tsao-ko, which showed antidiabetic potency by promoting GLP-1 secretion and inhibiting DPP-4 activity.
Collapse
Affiliation(s)
- Yun Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Sheng-Li Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin-Yu Li
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Pianchou Gongpan
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Hang Fu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Xiang-Ming Liao
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Yang
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, People's Republic of China
| | - Mei Huang
- Nujiang Green Spice Industry Research Institute, Lushui, Yunnan, 673100, People's Republic of China
| | - Xiao-Yan Huang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Yun-Bao Ma
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Da-Hong Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, and School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Chang-An Geng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| |
Collapse
|
3
|
Fan H, Chen M, Dai T, Deng L, Liu C, Zhou W, Chen J. Phenolic compounds profile of Amomum tsaoko Crevost et Lemaire and their antioxidant and hypoglycemic potential. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
4
|
A rapid identification based on FT-NIR spectroscopies and machine learning for drying temperatures of Amomum tsao-ko. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Xie L, Yu D, Li Y, Ju H, Chen J, Hu L, Yu L. Characterization, Hypoglycemic Activity, and Antioxidant Activity of Methanol Extracts From Amomum tsao-ko: in vitro and in vivo Studies. Front Nutr 2022; 9:869749. [PMID: 35903449 PMCID: PMC9315379 DOI: 10.3389/fnut.2022.869749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 12/23/2022] Open
Abstract
The dried fruit of Amomum tsao-ko is well-known as a spice as well as a Chinese traditional herb. This study aimed to identify the bioactive constituents in the powder of methanol extract from Amomum tsao-ko (PMEAT) and to evaluate the hypoglycemic and antioxidant effects of PMEAT, in vitro and in vivo. We identified 36 phytochemicals in PMEAT by employing HPLC-MS/MS. PMEAT solution was found to have potent α-glucosidase-inhibiting activity (IC50, 0.145 mg/mL) in vitro, twice as strong as that of acarbose (IC50, 0.273 mg/mL). To investigate the hypoglycemic activity of PMEAT in vivo, we studied the impact of low-dose PMEAT (the addition of 100 mg/kg PMEAT to the mice diet) and high-dose PMEAT (200 mg/kg PMEAT addition) treatments in STZ-induced diabetic mice. After 6 weeks of intervention, significantly decreased fasting blood glucose (FBG) (p < 0.05), significantly decreased area under the curve (AUC) of the oral glucose tolerance test (p < 0.05), significantly decreased HOMA-IR (p < 0.05), and significantly increased HOMA-β (p < 0.05) were observed in the high-dose PMEAT group. Moreover, we performed an antioxidant activity experiment in vitro. The results showed that PMEAT had a strong ability to scavenge DPPH (IC50, 0.044 mg/mL) as well as ABTS free radicals (IC50, 0.040 mg/mL). In an animal experiment conducted on oxidative damage mice model which was induced by D-glucose and a high-fat diet, we observed significantly increased dismutase (SOD) (p < 0.01), glutathione (GSH) (p < 0.01), and glutathione peroxidase (GSH-Px) (p < 0.01) and significantly reduced malondialdehyde (MDA) and 8-ISO-prostaglandin-PGF2α (8-ISO-PGF2α), after treatment with PMEAT for 90 days. In conclusion, this study reveals the therapeutic potential of Amomum tsao-ko for the treatment of diabetes and helps us discover new antioxidant candidates from natural sources.
Collapse
Affiliation(s)
- Libin Xie
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Dan Yu
- Department of Nutrition, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanan Li
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Huidong Ju
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Jia Chen
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Lianxia Hu
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
| | - Longquan Yu
- Shijiazhuang Food Engineering Technology Research Center, School of Chemical Engineering, Shijiazhuang University, Shijiazhuang, China
- *Correspondence: Longquan Yu
| |
Collapse
|
6
|
Zhang XF, Tang YJ, Guan XX, Lu X, Li J, Chen XL, Deng JL, Fan JM. Flavonoid constituents of Amomum tsao-ko Crevost et Lemarie and their antioxidant and antidiabetic effects in diabetic rats - in vitro and in vivo studies. Food Funct 2022; 13:437-450. [PMID: 34918725 DOI: 10.1039/d1fo02974f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amomum tsao-ko Crevost et Lemarie (A. tsao-ko) is a well-known dietary spice and traditional Chinese medicine. This study aimed to identify the flavonoids in A. tsao-ko and evaluate their antioxidant and antidiabetic activities in in vitro and in vivo studies. A. tsao-ko methanol extracts possessed a high flavonoid content (1.21 mg QE per g DW) and a total of 29 flavonoids were identified by employing UPLC-MS/MS. In vitro, A. tsao-ko demonstrated antioxidant activity (ORAC value of 34276.57 μM TE/100 g DW, IC50 of ABTS of 3.49 mg mL-1 and FRAP value of 207.42 μM Fe2+ per g DW) and α-amylase and α-glucosidase inhibitory ability with IC50 values of 14.23 and 1.76 mg mL-1, respectively. In vivo, type 2 diabetes mellitus (T2DM) models were induced by a combined high-fat diet (HFD) and streptozotocin (STZ) injection in rats. Treatment with the A. tsao-ko extract (100 mg freeze-dried powder per kg bw) for 6 weeks could significantly improve impaired glucose tolerance, decrease the levels of fasting blood glucose (FBG), insulin, and malondialdehyde (MDA), and increase the superoxide dismutase (SOD) level. Histopathology revealed that the A. tsao-ko extract preserved the architecture and function of the pancreas. In conclusion, the flavonoid composition of A. tsao-ko exhibits excellent antioxidant and antidiabetic activity in vitro and in vivo. A. tsao-ko could be a novel natural material and developed as a related functional food and medicine in T2DM management.
Collapse
Affiliation(s)
- Xiao-Feng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Yu-Jun Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xiao-Xian Guan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xin Lu
- Research Center for Agricultural and Sideline Products Processing, Henan Academy of Agricultural Sciences, 116 Park Road, Zhengzhou, Henan 450002, China
| | - Jiao Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Xiao-Li Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Jin-Lan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| | - Jian-Ming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
7
|
Yang S, Xue Y, Chen D, Wang Z. Amomum tsao-ko Crevost & Lemarié: a comprehensive review on traditional uses, botany, phytochemistry, and pharmacology. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1487-1521. [PMID: 35035319 PMCID: PMC8743105 DOI: 10.1007/s11101-021-09793-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 11/27/2021] [Indexed: 05/06/2023]
Abstract
UNLABELLED Tsaoko Fructus, the dried ripe fruit of Amomum tsao-ko Crevost & Lemarié, is used as both medicinal material and food additive. This review summarized the traditional uses, botany, phytochemistry, and pharmacological progress on Tsaoko Fructus. One classical prescription and the other 11 representative prescriptions containing Tsaoko Fructus were reviewed. The indications of these prescriptions are major in treating spleen and stomach disorders and epidemic febrile diseases including malaria. At least 209 compounds have been isolated and identified from Tsaoko Fructus, most of which belong to terpenoids, phenylpropanoids, and organic acids. Essential oil, crude extract, and some compounds were observed to have pharmacological activities such as anti-biotics, anti-inflammation, antioxidant, mostly via in vitro experiments. However, the mechanism of its medicinal uses remains unclear. This review provides a comprehensive understanding of Tsaoko Fructus, which will be beneficial to exploring the mechanism and potential medicinal applications of Tsaoko Fructus, as well as developing a rational quality control system for Tsaoko Fructus as a medicinal material in the future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-021-09793-x.
Collapse
Affiliation(s)
- Siyuan Yang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198 Jiangsu China
| | - Yafu Xue
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Daju Chen
- Institute of Biotechnology, Wenshan Academy of Agricultural Sciences, Wenshan, 663000 Yunnan China
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
8
|
Cai R, Yue X, Wang Y, Yang Y, Sun D, Li H, Chen L. Chemistry and bioactivity of plants from the genus Amomum. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114563. [PMID: 34438033 DOI: 10.1016/j.jep.2021.114563] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amomum belonging to the family Zingiberaceae, is mainly distributed in tropical regions of Asia and Oceania. Their fruits and seeds are valuable traditional medicine and used extensively, particularly in South China, India, Malaysia, and Vietnam. The genus Amomum has long been used for treating gastric diseases, digestive disorder, cancer, hepatopathy, malaria, etc. AIMS OF THE REVIEW: The main purpose of this review is to provide the available information on the traditional medicinal uses, phytochemistry, and pharmacology aspects of the genus Amomum in order to explore the trends and perspectives for further studies on its non-volatile constituents. MATERIALS AND METHODS The present review collected the literatures published prior to 2020 on the traditional medicinal uses, phytochemistry, and pharmacology of the genus Amomum. The available literatures were extracted from scientific databases, such as Sci-finder, PubMed, Web of Science, Google Scholar, Baidu Scholar, and CNKI, books, and others. RESULTS Herein, we summarize all 166 naturally occurring non-volatile compounds from 16 plants of the genus Amomum reported in 171 references, including flavonoids, terpenoids, diarylheptanoids, coumarins, etc. Triterpenes and flavonoids are the main constituents among these compounds and maybe play an important role in the activities directly or indirectly. As traditional medicine, the plants from the genus Amomum have been usually used in some traditional herbal prescriptions, and pharmacological researches in vitro and in vivo revealed that the extracts possessed significant antioxidant, anti-inflammatory, anti-allergic activities, etc. CONCLUSION: The review systematically summarizes current studies on traditional medicinal uses, phytochemistry, pharmacological activity on the plants from the genus Amomum. To date, the majority of publications still focused on the research of volatile constituents. However, the promising preliminary data of non-volatile constituents indicated the research potential of this genus in phytochemical and pharmacological aspects. Furthermore, the further in-depth investigations on the safety, efficacy, as well as the stereo-chemistry and structure-activity relationships of pure compounds from this genus are essential in the future.
Collapse
Affiliation(s)
- Ruobing Cai
- Wuya College of Innovation, School of Traditional Chinese Materia Medical, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xinyi Yue
- Wuya College of Innovation, School of Traditional Chinese Materia Medical, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yali Wang
- Wuya College of Innovation, School of Traditional Chinese Materia Medical, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yueying Yang
- Wuya College of Innovation, School of Traditional Chinese Materia Medical, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Dejuan Sun
- Wuya College of Innovation, School of Traditional Chinese Materia Medical, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Hua Li
- Wuya College of Innovation, School of Traditional Chinese Materia Medical, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
| | - Lixia Chen
- Wuya College of Innovation, School of Traditional Chinese Materia Medical, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
9
|
Shi S, Luo Y, Ma Y, Chu Y, Wang Y, Chen X, Chu Y. Identification of in vitro-in vivo components of Caoguo using accelerated solvent extraction combined with gas chromatography-mass spectrometry integrated with network pharmacology on indigestion. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1247. [PMID: 34532384 PMCID: PMC8421984 DOI: 10.21037/atm-21-3245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/07/2021] [Indexed: 11/29/2022]
Abstract
Background Caoguo (Tsaoko Fructus), a traditional Chinese medicine, is widely used as medicine and dietary spices. Volatile components are among its important bioactive constituents used to treatment of abdominal distension and pain, but the mechanism is not clear up to now. The purpose of this study was to develop a simple, sensitive, and accurate method to analyze and identify components of Caoguo in vitro and in vivo, and further investigate the therapeutic mechanism of Caoguo on indigestion using network pharmacology. Methods Caoguo were extracted by accelerated solvent extraction (ASE) and n-hexane:ethyl acetate (1:1, v/v) was selected as the extraction solvent. Gas chromatography-mass spectrometry (GC-MS) was adopted to analyze and identify the volatile components in vitro and in vivo. Network pharmacology including protein-protein network construction, Gene Ontology (GO) enrichment and pathway enrichment analysis and component-target-pathway network construction was applied. Results By comparing the retention times and mass spectrometry data, as well as retrieving the reference literature, a total of 169 components were tentatively identified in Caoguo extract and 43 components were identified in rats plasma samples for the first time. The results of network pharmacology analysis indicated that the potential mechanism was mainly associated with regulation of lipolysis in adipocytes and serotonergic synapse signaling pathway, which might be responsible for the effect of indigestion. Conclusions Caoguo was first extracted by ASE and the volatile chemical components in vivo were first identified by GC-MS. Coupled with network pharmacology analysis, a network of component-target-pathway was constructed to reveal the possible mechanism of Caoguo in treatment of indigestion. This study provided a new reference method for the extraction and analysis of Caoguo, laid a chemical basis for in-depth studies on pharmacodynamics and pharmacology, and revealed an updated understanding of the therapeutic effects of Caoguo on indigestion.
Collapse
Affiliation(s)
- Shan Shi
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China
| | - Yifan Luo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China
| | - Yue Ma
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China
| | - Yanjie Chu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yidan Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China
| | - Xiaohui Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yang Chu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Liu Z, Yang S, Wang Y, Zhang J. Multi-platform integration based on NIR and UV-Vis spectroscopies for the geographical traceability of the fruits of Amomum tsao-ko. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 258:119872. [PMID: 33957443 DOI: 10.1016/j.saa.2021.119872] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Due to the world-wide concern relating to herb quality and safety, there is a momentum to authenticate the geographical origin of herb with multi-platform techniques. This study attempted to assess multi-platform information as a practical strategy for the geographical traceability of the fruits of Amomum tsao-ko. To this aim, one hundred and eighty dried fruits of A. tsao-ko from five geographical regions were analyzed by near infrared (NIR) and ultraviolet visible (UV-Vis) spectroscopy. On this basis, two variable dimension reduction strategies, including principal component analysis (PCA) and sequential and orthogonalized partial-least squares (SO-PLS), and two variables selection strategies, including variable importance in projection (VIP) and sequential and orthogonalized covariance selection (SO-CovSel), were performed to extract the feature information in the two blocks. Partial least squares discriminant analysis (PLS-DA) classification algorithm combined with fused matrices was used to identify the geographical origins. The results of PLS-DA models indicated that SO-PLS and SO-CovSel, taking advantage of the sequential modeling coupled to orthogonalization, could not only identify the common information presented in the two blocks but also provide more concise methods without any loss of classification ability, which could be employed in authenticating the geographical regions of the fruits of A. tsao-ko, effectively.
Collapse
Affiliation(s)
- Zhimin Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; School of Agriculture, Yunnan University, Kunming 650500, China
| | - Shaobing Yang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China.
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650200, China; School of Agriculture, Yunnan University, Kunming 650500, China.
| |
Collapse
|
11
|
He XF, Chen JJ, Li TZ, Hu J, Zhang XK, Guo YQ, Zhang XM, Geng CA. Tsaokols A and B, unusual flavanol-monoterpenoid hybrids as α-glucosidase inhibitors from Amomum tsao-ko. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
He XF, Chen JJ, Li TZ, Zhang XK, Guo YQ, Zhang XM, Hu J, Geng CA. Nineteen New Flavanol-Fatty Alcohol Hybrids with α-Glucosidase and PTP1B Dual Inhibition: One Unusual Type of Antidiabetic Constituent from Amomum tsao-ko. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11434-11448. [PMID: 32965110 DOI: 10.1021/acs.jafc.0c04615] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dried fruits of Amomum tsao-ko were first revealed to have hypoglycemic effects on db/db mice at a concentration of 200 mg/kg. In order to clarify the antidiabetic constituents, 19 new flavanol-fatty alcohol hybrids, tsaokoflavanols A-S (1-19), were isolated and determined by extensive spectroscopic data and ECD calculations. Most of the compounds showed α-glucosidase and PTP1B dual inhibition, among which 1, 2, 6, 11, and 18 exhibited obvious activity against α-glucosidase with IC50 values of 5.2-9.0 μM, 20-35 times stronger than that of acarbose (IC50, 180.0 μM); meanwhile, 6, 10-12, and 19 were PTP1B/TCPTP-selective inhibitors with IC50 values of 56.4-80.4 μM, 2-4 times stronger than that of suramin sodium (IC50, 200.5 μM). Enzyme kinetics study indicated that compounds 1, 2, 6, and 11 were α-glucosidase and PTP1B mixed-type inhibitors with Ki values of 13.0, 11.7, 2.9, and 5.3 μM and 142.3, 88.9, 39.2, and 40.8 μM, respectively. Docking simulations proved the importance of hemiacetal hydroxy, the orientation of 3,4-dihydroxyphenyl, and the length of alkyl in binding with α-glucosidase and PTP1B.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tian-Ze Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xu-Ke Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuan-Qiang Guo
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300071, People's Republic of China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Yunnan Key Laboratory of Natural Medicinal Chemistry, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
13
|
He XF, Wang HM, Geng CA, Hu J, Zhang XM, Guo YQ, Chen JJ. Amomutsaokols A-K, diarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity. PHYTOCHEMISTRY 2020; 177:112418. [PMID: 32679346 DOI: 10.1016/j.phytochem.2020.112418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/14/2020] [Accepted: 05/18/2020] [Indexed: 05/14/2023]
Abstract
Eleven undescribed diarylheptanoids, amomutsaokols A‒K (1-11), together with 13 known ones (13-24), were isolated from the active fraction of the fruits of Amomum tsao-ko. The structures of the undescribed compounds were determined by extensive 1D and 2D NMR, HRESIMS and ECD calculations. Compounds 3-5, 7, 8, 12, 14 and 19 showed obviously α-glucosidase inhibitory activity with IC50 values ranging from 12.9 to 48.8 μM. An enzyme kinetic analysis indicated that compounds 8 and 9 were α-glucosidase noncompetitive inhibitors with Ki values of 18.5 and 213.0 μM, respectively. This study supported diarylheptanoids as the active constituents of A. tsao-ko with α-glucosidase inhibitory effects.
Collapse
Affiliation(s)
- Xiao-Feng He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hui-Mei Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071, PR China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Xue-Mei Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Yuan-Qiang Guo
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300071, PR China
| | - Ji-Jun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
14
|
He XF, Zhang XK, Geng CA, Hu J, Zhang XM, Guo YQ, Chen JJ. Tsaokopyranols A–M, 2,6-epoxydiarylheptanoids from Amomum tsao-ko and their α-glucosidase inhibitory activity. Bioorg Chem 2020; 96:103638. [DOI: 10.1016/j.bioorg.2020.103638] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 12/30/2022]
|
15
|
Cao L, Wang T, Lin J, Jiang Z, Chen Q, Gan H, Chen Z. Effect of Yikou-Sizi powder hot compress on gastrointestinal functional recovery in patients after abdominal surgery: Study protocol for a randomized controlled trial. Medicine (Baltimore) 2018; 97:e12438. [PMID: 30235726 PMCID: PMC6160149 DOI: 10.1097/md.0000000000012438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Postoperative gastrointestinal dysfunction (PGD) is a common complication of patients who have undergone surgery. The clinical manifestations cause great discomfort to postoperative patients and can severely affect postoperative recovery. However, although various pharmacologic agents have been explored for several years, success has been limited. Because some commonly used drugs have caused adverse reactions and because abdominal surgery patients generally cannot consume food or medication during the perioperative period, we were prompted to try an external Chinese medicine treatment method. Yikou-Sizi powder hot compress is an efficient therapy in our hospital, but there is a lack of rigorous studies to certify the safety and effectiveness of its external use to improve gastrointestinal motility. This study aimed to introduce the clinical trial design and test the ability of Yikou-Sizi powder hot compress treatment to accelerate gastrointestinal functional recovery after abdominal surgery. METHODS This study is a randomized controlled clinical trial. The participants will undergo laparoscopic colorectal cancer surgery and laparoscopic total hysterectomy. The primary outcome measure will be the gastrointestinal functional evaluation index, including the time to first passage of flatus, first defecation, first normal bowel sounds, and first consumption of liquid/semigeneral diet foods. According to good clinical practice (GCP), we will evaluate the clinical efficacy and safety of Yikou-Sizi powder hot compress and objectively study the acting mechanism of ghrelin. This pilot trial will be a standard, scientific, and clinical study designed to evaluate the effect of Yikou-Sizi powder hot compress for the recovery of gastrointestinal function after surgery and determine its overall safety. DISCUSSION This is the first study to describe the use of Yikou-Sizi powder hot compress to accelerate the recovery of gastrointestinal function after abdominal surgery. The study is designed as a randomized, controlled, clinical, large sample size and pilot trial. Evaluation will consist of combining the primary outcome measures with secondary outcome measures to ensure the objectivity and scientific validity of the study. Due to the observational design and the limited follow-up period, it is not possible to evaluate to what extent the connection between the observed improvement and the interventions represents a causal relationship. Efficient comparison between groups will be analyzed by chi-square test.
Collapse
Affiliation(s)
- Lixing Cao
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Tao Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinxuan Lin
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi Jiang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Qicheng Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Huachan Gan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| | - Zhiqiang Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine
| |
Collapse
|
16
|
Cui Q, Wang LT, Liu JZ, Wang HM, Guo N, Gu CB, Fu YJ. Rapid extraction of Amomum tsao-ko essential oil and determination of its chemical composition, antioxidant and antimicrobial activities. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:364-371. [PMID: 28800540 DOI: 10.1016/j.jchromb.2017.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 01/08/2023]
Abstract
A simple, green and efficient extraction method named modified-solvent free microwave extraction (M-SFME) was employed for the extraction of essential oils (EOs) from Amomun tsao-ko. The process of M-SFME was optimized with the prominent preponderance of such higher extraction yield (1.13%) than those of solvent free microwave extraction (SFME, 0.91%) and hydrodistillation (HD, 0.84%) under the optimal parameters. Thirty-four volatile substances representing 95.4% were identified. The IC50 values of EOs determined by DPPH radical scavenging activity and β-carotene/linoleic acid bleaching assay were 5.27 and 0.63mg/ml. Furthermore, the EOs exhibited moderate to potent broad-spectrum antimicrobial activity against all tested strains including five gram-positive and two gram-negative bacteria (MIC: 2.94-5.86mg/ml). In general, M-SFME is a potential and desirable alternative for the extraction of EOs from aromatic herbs, and the EOs obtained from A. tsao-ko can be explored as a potent natural antimicrobial and antioxidant preservative ingredient in food industry from the technological and economical points of view.
Collapse
Affiliation(s)
- Qi Cui
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China
| | - Li-Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China
| | - Ju-Zhao Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China
| | - Hui-Mei Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China
| | - Na Guo
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China
| | - Cheng-Bo Gu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China.
| |
Collapse
|
17
|
|
18
|
Dai M, Peng C, Peng F, Xie C, Wang P, Sun F. Anti-Trichomonas vaginalis properties of the oil of Amomum tsao-ko and its major component, geraniol. PHARMACEUTICAL BIOLOGY 2016; 54:445-50. [PMID: 25963227 DOI: 10.3109/13880209.2015.1044617] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CONTEXT Trichomonosis, caused by the flagellate protozoan Trichomonas vaginalis, is the most common non-viral sexually transmitted disease (STD) and 5-nitroimidazole drugs are used for the treatment. However, a growing number of T. vaginalis isolates are resistant to these drugs, which make it becomes an urgent issue. OBJECTIVE The current study was designed to evaluate the anti-T. vaginalis activity of the essential oil from A. tsao-ko used in traditional Chinese medicine and as a spice and its main component, geraniol. MATERIALS AND METHODS The anti-T. vaginalis activities of A. tsao-ko essential oil and geraniol were evaluated by the minimum lethal concentration (MLC) and 50% inhibitory concentration (IC50) in vitro. The morphological changes of T. vaginalis were observed by transmission electron microscopy (TEM). Additionally, sub-MLC concentration treatment with sub-MLC A. tsao-ko essential oil and geraniol was also performed. RESULTS This study shows that MLC/IC50 of A. tsao-ko essential oil was 44.97 µg/ml/22.49 µg/ml for T. vaginalis isolate Tv1, and 89.93 µg/ml/44.97 µg/ml for T. vaginalis isolate Tv2. Those of geraniol were 342.96 µg/ml/171.48 µg/ml, respectively. After A. tsao-ko essential oil or geraniol treatment, obvious similar morphological changes of T. vaginalis were observed by TEM: the nuclear membrane was damaged, nuclei were dissolved, and the chromatin was accumulated; in the cytoplasm, numerous vacuoles appeared, rough endoplasmic reticulum dilated, the number of ribosomes were reduced, organelles disintegrated, the cell membrane was partially damaged, with cytoplasmic leakage, and cell disintegration was observed. The action time did not increase the effect of A. tsao-ko essential oil or geraniol against T. vaginalis, as no significant difference was observed after sub-MLC concentration treatment for 1, 3, and 5 h with A. tsao-ko essential oil and geraniol. DISCUSSION AND CONCLUSION The study describes the first report on the activity and morphological changes of A. tsao-ko essential oil and geraniol against T. vaginalis. The results obtained herein presented new opportunities for antitrichomonal drugs.
Collapse
Affiliation(s)
- Min Dai
- a School of Medical Laboratory Science, Chengdu Medical College , Chengdu , Sichuan , PR China
| | - Cheng Peng
- b State Key Laboratory of Systematic Research and Exploitation of Traditional Chinese Medicine Resources, College of Pharmaceuticals, Chengdu University of Traditional Chinese Medicine , Chengdu , Sichuan , PR China
| | - Fu Peng
- c School of Chinese Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong , Hong Kong , PR China , and
| | - Chengbin Xie
- d Sichuan Provincial Maternal and Child Health Hospital , Chengdu , Sichuan , PR China
| | - Pinjia Wang
- a School of Medical Laboratory Science, Chengdu Medical College , Chengdu , Sichuan , PR China
| | - Fenghui Sun
- a School of Medical Laboratory Science, Chengdu Medical College , Chengdu , Sichuan , PR China
| |
Collapse
|
19
|
Kim MS, Ahn EK, Hong SS, Oh JS. 2,8-Decadiene-1,10-Diol Inhibits Lipopolysaccharide-Induced Inflammatory Responses Through Inactivation of Mitogen-Activated Protein Kinase and Nuclear Factor-κB Signaling Pathway. Inflammation 2015; 39:583-91. [DOI: 10.1007/s10753-015-0283-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Zhang TT, Lu CL, Jiang JG. Antioxidant and anti-tumour evaluation of compounds identified from fruit of Amomum tsaoko Crevost et Lemaire. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
21
|
Park JH, Cho YR, Ko HJ, Jeong W, Ahn EK, Oh J, Oh JS. Evaluation of 3-week Repeated Dose Oral Toxicity on Amomum tsao-ko Extract in Balb/c Mice. ACTA ACUST UNITED AC 2015. [DOI: 10.3839/jabc.2015.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Ju-Hyeong Park
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 330- 714, Republic of Korea
| | - Young-Rak Cho
- Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion, Suwon, 147 Gwanggyo-ro, Gyeonggi-Do 443- 270, Republic of Korea
| | - Hye-Jin Ko
- Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion, Suwon, 147 Gwanggyo-ro, Gyeonggi-Do 443- 270, Republic of Korea
| | - Wonsik Jeong
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 330- 714, Republic of Korea
- Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion, Suwon, 147 Gwanggyo-ro, Gyeonggi-Do 443- 270, Republic of Korea
| | - Eun-Kyung Ahn
- Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion, Suwon, 147 Gwanggyo-ro, Gyeonggi-Do 443- 270, Republic of Korea
| | - Junho Oh
- Department of Biology, Duke University, USA
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, 119 Dandae-ro, Cheonan 330- 714, Republic of Korea
- Natural Products Research Institute, Gyeonggi Institute of Science & Technology Promotion, Suwon, 147 Gwanggyo-ro, Gyeonggi-Do 443- 270, Republic of Korea
| |
Collapse
|