1
|
Pisani S, Isaac GT, Dorati R, Genta I, Bertino G, Benazzo M, Conti B. Assessing liposomal nanocarriers for targeted drug delivery through electroporation. Int J Pharm 2025:125708. [PMID: 40354904 DOI: 10.1016/j.ijpharm.2025.125708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Electroporation (EP) is a technique that temporarily increases cell membrane permeability through high-voltage electrical pulses, facilitating the internalization of hydrophilic drugs. When used in clinics, reversible EP offers significant advantages in drug delivery with minimal systemic toxicity, making it a promising approach in cancer therapy (Electrochemotherapy). However, is still challenging to increase therapeutic efficacy, such as increasing the amount of drug internalized by cells after EP. To address these limitations, integrating nanocarriers-particularly liposomes-into EP-based drug delivery strategies has shown great promise. Due to their structural similarity to cell membranes, liposomes can undergo electroporation without causing irreversible cell damage, enabling localized and controlled drug release at targeted sites. This study preliminary evaluates the effectiveness of positively charged gentamicin sulfate loaded liposomes (GS-Lipo) in enhancing gentamicin sulfate uptake through electroporation. The focus is on liposome behavior under EP, drug release, and cellular internalization. The results reveal a strong interplay between liposomes and EP. While EP minimally affects liposome size (sizes lower than 250 nm before and after EP) and PDI, it significantly enhances intracellular uptake and drug release by creating transient pores in liposomal bilayer, facilitating gentamicin diffusion. In vitro uptake studies performed with fluorescent liposomes and GS-Lipo, confirmed superior performance when combined treatment (EP + GS-Lipo) is used. By optimizing electroporation parameters (160 V, 200 V, and 250 V), this study succeeds in maximizing intracellular drug concentration, with the long-term goal of improving therapeutic outcomes, particularly in cancer treatment.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| | | | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giulia Bertino
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marco Benazzo
- Department of Otorhinolaryngology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
2
|
Kulbacka J, Novickij V. Is electroporation the key to drug delivery in drug-resistant cancers? Expert Opin Drug Deliv 2025; 22:441-445. [PMID: 39985482 DOI: 10.1080/17425247.2025.2471463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Affiliation(s)
- Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Vitalij Novickij
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
3
|
Morshedi Rad D, Hansen WP, Zhand S, Cranfield C, Ebrahimi Warkiani M. A hybridized mechano-electroporation technique for efficient immune cell engineering. J Adv Res 2024; 64:31-43. [PMID: 37956863 PMCID: PMC11464423 DOI: 10.1016/j.jare.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 10/16/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
New abstract created by yokesh. Its is unstructured paragraph.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - William P. Hansen
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sareh Zhand
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Charles Cranfield
- School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
4
|
Urbanskas E, Jakštys B, Venckus J, Malakauskaitė P, Šatkauskienė I, Morkvėnaitė-Vilkončienė I, Šatkauskas S. Interplay between Electric Field Strength and Number of Short-Duration Pulses for Efficient Gene Electrotransfer. Pharmaceuticals (Basel) 2024; 17:825. [PMID: 39065676 PMCID: PMC11279932 DOI: 10.3390/ph17070825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Electroporation is a method that shows great promise as a non-viral approach for delivering genes by using high-voltage electric pulses to introduce DNA into cells to induce transient gene expression. This research aimed to evaluate the interplay between electric pulse intensity and 100 µs-duration pulse numbers as an outcome of gene electrotransfer efficacy and cell viability. Our results indicated a close relationship between pulse number and electric field strength regarding gene electrotransfer efficacy; higher electric pulse intensity resulted in fewer pulses needed to achieve the same gene electrotransfer efficacy. Subsequently, an increase in pulse number had a more negative impact on overall gene electrotransfer by significantly reducing cell viability. Based on our data, the best pulse parameters to transfect CHO cells with the pMax-GFP plasmid were using 5 HV square wave pulses of 1000 V/cm and 2 HV of 1600 V/cm, correspondingly resulting in 55 and 71% of transfected cells and maintaining 79 and 54% proliferating cells. This shows ESOPE-like 100 µs-duration pulse protocols can be used simultaneously to deliver cytotoxic drugs as well as immune response regulating genetically encoded cytokines.
Collapse
Affiliation(s)
- Ernestas Urbanskas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Baltramiejus Jakštys
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania;
| | - Justinas Venckus
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Paulina Malakauskaitė
- Faculty of Electronics, Vilnius Gediminas Technical University, 10105 Vilnius, Lithuania;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Ingrida Šatkauskienė
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Nanotechnology, State Research Institute Centre for Physical Sciences and Technology, 02300 Vilnius, Lithuania;
| | - Saulius Šatkauskas
- Research Institute of Natural and Technological Sciences, Vytautas Magnus University, 44404 Kaunas, Lithuania; (E.U.); (B.J.); (J.V.); (I.Š.)
| |
Collapse
|
5
|
Wang Y, Chang CC, Yuan F. Copy number of naked DNA delivered into nucleus of mammalian cells by electrotransfection. Bioelectrochemistry 2023; 153:108491. [PMID: 37356265 PMCID: PMC10527462 DOI: 10.1016/j.bioelechem.2023.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Electrotransfection is a non-viral method for delivery of nucleic acids into cells. In our previous study, we have determined the minimal copy number of plasmid DNA (pDNA) per cell required for transgene expression post electrotransfection, and developed a statistical framework to predict the pDNA copy number in the nucleus. To experimentally verify the prediction, the current study was designed to quantify the average copy number of pDNA per nucleus post electrotransfection. To achieve it, we developed a novel approach to effectively obtain isolated nuclei with minimal contamination by extranuclear pDNA. This sample preparation method enabled us to accurately measure intranuclear pDNA using quantitative real-time PCR. The data showed that the copy number of pDNA per nucleus was dependent on the period of cell culture post pulsing and the pDNA dose for electrotransfection. Additionally, the data were used to improve the statistical framework for understanding kinetics of pDNA transport in cells, and predicting how the kinetics depended on different factors. It is expected that the framework and the methodology developed in the current study will be useful for evaluating factors that may affect kinetics and mechanisms of pDNA transport in cells.
Collapse
Affiliation(s)
- Yifei Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
6
|
Kranjc M, Kranjc Brezar S, Serša G, Miklavčič D. Contactless delivery of plasmid encoding EGFP in vivo by high-intensity pulsed electromagnetic field. Bioelectrochemistry 2021; 141:107847. [PMID: 34058542 DOI: 10.1016/j.bioelechem.2021.107847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022]
Abstract
High-Intensity Pulsed Electromagnetic Fields (HI-PEMF) treatment is an emerging noninvasive and contactless alternative to conventional electroporation, since the electric field inside the tissue is induced remotely by external pulsed magnetic field. Recently, HI-PEMF was applied for delivering siRNA molecules to silence enhanced green fluorescent protein (EGFP) in tumors in vivo. Still, delivered siRNA molecules were 21 base pairs long, which is 200-times smaller compared to nucleic acids such as plasmid DNA (pDNA) that are delivered in gene therapies to various targets to generate therapeutic effect. In our study, we demonstrate the use HI-PEMF treatment as a feasible noninvasive approach to achieve in vivo transfection by enabling the transport of larger molecules such as pDNA encoding EGFP into muscle and skin. We obtained a long-term expression of EGFP in the muscle and skin after HI-PEMF, in some mice even up to 230 days and up to 190 days, respectively. Histological analysis showed significantly less infiltration of inflammatory mononuclear cells in muscle tissue after the delivery of pEGFP using HI-PEMF compared to conventional gene electrotransfer. Furthermore, the antitumor effectiveness using HI-PEMF for electrotransfer of therapeutic plasmid, i.e., silencing MCAM was demonstrated. In conclusion, feasibility of HI-PEMF was demonstrated for transfection of different tissues (muscle, skin, tumor) and could have great potential in gene therapy and in DNA vaccination.
Collapse
Affiliation(s)
- Matej Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Gregor Serša
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, SI-1000 Ljubljana, Slovenia; University of Ljubljana, Faculty of Health Sciences, Zdravstvena pot 5, SI - 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Trzaska 25, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Egloff S, Runser A, Klymchenko A, Reisch A. Size-Dependent Electroporation of Dye-Loaded Polymer Nanoparticles for Efficient and Safe Intracellular Delivery. SMALL METHODS 2021; 5:e2000947. [PMID: 34927896 DOI: 10.1002/smtd.202000947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Indexed: 06/14/2023]
Abstract
Efficient and safe delivery of nanoparticles (NPs) into the cytosol of living cells constitutes a major methodological challenge in bio-nanotechnology. Electroporation allows direct transfer of NPs into the cytosol by forming transient pores in the cell membrane, but it is criticized for invasiveness, and the applicable particle sizes are not well defined. Here, in order to establish principles for efficient delivery of NPs into the cytosol with minimal cytotoxicity, the influence of the size of NPs on their electroporation and intracellular behavior is investigated. For this study, fluorescent dye-loaded polymer NPs with core sizes between 10 and 40 nm are prepared. Optimizing the electroporation protocol allows minimizing contributions of endocytosis and to study directly the effect of NP size on electroporation. NPs of <20 nm hydrodynamic size are efficiently delivered into the cytosol, whereas this is not the case for NPs of >30 nm. Moreover, only particles of core size <15 nm diffuse freely throughout the cytosol. While electroporation at excessive electric fields induces cytotoxicity, the use of small NPs <20 nm allows efficient delivery at mild electroporation conditions. These results give clear methodological and design guidelines for the safe delivery of NPs for intracellular applications.
Collapse
Affiliation(s)
- Sylvie Egloff
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg, F-67000, France
| | - Anne Runser
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg, F-67000, France
| | - Andrey Klymchenko
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg, F-67000, France
| | - Andreas Reisch
- Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, Strasbourg, F-67000, France
| |
Collapse
|
8
|
Wang L, Chang CC, Sylvers J, Yuan F. A statistical framework for determination of minimal plasmid copy number required for transgene expression in mammalian cells. Bioelectrochemistry 2020; 138:107731. [PMID: 33434786 DOI: 10.1016/j.bioelechem.2020.107731] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Plasmid DNA (pDNA) has been widely used for non-viral gene delivery. After pDNA molecules enter a mammalian cell, they may be trapped in subcellular structures or degraded by nucleases. Only a fraction of them can function as templates for transcription in the nucleus. Thus, an important question is, what is the minimal amount of pDNA molecules that need to be delivered into a cell for transgene expression? At present, it is technically a challenge to experimentally answer the question. To this end, we developed a statistical framework to establish the relationship between two experimentally quantifiable factors - average copy number of pDNA per cell among a group of cells after transfection and percent of the cells with transgene expression. The framework was applied to the analysis of electrotransfection under different experimental conditions in vitro. We experimentally varied the average copy number per cell and the electrotransfection efficiency through changes in extracellular pDNA dose, electric field strength, and pulse number. The experimental data could be explained or predicted quantitatively by the statistical framework. Based on the data and the framework, we could predict that the minimal number of pDNA molecules in the nucleus for transgene expression was on the order of 10. Although the prediction was dependent on the cell and experimental conditions used in the study, the framework may be generally applied to analysis of non-viral gene delivery.
Collapse
Affiliation(s)
- Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Justin Sylvers
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Kurita H, Nihonyanagi H, Watanabe Y, Sugano K, Shinozaki R, Kishikawa K, Numano R, Takashima K. Mechanistic studies of gene delivery into mammalian cells by electrical short-circuiting via an aqueous droplet in dielectric oil. PLoS One 2020; 15:e0243361. [PMID: 33275626 PMCID: PMC7717561 DOI: 10.1371/journal.pone.0243361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022] Open
Abstract
We have developed a novel methodology for the delivery of cell-impermeable molecules, based on electrical short-circuiting via a water droplet in dielectric oil. When a cell suspension droplet is placed between a pair of electrodes with an intense DC electric field, droplet bouncing and droplet deformation, which results in an instantaneous short-circuit, can be induced, depending on the electric field strength. We have demonstrated successful transfection of various mammalian cells using the short-circuiting; however, the molecular mechanism remains to be elucidated. In this study, flow cytometric assays were performed with Jurkat cells. An aqueous droplet containing Jurkat cells and plasmids carrying fluorescent proteins was treated with droplet bouncing or short-circuiting. The short-circuiting resulted in sufficient cell viability and fluorescent protein expression after 24 hours’ incubation. In contrast, droplet bouncing did not result in successful gene transfection. Transient membrane pore formation was investigated by uptake of a cell-impermeable fluorescence dye YO-PRO-1 and the influx of calcium ions. As a result, short-circuiting increased YO-PRO-1 fluorescence intensity and intracellular calcium ion concentration, but droplet bouncing did not. We also investigated the contribution of endocytosis to the transfection. The pre-treatment of cells with endocytosis inhibitors decreased the efficiency of gene transfection in a concentration-dependent manner. Besides, the use of pH-sensitive dye conjugates indicated the formation of an acidic environment in the endosomes after the short-circuiting. Endocytosis is a possible mechanism for the intracellular delivery of exogenous DNA.
Collapse
Affiliation(s)
- Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
- * E-mail:
| | - Hirohito Nihonyanagi
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Yuki Watanabe
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kenta Sugano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Ryuto Shinozaki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kenta Kishikawa
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Rika Numano
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| | - Kazunori Takashima
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
| |
Collapse
|
10
|
Golubewa L, Kulahava T, Kunitskaya Y, Bulai P, Shuba M, Karpicz R. Enhancement of single-walled carbon nanotube accumulation in glioma cells exposed to low-strength electric field: Promising approach in cancer nanotherapy. Biochem Biophys Res Commun 2020; 529:647-651. [PMID: 32736687 DOI: 10.1016/j.bbrc.2020.06.100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The objective of the study is to determine the patterns of regulation of single-walled carbon nanotube accumulation, distribution, and agglomeration in glioma cells exposed to an external electric field. C6 glioma cells were treated with 5 μg/ml DNA wrapped single-walled carbon nanotubes and exposed to bi-phasic electric pulses (6.6 V/m, 200 Hz, pulse duration 1 ms). Nanotube accumulation was determined by Raman microspectroscopy and their intracellular local concentration was evaluated using the G-band intensity in Raman spectra of single-walled carbon nanotubes. It was revealed that the low-frequency and low-strength electric field stimulation of glioma cells exposed to single-walled carbon nanotubes led to facilitation and, thus, to amplification of nanotube accumulation inside the cells. The number of nanotubes in intracellular agglomerates increased from (28.8 ± 13.1) un./agglom. and (84.0 ± 28.7) un./agglom. in control samples to (60.6 ± 21.4) un./agglom. and (184.2 ± 53.4) un./agglom. for 1 h and 2 h stimulation, respectively. Thus, the tumor exposure to an external electric field makes it possible to more effectively regulate the accumulation and distribution of carbon nanotubes inside glioma cells allowing to reduce the applied therapeutic doses of carbon nanomaterial delivered anticancer drugs.
Collapse
Affiliation(s)
- Lena Golubewa
- Department of Molecular Compounds Physics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania; Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, 220030, Minsk, Belarus.
| | - Tatsiana Kulahava
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, 220030, Minsk, Belarus; Department of Biophysics, Belarusian State University, Nezavisimosti ave. 4, 220030, Minsk, Belarus.
| | - Yuliya Kunitskaya
- Department of Biophysics, Belarusian State University, Nezavisimosti ave. 4, 220030, Minsk, Belarus.
| | - Pavel Bulai
- Department of Biophysics, Belarusian State University, Nezavisimosti ave. 4, 220030, Minsk, Belarus.
| | - Mikhail Shuba
- Institute for Nuclear Problems, Belarusian State University, Bobruiskaya str. 11, 220030, Minsk, Belarus; Tomsk State University, Lenin Avenue 36, 634050, Tomsk, Russia.
| | - Renata Karpicz
- Department of Molecular Compounds Physics, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
11
|
Enhancement of drug electrotransfer by extracellular plasmid DNA. Arch Biochem Biophys 2019; 666:156-160. [PMID: 30543787 DOI: 10.1016/j.abb.2018.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
Electroporation is a widely established method for molecular delivery across electric field perturbed plasma membrane. It can be used as a non-viral DNA transfection method, or as a way to achieve small molecule delivery to or extraction from cells. We examined the possibility of combining the DNA delivery to the cells with small molecule transport across electroporated plasma membrane. The results show that the presence of DNA in electroporation medium increases the extraction of fluorescent dye calcein from calcein-AM loaded cells as well as the delivery of small-molecule drug bleomycin to the cells. We propose that these results may have implications in enhanced drug delivery using electroporation both in vivo and in clinics.
Collapse
|
12
|
Spatio-temporal dynamics of calcium electrotransfer during cell membrane permeabilization. Drug Deliv Transl Res 2018; 8:1152-1161. [PMID: 29752690 DOI: 10.1007/s13346-018-0533-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pulsed electric fields (PEFs) are applied as physical stimuli for DNA/drug delivery, cancer therapy, gene transformation, and microorganism eradication. Meanwhile, calcium electrotransfer offers an interesting approach to treat cancer, as it induces cell death easier in malignant cells than in normal cells. Here, we study the spatial and temporal cellular responses to 10 μs duration PEFs; by observing real-time, the uptake of extracellular calcium through the cell membrane. The experimental setup consisted of an inverted fluorescence microscope equipped with a color high-speed framing camera and a specifically designed miniaturized pulsed power system. The setup allowed us to accurately observe the permeabilization of HeLa S3 cells during application of various levels of PEFs ranging from 0.27 to 1.80 kV/cm. The low electric field experiments confirmed the threshold value of transmembrane potential (TMP). The high electric field observations enabled us to retrieve the entire spatial variation of the permeabilization angle (θ). The temporal observations proved that after a minimal permeabilization of the cell membrane, the ionic diffusion was the prevailing mechanism of the delivery to the cell cytoplasm. The observations suggest 0.45 kV/cm and 100 pulses at 1 kHz as an optimal condition to achieve full calcium concentration in the cell cytoplasm. The results offer precise levels of electric fields to control release of the extracellular calcium to the cell cytoplasm for inducing minimally invasive cancer calcium electroporation, an interesting affordable method to treat cancer patients with minimum side effects.
Collapse
|
13
|
Cao Y, Chen H, Qiu R, Hanna M, Ma E, Hjort M, Zhang A, Lewis RS, Wu JC, Melosh NA. Universal intracellular biomolecule delivery with precise dosage control. SCIENCE ADVANCES 2018; 4:eaat8131. [PMID: 30402539 PMCID: PMC6209385 DOI: 10.1126/sciadv.aat8131] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/02/2018] [Indexed: 05/06/2023]
Abstract
Intracellular delivery of mRNA, DNA, and other large macromolecules into cells plays an essential role in an array of biological research and clinical therapies. However, current methods yield a wide variation in the amount of material delivered, as well as limitations on the cell types and cargoes possible. Here, we demonstrate quantitatively controlled delivery into a range of primary cells and cell lines with a tight dosage distribution using a nanostraw-electroporation system (NES). In NES, cells are cultured onto track-etched membranes with protruding nanostraws that connect to the fluidic environment beneath the membrane. The tight cell-nanostraw interface focuses applied electric fields to the cell membrane, enabling low-voltage and nondamaging local poration of the cell membrane. Concurrently, the field electrophoretically injects biomolecular cargoes through the nanostraws and into the cell at the same location. We show that the amount of material delivered is precisely controlled by the applied voltage, delivery duration, and reagent concentration. NES is highly effective even for primary cell types or different cell densities, is largely cargo agnostic, and can simultaneously deliver specific ratios of different molecules. Using a simple cell culture well format, the NES delivers into >100,000 cells within 20 s with >95% cell viability, enabling facile, dosage-controlled intracellular delivery for a wide variety of biological applications.
Collapse
Affiliation(s)
- Y. Cao
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - H. Chen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - R. Qiu
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - M. Hanna
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - E. Ma
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - M. Hjort
- Division of Synchrotron Radiation Research and Nanometer Structure Consortium, Lund University, Lund, Sweden
| | - A. Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - R. S. Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J. C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - N. A. Melosh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Wang L, Miller SE, Yuan F. Ultrastructural Analysis of Vesicular Transport in Electrotransfection. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:553-563. [PMID: 30334512 PMCID: PMC6196718 DOI: 10.1017/s143192761801509x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Emerging evidence from various studies indicates that plasmid DNA (pDNA) is internalized by cells through an endocytosis-like process when it is used for electrotransfection. To provide morphological evidence of the process, we investigated ultrastructures in cells that were associated with the electrotransfected pDNA, using immunoelectron microscopy. The results demonstrate that four endocytic pathways are involved in the uptake of the pDNA, including caveolae- and clathrin-mediated endocytosis, macropinocytosis, and the clathrin-independent carrier/glycosylphosphatidylinositol-anchored protein-enriched early endosomal compartment (CLIC/GEEC) pathway. Among them, macropinocytosis is the most common pathway utilized by cells having various pDNA uptake capacities, and the CLIC/GEEC pathway is observed primarily in human umbilical vein endothelial cells. Quantitatively, the endocytic pathways are more active in easy-to-transfect cells than in hard-to-transfect ones. Taken together, our data provide ultrastructural evidence showing that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA.
Collapse
Affiliation(s)
- Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Sara E. Miller
- Department of Pathology, Duke University Medical School, Durham, North Carolina 27710, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
15
|
Abstract
Electrotransfection (ET) is a nonviral method for delivery of various types of molecules into cells both in vitro and in vivo. Close to 90 clinical trials that involve the use of ET have been performed, and approximately half of them are related to cancer treatment. Particularly, ET is an attractive technique for cancer immunogene therapy because treatment of cells with electric pulses alone can induce immune responses to solid tumors, and the responses can be further enhanced by ET of plasmid DNA (pDNA) encoding therapeutic genes. Compared to other gene delivery methods, ET has several unique advantages. It is relatively inexpensive, flexible, and safe in clinical applications, and introduces only naked pDNA into cells without the use of additional chemicals or viruses. However, the efficiency of ET is still low, partly because biological mechanisms of ET in cells remain elusive. In previous studies, it was believed that pDNA entered the cells through transient pores created by electric pulses. As a result, the technique is commonly referred to as electroporation. However, recent discoveries have suggested that endocytosis plays an important role in cellular uptake and intracellular transport of electrotransfected pDNA. This review will discuss current progresses in the study of biological mechanisms underlying ET and future directions of research in this area. Understanding the mechanisms of pDNA transport in cells is critical for the development of new strategies for improving the efficiency of gene delivery in tumors.
Collapse
Affiliation(s)
- Lisa D Cervia
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Fan Yuan
- Department of Biomedical Engineering , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
16
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
17
|
Batista Napotnik T, Miklavčič D. In vitro electroporation detection methods – An overview. Bioelectrochemistry 2018; 120:166-182. [DOI: 10.1016/j.bioelechem.2017.12.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/22/2022]
|
18
|
Amornwachirabodee K, Tantimekin N, Pan-In P, Palaga T, Pienpinijtham P, Pipattanaboon C, Sukmanee T, Ritprajak P, Charoenpat P, Pitaksajjakul P, Ramasoota P, Wanichwecharungruang S. Oxidized Carbon Black: Preparation, Characterization and Application in Antibody Delivery across Cell Membrane. Sci Rep 2018; 8:2489. [PMID: 29410523 PMCID: PMC5802750 DOI: 10.1038/s41598-018-20650-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/19/2018] [Indexed: 11/09/2022] Open
Abstract
Modulating biomolecular networks in cells with peptides and proteins has become a promising therapeutic strategy and effective biological tools. A simple and effective reagent that can bring functional proteins into cells can increase efficacy and allow more investigations. Here we show that the relatively non-toxic and non-immunogenic oxidized carbon black particles (OCBs) prepared from commercially available carbon black can deliver a 300 kDa protein directly into cells, without an involvement of a cellular endocytosis. Experiments with cell-sized liposomes indicate that OCBs directly interact with phospholipids and induce membrane leakages. Delivery of human monoclonal antibodies (HuMAbs, 150 kDa) with specific affinity towards dengue viruses (DENV) into DENV-infected Vero cells by OCBs results in HuMAbs distribution all over cells' interior and effective viral neutralization. An ability of OCBs to deliver big functional/therapeutic proteins into cells should open doors for more protein drug investigations and new levels of antibody therapies and biological studies.
Collapse
Affiliation(s)
- Kittima Amornwachirabodee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nattapol Tantimekin
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Porntip Pan-In
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.,Nanotec-Chulalongkorn University Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Prompong Pienpinijtham
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chonlatip Pipattanaboon
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Thanyada Sukmanee
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patcharee Ritprajak
- Department of Microbiology, and RU in Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Promchat Charoenpat
- Department of Microbiology, and RU in Oral Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pannamthip Pitaksajjakul
- Center of Excellence for Antibody Research, and Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research, and Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. .,Center of Excellence in Materials and Bio-Interfaces, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
19
|
Mahboubi M, Movahed S, Hosseini Abardeh R, Hoshyargar V. Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel. J Membr Biol 2017; 250:285-299. [PMID: 28456838 DOI: 10.1007/s00232-017-9961-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
Abstract
A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the microchannel. Electrophoretic velocity has a significant effect on the cell uptake.
Collapse
Affiliation(s)
- Masoumeh Mahboubi
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 15875-4413, Iran
| | - Saeid Movahed
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 15875-4413, Iran.
| | - Reza Hosseini Abardeh
- Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, 15875-4413, Iran
| | - Vahid Hoshyargar
- Research Lab for Advanced Separation Processes, Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran, 16846-13114, Iran
| |
Collapse
|
20
|
Calibration of on-chip cell electroporation by a pseudo-volumetric uptake model. Micron 2017; 99:32-39. [PMID: 28414960 DOI: 10.1016/j.micron.2017.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/08/2017] [Accepted: 04/08/2017] [Indexed: 02/03/2023]
Abstract
Most conventional methods for assessing uptake of exogenous molecules and nanomaterials into cells use the projected two-dimensional (2D) area of uptake intensity into individual cells. However, since most cells have a three-dimensional (3D) spherical shape, volumetric uptake cannot be quantified accurately using 2D area analysis. Here, we present a method for calibrating the electroporative uptake intensity of small molecules by using a novel predictable spherical volume (PSV) model, which is more accurate and quantitative than previous methods. As a proof-of-concept, we visualized the electroporative uptake of propidium iodide (PI) into mammalian cells in a single rectangular polydimethylsiloxane (PDMS) microfluidic channel, often used for direct observation of on-chip cell electroporation. Our PSV method yielded more accurate results than conventional methods and faithfully reflected volumetric changes in uptake intensity, even those due to microflow. We believe that this approach can be potentially beneficial for screening the electroporative uptake efficiency of cell-membrane impermeable nanodrugs, such as functional nanoparticles incorporated with a small drug capable of slowly diffusing inside cells.
Collapse
|
21
|
Mao M, Wang L, Chang CC, Rothenberg KE, Huang J, Wang Y, Hoffman BD, Liton PB, Yuan F. Involvement of a Rac1-Dependent Macropinocytosis Pathway in Plasmid DNA Delivery by Electrotransfection. Mol Ther 2017; 25:803-815. [PMID: 28129959 PMCID: PMC5363188 DOI: 10.1016/j.ymthe.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 12/20/2022] Open
Abstract
Electrotransfection is a widely used method for delivering genes into cells with electric pulses. Although different hypotheses have been proposed, the mechanism of electrotransfection remains controversial. Previous studies have indicated that uptake and intracellular trafficking of plasmid DNA (pDNA) are mediated by endocytic pathways, but it is still unclear which pathways are directly involved in the delivery. To this end, the present study investigated the dependence of electrotransfection on macropinocytosis. Data from the study demonstrated that electric pulses induced cell membrane ruffling and actin cytoskeleton remodeling. Using fluorescently labeled pDNA and a macropinocytosis marker (i.e., dextran), the study showed that electrotransfected pDNA co-localized with dextran in intracellular vesicles. Furthermore, electrotransfection efficiency could be decreased significantly by reducing temperature or treatment of cells with a pharmacological inhibitor of Rac1 and could be altered by changing Rac1 activity. Taken together, the findings suggested that electrotransfection of pDNA involved Rac1-dependent macropinocytosis.
Collapse
Affiliation(s)
- Mao Mao
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | - Jianyong Huang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Paloma B Liton
- Department of Ophthalmology, Duke University, Durham, NC 27708, USA
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA; Department of Ophthalmology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
22
|
Novickij V, Lastauskienė E, Švedienė J, Grainys A, Staigvila G, Paškevičius A, Girkontaitė I, Zinkevičienė A, Markovskaja S, Novickij J. Membrane Permeabilization of Pathogenic Yeast in Alternating Sub-microsecond Electromagnetic Fields in Combination with Conventional Electroporation. J Membr Biol 2017; 251:189-195. [PMID: 28238117 DOI: 10.1007/s00232-017-9951-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Recently, a novel contactless treatment method based on high-power pulsed electromagnetic fields (PEMF) was proposed, which results in cell membrane permeabilization effects similar to electroporation. In this work, a new PEMF generator based on multi-stage Marx circuit topology, which is capable of delivering 3.3 T, 0.19 kV/cm sub-microsecond pulses was used to permeabilize pathogenic yeast Candida albicans separately and in combination with conventional square wave electroporation (8-17 kV/cm, 100 μs). Bursts of 10, 25, and 50 PEMF pulses were used. The yeast permeabilization rate was evaluated using flow cytometric analysis and propidium iodide (PI) assay. A statistically significant (P < 0.05) combinatorial effect of electroporation and PEMF treatment was detected. Also the PEMF treatment (3.3 T, 50 pulses) resulted in up to 21% loss of yeast viability, and a dose-dependent additive effect with pulsed electric field was observed. As expected, increase of the dB/dt and subsequently the induced electric field amplitude resulted in a detectable effect solely by PEMF, which was not achievable before for yeasts in vitro.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania.
| | - Eglė Lastauskienė
- Department of Microbiology and Biotechnology, Vilnius University, Sauletekio al. 7, 10257, Vilnius, Lithuania
| | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos st. 2, 08412, Vilnius, Lithuania
| | - Audrius Grainys
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| | - Gediminas Staigvila
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos st. 2, 08412, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių st. 5, 08406, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių st. 5, 08406, Vilnius, Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, Žaliųjų ežerų st. 49, 08406, Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| |
Collapse
|
23
|
Cervia LD, Chang CC, Wang L, Yuan F. Distinct effects of endosomal escape and inhibition of endosomal trafficking on gene delivery via electrotransfection. PLoS One 2017; 12:e0171699. [PMID: 28182739 PMCID: PMC5300164 DOI: 10.1371/journal.pone.0171699] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/24/2017] [Indexed: 11/21/2022] Open
Abstract
A recent theory suggests that endocytosis is involved in uptake and intracellular transport of electrotransfected plasmid DNA (pDNA). The goal of the current study was to understand if approaches used previously to improve endocytosis of gene delivery vectors could be applied to enhancing electrotransfection efficiency (eTE). Results from the study showed that photochemically induced endosomal escape, which could increase poly-L-lysine (PLL)-mediated gene delivery, decreased eTE. The decrease could not be blocked by treatment of cells with endonuclease inhibitors (aurintricarboxylic acid and zinc ion) or antioxidants (L-glutamine and ascorbic acid). Chemical treatment of cells with an endosomal trafficking inhibitor that blocks endosome progression, bafilomycin A1, resulted in a significant decrease in eTE. However, treatment of cells with lysosomotropic agents (chloroquine and ammonium chloride) had little effects on eTE. These data suggested that endosomes played important roles in protecting and intracellular trafficking of electrotransfected pDNA.
Collapse
Affiliation(s)
- Lisa D. Cervia
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Chun-Chi Chang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Liangli Wang
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
24
|
Lee PC, Peng CL, Shieh MJ. Combining the single-walled carbon nanotubes with low voltage electrical stimulation to improve accumulation of nanomedicines in tumor for effective cancer therapy. J Control Release 2016; 225:140-51. [PMID: 26812005 DOI: 10.1016/j.jconrel.2016.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 01/15/2016] [Accepted: 01/21/2016] [Indexed: 12/26/2022]
Abstract
Effective delivery of biomolecules or functional nanoparticles into target sites has always been the primary objective for cancer therapy. We demonstrated that by combining single-walled carbon nanotubes (SWNTs) with low-voltage (LV) electrical stimulation, biomolecule delivery can be effectively enhanced through reversible electroporation (EP). Clear pore formation in the cell membrane is observed due to LV (50V) pulse electrical stimulation amplified by SWNTs. The cell morphology remains intact and high cell viability is retained. This modality of SWNT + LV pulses can effectively transfer both small molecules and macromolecules into cells through reversible EP. The results of animal studies also suggest that treatment with LV pulses alone cannot increase vascular permeability in tumors unless after the injection of SWNTs. The nanoparticles can cross the permeable vasculature, which enhances their accumulation in the tumor tissue. Therefore, in cancer treatment, both SWNT + LV pulse treatment followed by the injection of LIPO-DOX® and SWNT/DOX + LV pulse treatment can increase tumor inhibition and delay tumor growth. This novel treatment modality applied in a human cancer xenograft model can provide a safe and effective therapy using various nanomedicines in cancer treatment.
Collapse
Affiliation(s)
- Pei-Chi Lee
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, Institute of Nuclear Energy Research, P.O. Box 3-27, Longtan, Taoyuan 325, Taiwan.
| | - Ming-Jium Shieh
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan; Department of Oncology, National Taiwan University Hospital and College of Medicine, #7, Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
25
|
García-Sánchez T, Azan A, Leray I, Rosell-Ferrer J, Bragós R, Mir LLM. Interpulse multifrequency electrical impedance measurements during electroporation of adherent differentiated myotubes. Bioelectrochemistry 2015; 105:123-35. [DOI: 10.1016/j.bioelechem.2015.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/25/2015] [Accepted: 05/31/2015] [Indexed: 01/26/2023]
|
26
|
Venslauskas MS, Šatkauskas S. Mechanisms of transfer of bioactive molecules through the cell membrane by electroporation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:277-89. [PMID: 25939984 DOI: 10.1007/s00249-015-1025-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 01/19/2023]
Abstract
A short review of biophysical mechanisms for electrotransfer of bioactive molecules through the cell membrane by using electroporation is presented. The concept of transient hydrophilic aqueous pores and membrane electroporation mechanisms of single cells and cells in suspension models are analyzed. Alongside the theoretical approach, some peculiarities of drug and gene electrotransfer into cells and applications in clinical trials are discussed.
Collapse
Affiliation(s)
- Mindaugas S Venslauskas
- Biophysical Research Group, Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Vileikos 8, 44404, Kaunas, Lithuania,
| | | |
Collapse
|
27
|
Demiryurek Y, Nickaeen M, Zheng M, Yu M, Zahn JD, Shreiber DI, Lin H, Shan JW. Transport, resealing, and re-poration dynamics of two-pulse electroporation-mediated molecular delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1706-14. [PMID: 25911207 DOI: 10.1016/j.bbamem.2015.04.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 03/16/2015] [Accepted: 04/14/2015] [Indexed: 01/08/2023]
Abstract
Electroporation is of interest for many drug-delivery and gene-therapy applications. Prior studies have shown that a two-pulse-electroporation protocol consisting of a short-duration, high-voltage first pulse followed by a longer, low-voltage second pulse can increase delivery efficiency and preserve viability. In this work the effects of the field strength of the first and second pulses and the inter-pulse delay time on the delivery of two different-sized Fluorescein-Dextran (FD) conjugates are investigated. A series of two-pulse-electroporation experiments were performed on 3T3-mouse fibroblast cells, with an alternating-current first pulse to permeabilize the cell, followed by a direct-current second pulse. The protocols were rationally designed to best separate the mechanisms of permeabilization and electrophoretic transport. The results showed that the delivery of FD varied strongly with the strength of the first pulse and the size of the target molecule. The delivered FD concentration also decreased linearly with the logarithm of the inter-pulse delay. The data indicate that membrane resealing after electropermeabilization occurs rapidly, but that a non-negligible fraction of the pores can be reopened by the second pulse for delay times on the order of hundreds of seconds. The role of the second pulse is hypothesized to be more than just electrophoresis, with a minimum threshold field strength required to reopen nano-sized pores or defects remaining from the first pulse. These results suggest that membrane electroporation, sealing, and re-poration is a complex process that has both short-term and long-term components, which may in part explain the wide variation in membrane-resealing times reported in the literature.
Collapse
Affiliation(s)
- Yasir Demiryurek
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Masoud Nickaeen
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Mingde Zheng
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Miao Yu
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854, USA
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA
| | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
28
|
Abstract
Electroporation has been used extensively to transfer DNA to bacteria, yeast, and mammalian cells in culture for the past 30 years. Over this time, numerous advances have been made, from using fields to facilitate cell fusion, delivery of chemotherapeutic drugs to cells and tissues, and most importantly, gene and drug delivery in living tissues from rodents to man. Electroporation uses electrical fields to transiently destabilize the membrane allowing the entry of normally impermeable macromolecules into the cytoplasm. Surprisingly, at the appropriate field strengths, the application of these fields to tissues results in little, if any, damage or trauma. Indeed, electroporation has even been used successfully in human trials for gene delivery for the treatment of tumors and for vaccine development. Electroporation can lead to between 100 and 1000-fold increases in gene delivery and expression and can also increase both the distribution of cells taking up and expressing the DNA as well as the absolute amount of gene product per cell (likely due to increased delivery of plasmids into each cell). Effective electroporation depends on electric field parameters, electrode design, the tissues and cells being targeted, and the plasmids that are being transferred themselves. Most importantly, there is no single combination of these variables that leads to greatest efficacy in every situation; optimization is required in every new setting. Electroporation-mediated in vivo gene delivery has proven highly effective in vaccine production, transgene expression, enzyme replacement, and control of a variety of cancers. Almost any tissue can be targeted with electroporation, including muscle, skin, heart, liver, lung, and vasculature. This chapter will provide an overview of the theory of electroporation for the delivery of DNA both in individual cells and in tissues and its application for in vivo gene delivery in a number of animal models.
Collapse
Affiliation(s)
- Jennifer L Young
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - David A Dean
- Departments of Pediatrics and Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
29
|
Sadik MM, Yu M, Zheng M, Zahn JD, Shan JW, Shreiber DI, Lin H. Scaling relationship and optimization of double-pulse electroporation. Biophys J 2014; 106:801-12. [PMID: 24559983 DOI: 10.1016/j.bpj.2013.12.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/20/2013] [Accepted: 12/31/2013] [Indexed: 02/03/2023] Open
Abstract
The efficacy of electroporation is known to vary significantly across a wide variety of biological research and clinical applications, but as of this writing, a generalized approach to simultaneously improve efficiency and maintain viability has not been available in the literature. To address that discrepancy, we here outline an approach that is based on the mapping of the scaling relationships among electroporation-mediated molecular delivery, cellular viability, and electric pulse parameters. The delivery of Fluorescein-Dextran into 3T3 mouse fibroblast cells was used as a model system. The pulse was rationally split into two sequential phases: a first precursor for permeabilization, followed by a second one for molecular delivery. Extensive data in the parameter space of the second pulse strength and duration were collected and analyzed with flow cytometry. The fluorescence intensity correlated linearly with the second pulse duration, confirming the dominant role of electrophoresis in delivery. The delivery efficiency exhibited a characteristic sigmoidal dependence on the field strength. An examination of short-term cell death using 7-Aminoactinomycin D demonstrated a convincing linear correlation with respect to the electrical energy. Based on these scaling relationships, an optimal field strength becomes identifiable. A model study was also performed, and the results were compared with the experimental data to elucidate underlying mechanisms. The comparison reveals the existence of a critical transmembrane potential above which delivery with the second pulse becomes effective. Together, these efforts establish a general route to enhance the functionality of electroporation.
Collapse
Affiliation(s)
- Mohamed M Sadik
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Miao Yu
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Mingde Zheng
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Jerry W Shan
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Hao Lin
- Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey.
| |
Collapse
|
30
|
Thresholds for phosphatidylserine externalization in Chinese hamster ovarian cells following exposure to nanosecond pulsed electrical fields (nsPEF). PLoS One 2013; 8:e63122. [PMID: 23658665 PMCID: PMC3639203 DOI: 10.1371/journal.pone.0063122] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/29/2013] [Indexed: 11/19/2022] Open
Abstract
High-amplitude, MV/m, nanosecond pulsed electric fields (nsPEF) have been hypothesized to cause nanoporation of the plasma membrane. Phosphatidylserine (PS) externalization has been observed on the outer leaflet of the membrane shortly after nsPEF exposure, suggesting local structural changes in the membrane. In this study, we utilized fluorescently-tagged Annexin V to observe the externalization of PS on the plasma membrane of isolated Chinese Hamster Ovary (CHO) cells following exposure to nsPEF. A series of experiments were performed to determine the dosimetric trends of PS expression caused by nsPEF as a function of pulse duration, τ, delivered field strength, ED, and pulse number, n. To accurately estimate dose thresholds for cellular response, data were reduced to a set of binary responses and ED50s were estimated using Probit analysis. Probit analysis results revealed that PS externalization followed the non-linear trend of (τ*ED2)−1 for high amplitudes, but failed to predict low amplitude responses. A second set of experiments was performed to determine the nsPEF parameters necessary to cause observable calcium uptake, using cells preloaded with calcium green (CaGr), and membrane permeability, using FM1-43 dye. Calcium influx and FM1-43 uptake were found to always be observed at lower nsPEF exposure parameters compared to PS externalization. These findings suggest that multiple, higher amplitude and longer pulse exposures may generate pores of larger diameter enabling lateral diffusion of PS; whereas, smaller pores induced by fewer, lower amplitude and short pulse width exposures may only allow extracellular calcium and FM1-43 uptake.
Collapse
|
31
|
Li J, Tan W, Yu M, Lin H. The effect of extracellular conductivity on electroporation-mediated molecular delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:461-70. [DOI: 10.1016/j.bbamem.2012.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 08/03/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
|
32
|
Movahed S, Li D. A Theoretical Study of Single-Cell Electroporation in a Microchannel. J Membr Biol 2012; 246:151-60. [DOI: 10.1007/s00232-012-9515-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
33
|
Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng 2012; 41:446-68. [PMID: 23099792 DOI: 10.1007/s10439-012-0678-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 12/12/2022]
Abstract
The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.
Collapse
|
34
|
Saulis G, Saulė R. Size of the pores created by an electric pulse: microsecond vs millisecond pulses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3032-9. [PMID: 22766475 DOI: 10.1016/j.bbamem.2012.06.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 11/30/2022]
Abstract
Here, the sizes of the pores created by square-wave electric pulses with the duration of 100 μs and 2 ms are compared for pulses with the amplitudes close to the threshold of electroporation. Experiments were carried out with three types of cells: mouse hepatoma MH-22A cells, Chinese hamster ovary (CHO) cells, and human erythrocytes. In the case of a short pulse (square-wave with the duration of 100 μs or exponential with the time constant of 22 μs), in the large portion (30-60%) of electroporated (permeable to potassium ions) cells, an electric pulse created only the pores, which were smaller than the molecule of bleomycin (molecular mass of 1450 Da, r≈0.8 nm) or sucrose (molecular mass of 342.3 Da, radius-0.44-0.52 nm). In the case of a long 2-ms duration pulse, in almost all cells, which were electroporated, there were the pores larger than the molecules of bleomycin and/or sucrose. Kinetics of pore resealing depended on the pulse duration and was faster after the shorter pulse. After a short 100-μs duration pulse, the disappearance of the pores permeable to bleomycin was completed after 6-7 min at 24-26°C, while after a long 2-ms duration pulse, this process was slower and lasted 15-20 min. Thus, it can be concluded that a short 100-μs duration pulse created smaller pores than the longer 2-ms duration pulse. This could be attributed to the time inadequacy for pores to grow and expand during the pulse, in the case of short pulses.
Collapse
Affiliation(s)
- Gintautas Saulis
- Laboratory of Biophysics for Bionanotechnology and Medicine, Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, 58 K. Donelaicio str., Kaunas, LT-44248, Lithuania.
| | | |
Collapse
|
35
|
Prophylactic immunization with Bubble liposomes and ultrasound-treated dendritic cells provided a four-fold decrease in the frequency of melanoma lung metastasis. J Control Release 2012; 160:362-6. [DOI: 10.1016/j.jconrel.2011.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 12/05/2011] [Accepted: 12/06/2011] [Indexed: 01/09/2023]
|
36
|
Flanagan M, Gimble JM, Yu G, Xia X, Bunnell BA, Li S. Competitive DNA transfection formulation via electroporation for human adipose stem cells and mesenchymal stem cells. Biol Proced Online 2012; 14:7. [PMID: 22512891 PMCID: PMC3388581 DOI: 10.1186/1480-9222-14-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/18/2012] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Adipose stem cells have a strong potential for use in cell-based therapy, but the current nucleofection technique, which relies on unknown buffers, prevents their use. RESULTS We developed an optimal nucleofection formulation for human adipose stem cells by using a three-step method that we had developed previously. This method was designed to determine the optimal formulation for nucleofection that was capable of meeting or surpassing the established commercial buffer (Amaxa), in particular for murine adipose stem cells. By using this same buffer, we determined that the same formulation yields optimal transfection efficiency in human mesenchymal stem cells. CONCLUSIONS Our findings suggest that transfection efficiency in human stem cells can be boosted with proper formulation.
Collapse
Affiliation(s)
- Michael Flanagan
- Department of Pediatrics Research, The University Texas MD Anderson Cancer Center, Graduate School of Biomedical Sciences, 1515 Holcombe, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Movahed S, Li D. Electrokinetic transport through the nanopores in cell membrane during electroporation. J Colloid Interface Sci 2012; 369:442-52. [DOI: 10.1016/j.jcis.2011.12.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/09/2011] [Accepted: 12/10/2011] [Indexed: 11/25/2022]
|
38
|
Numerical simulation of molecular uptake via electroporation. Bioelectrochemistry 2011; 82:10-21. [DOI: 10.1016/j.bioelechem.2011.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 04/14/2011] [Accepted: 04/19/2011] [Indexed: 11/19/2022]
|
39
|
Stolwijk JA, Hartmann C, Balani P, Albermann S, Keese CR, Giaever I, Wegener J. Impedance analysis of adherent cells after in situ electroporation: Non-invasive monitoring during intracellular manipulations. Biosens Bioelectron 2011; 26:4720-7. [DOI: 10.1016/j.bios.2011.05.033] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/14/2011] [Accepted: 05/23/2011] [Indexed: 12/21/2022]
|
40
|
Wu M, Yuan F. Membrane binding of plasmid DNA and endocytic pathways are involved in electrotransfection of mammalian cells. PLoS One 2011; 6:e20923. [PMID: 21695134 PMCID: PMC3113837 DOI: 10.1371/journal.pone.0020923] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 05/16/2011] [Indexed: 11/19/2022] Open
Abstract
Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (∼10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.
Collapse
Affiliation(s)
- Mina Wu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| | - Fan Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
41
|
Flanagan M, Gimble JM, Yu G, Wu X, Xia X, Hu J, Yao S, Li S. Competitive electroporation formulation for cell therapy. Cancer Gene Ther 2011; 18:579-86. [PMID: 21660061 DOI: 10.1038/cgt.2011.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Established cell transfection via nucleofection relies on nucleofection buffers with unknown and proprietary makeup due to trade secrecy, inhibiting the possibility of using this otherwise effective method for developing cell therapy. We devised a three-step method for discovering an optimal formulation for the nucleofection of any cell line. These steps include the selection of the best nucleofection program and known buffer type, selection of the best polymer for boosting the transfection efficiency of the best buffer and the comparison with the optimal buffer from an established commercial vendor (Amaxa). Using this three-step selection system, competitive nucleofection formulations were discovered for multiple cell lines, which are equal to or surpass the efficiency of the Amaxa nucleofector solution in a variety of cells and cell lines, including primary adipose stem cells, muscle cells, tumor cells and immune cells. Through the use of scanning electron microscopy, we have revealed morphological changes, which predispose for the ability of these buffers to assist in transferring plasmid DNA into the nuclear space. Our formulation may greatly reduce the cost of electroporation study in laboratory and boosts the potential of application of electroporation-based cell therapies in clinical trials.
Collapse
Affiliation(s)
- M Flanagan
- Department of Comparative Biomedical Sciences, Louisiana State University, Baton Rouge, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Flickinger B, Berghöfer T, Hohenberger P, Eing C, Frey W. Transmembrane potential measurements on plant cells using the voltage-sensitive dye ANNINE-6. PROTOPLASMA 2010; 247:3-12. [PMID: 20309592 DOI: 10.1007/s00709-010-0131-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Accepted: 02/26/2010] [Indexed: 05/08/2023]
Abstract
The charging of the plasma membrane is a necessary condition for the generation of an electric-field-induced permeability increase of the plasmalemma, which is usually explained by the creation and the growth of aqueous pores. For cells suspended in physiological buffers, the time domain of membrane charging is in the submicrosecond range. Systematic measurements using Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) protoplasts stained with the fast voltage-sensitive fluorescence dye ANNINE-6 have been performed using a pulsed laser fluorescence microscopy setup with a time resolution of 5 ns. A clear saturation of the membrane voltage could be measured, caused by a strong membrane permeability increase, commonly explained by enhanced pore formation, which prevents further membrane charging by external electric field exposure. The field strength dependence of the protoplast's transmembrane potential V (M) shows strong asymmetric saturation characteristics due to the high resting potential of the plants plasmalemma. At the pole of the hyperpolarized hemisphere of the cell, saturation starts at an external field strength of 0.3 kV/cm, resulting in a measured transmembrane voltage shift of ∆V(M) = -150 mV, while on the cathodic (depolarized) cell pole, the threshold for enhanced pore formation is reached at a field strength of approximately 1.0 kV/cm and ∆V(M) = 450 mV, respectively. From this asymmetry of the measured maximum membrane voltage shifts, the resting potential of BY-2 protoplasts at the given experimental conditions can be determined to V(R) = -150 mV. Consequently, a strong membrane permeability increase occurs when the membrane voltage diverges |V(M)| = 300 mV from the resting potential of the protoplast. The largest membrane voltage change at a given external electric field occurs at the cell poles. The azimuthal dependence of the transmembrane potential, measured in angular intervals of 10° along the circumference of the cell, shows a flattening and a slight decrease at higher fields at the pole region due to enhanced pore formation. Additionally, at the hyperpolarized cell pole, a polarization reversal could be observed at an external field range around 1.0 kV/cm. This behavior might be attributed to a fast charge transfer through the membrane at the hyperpolarized pole, e.g., by voltage-gated channels.
Collapse
Affiliation(s)
- Bianca Flickinger
- Karlsruhe Institute of Technology, Institute for Pulsed Power and Microwave Technology (IHM), Forschungszentrum Karlsruhe GmbH, Eggenstein-Leopoldshafen, Germany.
| | | | | | | | | |
Collapse
|
43
|
De Vry J, Martínez-Martínez P, Losen M, Temel Y, Steckler T, Steinbusch HWM, De Baets MH, Prickaerts J. In vivo electroporation of the central nervous system: a non-viral approach for targeted gene delivery. Prog Neurobiol 2010; 92:227-44. [PMID: 20937354 DOI: 10.1016/j.pneurobio.2010.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/24/2010] [Accepted: 10/01/2010] [Indexed: 01/11/2023]
Abstract
Electroporation is a widely used technique for enhancing the efficiency of DNA delivery into cells. Application of electric pulses after local injection of DNA temporarily opens cell membranes and facilitates DNA uptake. Delivery of plasmid DNA by electroporation to alter gene expression in tissue has also been explored in vivo. This approach may constitute an alternative to viral gene transfer, or to transgenic or knock-out animals. Among the most frequently electroporated target tissues are skin, muscle, eye, and tumors. Moreover, different regions in the central nervous system (CNS), including the developing neural tube and the spinal cord, as well as prenatal and postnatal brain have been successfully electroporated. Here, we present a comprehensive review of the literature describing electroporation of the CNS with a focus on the adult brain. In addition, the mechanism of electroporation, different ways of delivering the electric pulses, and the risk of damaging the target tissue are highlighted. Electroporation has been successfully used in humans to enhance gene transfer in vaccination or cancer therapy with several clinical trials currently ongoing. Improving the knowledge about in vivo electroporation will pave the way for electroporation-enhanced gene therapy to treat brain carcinomas, as well as CNS disorders such as Alzheimer's disease, Parkinson's disease, and depression.
Collapse
Affiliation(s)
- Jochen De Vry
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cemazar M, Golzio M, Sersa G, Hojman P, Kranjc S, Mesojednik S, Rols MP, Teissie J. Control by pulse parameters of DNA electrotransfer into solid tumors in mice. Gene Ther 2009; 16:635-44. [DOI: 10.1038/gt.2009.10] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|