1
|
Yoneyama S, Hoyano M, Ozaki K, Ikegami R, Kubota N, Okubo T, Yanagawa T, Kurokawa T, Akiyama T, Washiyama Y, Kashimura T, Inomata T. Pd/Pa fluctuation with continuous ATP administration indicates inaccurate FFR measurement caused by insufficient hyperemia. Heart Vessels 2025; 40:8-15. [PMID: 38981910 DOI: 10.1007/s00380-024-02438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Continuous intravenous adenosine triphosphate (ATP) administration is the standard method for inducing maximal hyperemia in fractional flow reserve (FFR) measurements. Several cases have demonstrated fluctuations in the ratio of mean distal coronary pressure to mean arterial pressure (Pd/Pa) value during ATP infusion, which raised our suspicions of FFR value inaccuracy. This study aimed to investigate our hypothesis that Pd/Pa fluctuations may indicate inaccurate FFR measurements caused by insufficient hyperemia. We examined 57 consecutive patients with angiographically intermediate coronary lesions who underwent fractional flow reverse (FFR) measurements in our hospital between November 2016 and September 2018. Pd/Pa was measured after continuous ATP administration (150 μg/kg/min) via a peripheral forearm vein for 5 min (FFRA); and we analyzed the FFR value variation in the final 20 s of the 5 min, defining 'Fluctuation' as variation range > 0.03. Then, 2 mg of nicorandil was administered into the coronary artery during continued ATP infusion, and the Pd/Pa was remeasured (FFRA+N). Fluctuations were observed in 23 of 57 patients. The cases demonstrating discrepancies of > 0.05 between FFRA and FFRA+N were observed more frequently in the fluctuation group than in the non-fluctuation group (12/23 vs. 1/34; p < 0.0001). The discrepancy between FFRA and FFRA+N values was smaller in the non-fluctuation group (mean difference ± SD; -0.00026 ± 0.04636 vs. 0.02608 ± 0.1316). Pd/Pa fluctuation with continuous ATP administration could indicate inaccurate FFR measurements caused by incomplete hyperemia. Additional vasodilator administration may achieve further hyperemia when Pd/Pa fluctuations are observed.
Collapse
Affiliation(s)
- Shintaro Yoneyama
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Makoto Hoyano
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazuyuki Ozaki
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Ryutaro Ikegami
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Naoki Kubota
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takeshi Okubo
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takao Yanagawa
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takakuni Kurokawa
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takumi Akiyama
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuzo Washiyama
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takeshi Kashimura
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takayuki Inomata
- Department of Cardiovascular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757, Asahimachidori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
2
|
McCallinhart PE, Chade AR, Bender SB, Trask AJ. Expanding landscape of coronary microvascular disease in co-morbid conditions: Metabolic disease and beyond. J Mol Cell Cardiol 2024; 192:26-35. [PMID: 38734061 PMCID: PMC11340124 DOI: 10.1016/j.yjmcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Coronary microvascular disease (CMD) and impaired coronary blood flow control are defects that occur early in the pathogenesis of heart failure in cardiometabolic conditions, prior to the onset of atherosclerosis. In fact, recent studies have shown that CMD is an independent predictor of cardiac morbidity and mortality in patients with obesity and metabolic disease. CMD is comprised of functional, structural, and mechanical impairments that synergize and ultimately reduce coronary blood flow in metabolic disease and in other co-morbid conditions, including transplant, autoimmune disorders, chemotherapy-induced cardiotoxicity, and remote injury-induced CMD. This review summarizes the contemporary state-of-the-field related to CMD in metabolic and these other co-morbid conditions based on mechanistic data derived mostly from preclinical small- and large-animal models in light of available clinical evidence and given the limitations of studying these mechanisms in humans. In addition, we also discuss gaps in current understanding, emerging areas of interest, and opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, United States of America.
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
3
|
Sturek M. Introduction to ion transport and membrane interactions in vascular health and disease. CURRENT TOPICS IN MEMBRANES 2022; 90:1-11. [PMID: 36368870 DOI: 10.1016/bs.ctm.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cardiovascular disease is on the rise, partially due to the continued increase in metabolic syndrome. Advances in basic research on vascular ion transport have the potential to provide targets for therapeutic interventions. Vascular specificity, which includes different vascular beds having different characteristics and the macro- vs. microvasculature, is a vitally important variable in characterization of ion transport. At the cellular level, targeted fluorescent biosensors for Ca2+, super-resolution microscopy, and organelle patch clamp electrophysiology enable more detailed studies. The "MetS/diabetes milieu" includes increased and decreased insulin, and increased glucose, increased LDL/HDL cholesterol and triglycerides, and increased blood pressure. The duration and severity of MetS/diabetes components certainly affect the vascular phenotype and ion transport and membrane interactions. A combination of in vivo animal models and in vitro cell models to study ion transport in MetS/diabetes conditions is optimal. Gene editing and selective pharmacological tools should be used after or in conjunction with characterization of ion transport in vascular health and disease phenotypes. This is critical to determining the causal role of Ca2+ signaling in modulation of vascular phenotype. The ion transport and membrane interactions that are measured are typically only a snapshot in time in these dynamic processes occurring over the progression of health and disease. It is imperative that this concept be considered in the planning of long-term studies of vascular disease, ion transport experiments, and interpretation of the data. Future directions for our contributors' research will advance the field.
Collapse
Affiliation(s)
- Michael Sturek
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
4
|
Mineralocorticoid receptor blockade normalizes coronary resistance in obese swine independent of functional alterations in K v channels. Basic Res Cardiol 2021; 116:35. [PMID: 34018061 DOI: 10.1007/s00395-021-00879-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity, yet underlying mechanisms and potential therapeutic strategies remain poorly understood. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Whether MR blockade improves in vivo regulation of coronary flow, a process involving voltage-dependent K+ (Kv) channel activation, or reduces coronary structural remodeling in obesity is unclear. Thus, the goals of this investigation were to determine the effects of obesity on coronary responsiveness to reductions in arterial PO2 and potential involvement of Kv channels and whether the benefit of MR blockade involves improved coronary Kv function or altered passive structural properties of the coronary microcirculation. Hypoxemia increased coronary blood flow similarly in lean and obese swine; however, baseline coronary vascular resistance was significantly higher in obese swine. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. Chronic MR inhibition in obese swine normalized baseline coronary resistance, did not influence hypoxemic coronary vasodilation, and did not restore coronary Kv function (assessed in vivo, ex vivo, and via patch clamping). Lastly, MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening.
Collapse
|
5
|
Zhang Y, Wernly B, Cao X, Mustafa SJ, Tang Y, Zhou Z. Adenosine and adenosine receptor-mediated action in coronary microcirculation. Basic Res Cardiol 2021; 116:22. [PMID: 33755785 PMCID: PMC7987637 DOI: 10.1007/s00395-021-00859-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Adenosine is an ubiquitous extracellular signaling molecule and plays a fundamental role in the regulation of coronary microcirculation through activation of adenosine receptors (ARs). Adenosine is regulated by various enzymes and nucleoside transporters for its balance between intra- and extracellular compartments. Adenosine-mediated coronary microvascular tone and reactive hyperemia are through receptors mainly involving A2AR activation on both endothelial and smooth muscle cells, but also involving interaction among other ARs. Activation of ARs further stimulates downstream targets of H2O2, KATP, KV and KCa2+ channels leading to coronary vasodilation. An altered adenosine-ARs signaling in coronary microcirculation has been observed in several cardiovascular diseases including hypertension, diabetes, atherosclerosis and ischemic heart disease. Adenosine as a metabolite and its receptors have been studied for its both therapeutic and diagnostic abilities. The present review summarizes important aspects of adenosine metabolism and AR-mediated actions in the coronary microcirculation.
Collapse
Affiliation(s)
- Ying Zhang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bernhard Wernly
- Department of Anaesthesiology, Perioperative Medicine and Intensive Care Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Xin Cao
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, USA
| | - Yong Tang
- The International Collaborative Centre On Big Science Plan for Purinergic Signalling, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 17176, Stockholm, Sweden.
| |
Collapse
|
6
|
Electrical Propagation of Vasodilatory Signals in Capillary Networks. Bull Math Biol 2020; 82:128. [PMID: 32968879 DOI: 10.1007/s11538-020-00806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
We have developed a computational model to study electrical propagation of vasodilatory signals and arteriolar regulation of blood flow depending on the oxygen tension and agonist distribution in the capillary network. The involving key parameters of endothelial cell-to-cell electrical conductivity and plasma membrane area per unit volume were calibrated with the experimental data on an isolated endothelial tube of mouse skeletal feeding arteries. We have estimated the oxygen saturation parameters in terms of erythrocyte ATP release from the data of a left anterior descending coronary blood perfusion of dog. Regarding the acetylcholine-induced upstream conduction, our model shows that spatially uniform superfusion of acetylcholine attenuates the electrical signal propagation, and blocking calcium-activated potassium channels suppresses that attenuation. On the other hand, a local infusion of acetylcholine induces enhanced electrical propagation that corresponds to physiological relevance. Integrating the electrophysiology of endothelial tube and the electrophysiology/mechanics of a lumped arteriole, we show mechanistically that endothelial purinergic oxygen sensing of ATP released from erythrocytes and local infusion of acetylcholine are individually effective to induce vasodilatory signals to regulate blood flow in arterioles. We have recapitulated the upstream vasomotion in arterioles from the elevated oxygen tension in the downstream capillary domain. This study is a foundation for characterizing effective pharmaceutical strategies for ascending vasodilation and oxygenation.
Collapse
|
7
|
Abstract
Swine disease models are essential for mimicry of human metabolic and vascular pathophysiology, thereby enabling high-fidelity translation to human medicine. The worldwide epidemic of obesity, metabolic disease, and diabetes has prompted the focus on these diseases in this review. We highlight the remarkable similarity between Ossabaw miniature swine and humans with metabolic syndrome and atherosclerosis. Although the evidence is strongest for swine models of coronary artery disease, findings are generally applicable to any vascular bed. We discuss the major strengths and weaknesses of swine models. The development of vascular imaging is an example of optimal vascular engineering in swine. Although challenges regarding infrastructure and training of engineers in the use of swine models exist, opportunities are ripe for gene editing, studies of molecular mechanisms, and use of swine in coronary artery imaging and testing of devices that can move quickly to human clinical studies.
Collapse
Affiliation(s)
- Michael Sturek
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA; .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 46907, USA
| | - Mouhamad Alloosh
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA;
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Department of Surgery, Cardiovascular Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| |
Collapse
|
8
|
Sorop O, van de Wouw J, Chandler S, Ohanyan V, Tune JD, Chilian WM, Merkus D, Bender SB, Duncker DJ. Experimental animal models of coronary microvascular dysfunction. Cardiovasc Res 2020; 116:756-770. [PMID: 31926020 PMCID: PMC7061277 DOI: 10.1093/cvr/cvaa002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic derangements and is increasingly recognized as an important contributor to myocardial ischaemia, both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is termed 'ischaemia and no obstructive coronary artery disease' (INOCA). Notwithstanding the high prevalence of INOCA, effective treatment remains elusive. Although to date there is no animal model for INOCA, animal models of CMD, one of the hallmarks of INOCA, offer excellent test models for enhancing our understanding of the pathophysiology of CMD and for investigating novel therapies. This article presents an overview of currently available experimental models of CMD-with an emphasis on metabolic derangements as risk factors-in dogs, swine, rabbits, rats, and mice. In all available animal models, metabolic derangements are most often induced by a high-fat diet (HFD) and/or diabetes mellitus via injection of alloxan or streptozotocin, but there is also a wide variety of spontaneous as well as transgenic animal models which develop metabolic derangements. Depending on the number, severity, and duration of exposure to risk factors-all these animal models show perturbations in coronary microvascular (endothelial) function and structure, similar to what has been observed in patients with INOCA and comorbid conditions. The use of these animal models will be instrumental in identifying novel therapeutic targets and for the subsequent development and testing of novel therapeutic interventions to combat ischaemic heart disease, the number one cause of death worldwide.
Collapse
Affiliation(s)
- Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Johnathan D Tune
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr. 27, 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377 Munich, Germany
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
9
|
Zhou R, Dang X, Sprague RS, Mustafa SJ, Zhou Z. Alteration of purinergic signaling in diabetes: Focus on vascular function. J Mol Cell Cardiol 2020; 140:1-9. [PMID: 32057736 DOI: 10.1016/j.yjmcc.2020.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/02/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022]
Abstract
Diabetes is an important risk factor for the development of cardiovascular disease including atherosclerosis and ischemic heart disease. Vascular complications including macro- and micro-vascular dysfunction are the leading causes of morbidity and mortality in diabetes. Disease mechanisms at present are unclear and no ideal therapies are available, which urgently calls for the identification of novel therapeutic targets/agents. An altered nucleotide- and nucleoside-mediated purinergic signaling has been implicated to cause diabetes-associated vascular dysfunction in major organs. Alteration of both purinergic P1 and P2 receptor sensitivity rather than the changes in receptor expression accounts for vascular dysfunction in diabetes. Activation of P2X7 receptors plays a crucial role in diabetes-induced retinal microvascular dysfunction. Recent findings have revealed that both ecto-nucleotidase CD39, a key enzyme hydrolyzing ATP, and CD73, an enzyme regulating adenosine turnover, are involved in the renal vascular injury in diabetes. Interestingly, erythrocyte dysfunction in diabetes by decreasing ATP release in response to physiological stimuli may serve as an important trigger to induce vascular dysfunction. Nucleot(s)ide-mediated purinergic activation also exerts long-term actions including inflammatory and atherogenic effects in hyperglycemic and diabetic conditions. This review highlights the current knowledge regarding the altered nucleot(s)ide-mediated purinergic signaling as an important disease mechanism for the diabetes-associated vascular complications. Better understanding the role of key receptor-mediated signaling in diabetes will provide more insights into their potential as targets for the treatment.
Collapse
Affiliation(s)
- Rui Zhou
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology of Ministry of Education, Southwest Medical University, Luzhou, PR China
| | - Xitong Dang
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology of Ministry of Education, Southwest Medical University, Luzhou, PR China
| | - Randy S Sprague
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, USA
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Porcine models for studying complications and organ crosstalk in diabetes mellitus. Cell Tissue Res 2020; 380:341-378. [PMID: 31932949 DOI: 10.1007/s00441-019-03158-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
The worldwide prevalence of diabetes mellitus and obesity is rapidly increasing not only in adults but also in children and adolescents. Diabetes is associated with macrovascular complications increasing the risk for cardiovascular disease and stroke, as well as microvascular complications leading to diabetic nephropathy, retinopathy and neuropathy. Animal models are essential for studying disease mechanisms and for developing and testing diagnostic procedures and therapeutic strategies. Rodent models are most widely used but have limitations in translational research. Porcine models have the potential to bridge the gap between basic studies and clinical trials in human patients. This article provides an overview of concepts for the development of porcine models for diabetes and obesity research, with a focus on genetically engineered models. Diabetes-associated ocular, cardiovascular and renal alterations observed in diabetic pig models are summarized and their similarities with complications in diabetic patients are discussed. Systematic multi-organ biobanking of porcine models of diabetes and obesity and molecular profiling of representative tissue samples on different levels, e.g., on the transcriptome, proteome, or metabolome level, is proposed as a strategy for discovering tissue-specific pathomechanisms and their molecular key drivers using systems biology tools. This is exemplified by a recent study providing multi-omics insights into functional changes of the liver in a transgenic pig model for insulin-deficient diabetes mellitus. Collectively, these approaches will provide a better understanding of organ crosstalk in diabetes mellitus and eventually reveal new molecular targets for the prevention, early diagnosis and treatment of diabetes mellitus and its associated complications.
Collapse
|
11
|
Reiss AB, Grossfeld D, Kasselman LJ, Renna HA, Vernice NA, Drewes W, Konig J, Carsons SE, DeLeon J. Adenosine and the Cardiovascular System. Am J Cardiovasc Drugs 2019; 19:449-464. [PMID: 30972618 PMCID: PMC6773474 DOI: 10.1007/s40256-019-00345-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous nucleoside with a short half-life that regulates many physiological functions involving the heart and cardiovascular system. Among the cardioprotective properties of adenosine are its ability to improve cholesterol homeostasis, impact platelet aggregation and inhibit the inflammatory response. Through modulation of forward and reverse cholesterol transport pathways, adenosine can improve cholesterol balance and thereby protect macrophages from lipid overload and foam cell transformation. The function of adenosine is controlled through four G-protein coupled receptors: A1, A2A, A2B and A3. Of these four, it is the A2A receptor that is in a large part responsible for the anti-inflammatory effects of adenosine as well as defense against excess cholesterol accumulation. A2A receptor agonists are the focus of efforts by the pharmaceutical industry to develop new cardiovascular therapies, and pharmacological actions of the atheroprotective and anti-inflammatory drug methotrexate are mediated via release of adenosine and activation of the A2A receptor. Also relevant are anti-platelet agents that decrease platelet activation and adhesion and reduce thrombotic occlusion of atherosclerotic arteries by antagonizing adenosine diphosphate-mediated effects on the P2Y12 receptor. The purpose of this review is to discuss the effects of adenosine on cell types found in the arterial wall that are involved in atherosclerosis, to describe use of adenosine and its receptor ligands to limit excess cholesterol accumulation and to explore clinically applied anti-platelet effects. Its impact on electrophysiology and use as a clinical treatment for myocardial preservation during infarct will also be covered. Results of cell culture studies, animal experiments and human clinical trials are presented. Finally, we highlight future directions of research in the application of adenosine as an approach to improving outcomes in persons with cardiovascular disease.
Collapse
|
12
|
Khan M, Meuth AI, Brown SM, Chandrasekar B, Bowles DK, Bender SB. Aldosterone impairs coronary adenosine-mediated vasodilation via reduced functional expression of Ca 2+-activated K + channels. Am J Physiol Heart Circ Physiol 2019; 317:H357-H363. [PMID: 31199187 DOI: 10.1152/ajpheart.00081.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Elevated plasma aldosterone (Aldo) levels are associated with greater risk of cardiac ischemic events and cardiovascular mortality. Adenosine-mediated coronary vasodilation is a critical cardioprotective mechanism during ischemia; however, whether this response is impaired by increased Aldo is unclear. We hypothesized that chronic Aldo impairs coronary adenosine-mediated vasodilation via downregulation of vascular K+ channels. Male C57BL/6J mice were treated with vehicle (Con) or subpressor Aldo for 4 wk. Coronary artery function, assessed by wire myography, revealed Aldo-induced reductions in vasodilation to adenosine and the endothelium-dependent vasodilator acetylcholine but not to the nitric oxide donor sodium nitroprusside. Coronary vasoconstriction to endothelin-1 and the thromboxane A2 mimetic U-46619 was unchanged by Aldo. Additional mechanistic studies revealed impaired adenosine A2A, not A2B, receptor-dependent vasodilation by Aldo with a tendency for Aldo-induced reduction of coronary A2A gene expression. Adenylate cyclase inhibition attenuated coronary adenosine dilation but did not eliminate group differences, and adenosine-stimulated vascular cAMP production was similar between Con and Aldo mice. Similarly, blockade of inward rectifier K+ channels reduced but did not eliminate group differences in adenosine dilation whereas group differences were eliminated by blockade of Ca2+-activated K+ (KCa) channels that blunted and abrogated adenosine and A2A-dependent dilation, respectively. Gene expression of several coronary KCa channels was reduced by Aldo. Together, these data demonstrate Aldo-induced impairment of adenosine-mediated coronary vasodilation involving blunted A2A-KCa-dependent vasodilation, independent of blood pressure, providing important insights into the link between plasma Aldo and cardiac mortality and rationale for aldosterone antagonist use to preserve coronary microvascular function.NEW & NOTEWORTHY Increased plasma aldosterone levels are associated with worsened cardiac outcomes in diverse patient groups by unclear mechanisms. We identified that, in male mice, elevated aldosterone impairs coronary adenosine-mediated vasodilation, an important cardioprotective mechanism. This aldosterone-induced impairment involves reduced adenosine A2A, not A2B, receptor-dependent vasodilation associated with downregulation of coronary KCa channels and does not involve altered adenylate cyclase/cAMP signaling. Importantly, this effect of aldosterone occurred independent of changes in coronary vasoconstrictor responsiveness and blood pressure.
Collapse
Affiliation(s)
- Maloree Khan
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Alex I Meuth
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Scott M Brown
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Bysani Chandrasekar
- Medicine-Cardiology, University of Missouri School of Medicine, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| | - Douglas K Bowles
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Shawn B Bender
- Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri
| |
Collapse
|
13
|
Lim RR, Grant DG, Olver TD, Padilla J, Czajkowski AM, Schnurbusch TR, Mohan RR, Hainsworth DP, Walters EM, Chaurasia SS. Young Ossabaw Pigs Fed a Western Diet Exhibit Early Signs of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 59:2325-2338. [PMID: 29847637 PMCID: PMC5937800 DOI: 10.1167/iovs.17-23616] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Recent clinical data suggest an increasing prevalence of obesity and type 2 diabetes in adolescents, placing them at high risk of developing diabetic retinopathy during adult working years. The present study was designed to characterize the early retinal and microvascular alterations in young Ossabaw pigs fed a Western diet, described as a model of metabolic syndrome genetically predisposed to type 2 diabetes. Methods Four-month-old Ossabaw miniature pigs were divided into two groups, lean and diet-induced obesity. Obese pigs were fed a Western diet with high-fat/high-fructose corn syrup/high-choleric content for 10 weeks. Blood and retina were collected for biochemical profiling, trypsin digest, flatmounts, Fluoro-Jade C staining, electron microscopy, quantitative PCR, immunohistochemistry, and Western blots. Results Young Ossabaw pigs had elevated fasting blood glucose after feeding on a Western diet for 10 weeks. Their retina showed disrupted cellular architecture across neural layers, with numerous large vacuoles seen in cell bodies of the inner nuclear layer. Microvessels in the obese animals exhibited thickened basement membrane, along with pericyte ghosts and acellular capillaries. The pericyte to endothelial ratio decreased significantly. Retina flatmounts from obese pigs displayed reduced capillary density, numerous terminal capillary loops, and string vessels, which stained collagen IV but not isolectin IB4. Quantitative PCR and Western blots showed significantly high levels of basement membrane proteins collagen IV and fibronectin in obese pigs. Conclusions This is the first study to describe the ultrastructural neuronal and vascular changes in the retina of young Ossabaw pigs fed a Western diet, simulating early signs of diabetic retinopathy pathogenesis.
Collapse
Affiliation(s)
- Rayne R Lim
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States
| | - DeAna G Grant
- Electron Microscopy Core, University of Missouri, Columbia, Missouri, United States
| | - T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States.,Child Health, University of Missouri, Columbia, Missouri, United States
| | - Alana M Czajkowski
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Teagan R Schnurbusch
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Rajiv R Mohan
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| | - Dean P Hainsworth
- Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| | - Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States
| |
Collapse
|
14
|
Brown SM, Meuth AI, Davis JW, Rector RS, Bender SB. Mineralocorticoid receptor antagonism reverses diabetes-related coronary vasodilator dysfunction: A unique vascular transcriptomic signature. Pharmacol Res 2018; 134:100-108. [PMID: 29870805 DOI: 10.1016/j.phrs.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/01/2018] [Accepted: 06/01/2018] [Indexed: 01/09/2023]
Abstract
Coronary microvascular dysfunction predicts and may be a proximate cause of cardiac dysfunction and mortality in diabetes; however, few effective treatments exist for these conditions. We recently demonstrated that mineralocorticoid receptor (MR) antagonism reversed cardiovascular dysfunction in early-stage obesity/insulin resistance. The mechanisms underlying this benefit of MR antagonism and its relevance in the setting of long-term obesity complications like diabetes; however, remain unclear. Thus, the present study evaluated the impact of MR antagonism on diabetes-related coronary dysfunction and defines the MR-dependent vascular transcriptome in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat recapitulating later stages of human diabetes. OLETF rats were treated with spironolactone (Sp) and compared to untreated OLETF and lean Long-Evans Tokushima Otsuka rats. Sp treatment attenuated diabetes-associated adipose and cardiac inflammation/fibrosis and improved coronary endothelium-dependent vasodilation but did not alter enhanced coronary vasoconstriction, blood pressure, or metabolic parameters in OLETF rats. Further mechanistic studies using RNA deep sequencing of OLETF rat aortas revealed 157 differentially expressed genes following Sp including upregulation of genes involved in the molecular regulation of nitric oxide bioavailability (Hsp90ab1, Ahsa1, Ahsa2) as well as novel changes in α1D adrenergic receptors (Adra1d), cyclooxygenase-2 (Ptgs2), and modulatory factors of these pathways (Ackr3, Acsl4). Further, Ingenuity Pathway Analysis predicted inhibition of upstream inflammatory regulators by Sp and inhibition of 'migration of endothelial cells', 'differentiation of smooth muscle', and 'angiogenesis' biological functions by Sp in diabetes. Thus, this study is the first to define the MR-dependent vascular transcriptome underlying treatment of diabetes-related coronary microvascular dysfunction by Sp.
Collapse
Affiliation(s)
- Scott M Brown
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA; Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - Alex I Meuth
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA; Biomedical Sciences, University of Missouri, Columbia, MO, USA
| | - J Wade Davis
- MU Informatics Institute, University of Missouri, Columbia, MO, USA; Health Management and Informatics, University of Missouri, Columbia, MO, USA; Statistics, University of Missouri, Columbia, MO, USA
| | - R Scott Rector
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA; Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA; Medicine-Division of Gastroenterology and Hepatology, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Shawn B Bender
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA; Biomedical Sciences, University of Missouri, Columbia, MO, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
15
|
Severino P, D'Amato A, Netti L, Pucci M, De Marchis M, Palmirotta R, Volterrani M, Mancone M, Fedele F. Diabetes Mellitus and Ischemic Heart Disease: The Role of Ion Channels. Int J Mol Sci 2018; 19:802. [PMID: 29534462 PMCID: PMC5877663 DOI: 10.3390/ijms19030802] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus is one the strongest risk factors for cardiovascular disease and, in particular, for ischemic heart disease (IHD). The pathophysiology of myocardial ischemia in diabetic patients is complex and not fully understood: some diabetic patients have mainly coronary stenosis obstructing blood flow to the myocardium; others present with coronary microvascular disease with an absence of plaques in the epicardial vessels. Ion channels acting in the cross-talk between the myocardial energy state and coronary blood flow may play a role in the pathophysiology of IHD in diabetic patients. In particular, some genetic variants for ATP-dependent potassium channels seem to be involved in the determinism of IHD.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Andrea D'Amato
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Lucrezia Netti
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Mariateresa Pucci
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marialaura De Marchis
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Clinical Oncology Oncogenomic Research Center, 'Aldo Moro' University of Bari, 70124 Bari, Italy.
| | - Maurizio Volterrani
- Department of Cardiac Rehabilitation, IRCCS San Raffaele, 00163 Rome, Italy.
| | - Massimo Mancone
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| | - Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology and Geriatric Sciences, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
16
|
Labazi H, Teng B, Mustafa SJ. Functional changes in vascular reactivity to adenosine receptor activation in type I diabetic mice. Eur J Pharmacol 2017; 820:191-197. [PMID: 29269016 DOI: 10.1016/j.ejphar.2017.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Abstract
Activation of adenosine receptors has been implicated in several biological functions, including cardiovascular and renal function. Diabetes causes morphological and functional changes in the vasculature, resulting in abnormal responses to various stimuli. Recent studies have suggested that adenosine receptor expression and signaling are altered in disease states such as hypertension, diabetes. Using a streptozotocin (STZ) mouse model of type I diabetes (T1D), we investigated the functional changes in aorta and resistance mesenteric arteries to adenosine receptor agonist activation in T1D. Organ baths and DMT wire myographs were used for muscle tension measurements in isolated vascular rings, and western blotting was used for protein analysis. Concentration response curves to selective adenosine receptor agonists, including CCPA (A1 receptor agonist), Cl-IBMECA (A3 receptor agonist), CGS-21680 (A2A receptor agonist), and BAY 60-6583 (A2B receptor agonist), were performed. We found that diabetes did not affect adenosine receptor agonist-mediated relaxation or contraction in mesenteric arteries. However, aortas from diabetic mice exhibited a significant decrease (P < 0.05) in A1 receptor-mediated vasoconstriction. In addition, the aortas from STZ-treated mice exhibited an increase in phenylephrine-mediated contraction (EC50 7.40 ± 0.08 in STZ vs 6.89 ± 0.14 in vehicle; P < 0.05), while relaxation to A2A receptor agonists (CGS-21680) tended to decrease in aortas from the STZ-treated group (not statistically significant). Our data suggest that changes in adenosine receptor(s) vascular reactivity in T1D is tissue specific, and the decrease in A1 receptor-mediated aortic contraction could be a compensatory mechanism to counterbalance the increased adrenergic vascular contractility observed in aortas from diabetic mice.
Collapse
Affiliation(s)
- Hicham Labazi
- Department of Physiology, Pharmacology and Neuroanatomy, West Virginia University, Morgantown, WV, USA.
| | - Bunyen Teng
- Department of Physiology, Pharmacology and Neuroanatomy, West Virginia University, Morgantown, WV, USA.
| | - S Jamal Mustafa
- Department of Physiology, Pharmacology and Neuroanatomy, West Virginia University, Morgantown, WV, USA; WV Center for Tranlational Science Institute, Morgantown, WV, USA.
| |
Collapse
|
17
|
Teng B, Labazi H, Sun C, Yang Y, Zeng X, Mustafa SJ, Zhou Z. Divergent coronary flow responses to uridine adenosine tetraphosphate in atherosclerotic ApoE knockout mice. Purinergic Signal 2017; 13:591-600. [PMID: 28929376 PMCID: PMC5714849 DOI: 10.1007/s11302-017-9586-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 01/11/2023] Open
Abstract
Uridine adenosine tetraphosphate (Up4A) exerts potent relaxation in porcine coronary arteries that is reduced following myocardial infarction, suggesting a crucial role for Up4A in the regulation of coronary flow (CF) in cardiovascular disorders. We evaluated the vasoactive effects of Up4A on CF in atherosclerosis using ApoE knockout (KO) mice ex vivo and in vivo. Functional studies were conducted in isolated mouse hearts using the Langendorff technique. Immunofluorescence was performed to assess purinergic P2X1 receptor (P2X1R) expression in isolated mouse coronary arteries. In vivo effects of Up4A on coronary blood flow (CBF) were assessed using ultrasound. Infusion of Up4A (10-9-10-5 M) into isolated mouse hearts resulted in a concentration-dependent reduction in CF in WT and ApoE KO mice to a similar extent; this effect was exacerbated in ApoE KO mice fed a high-fat diet (HFD). The P2X1R antagonist MRS2159 restored Up4A-mediated decreases in CF more so in ApoE KO + HFD than ApoE KO mice. The smooth muscle to endothelial cell ratio of coronary P2X1R expression was greater in ApoE KO + HFD than ApoE KO or WT mice, suggesting a net vasoconstrictor potential of P2X1R in ApoE KO + HFD mice. In contrast, Up4A (1.6 mg/kg) increased CBF to a similar extent among the three groups. In conclusion, Up4A decreases CF more in ApoE KO + HFD mice, likely through a net upregulation of vasoconstrictor P2X1R. In contrast, Up4A increases CBF in vivo regardless of the atherosclerotic model.
Collapse
Affiliation(s)
- Bunyen Teng
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
- Coagulation and Blood Research Task Area, US Army Institute of Surgical Research, San Antonio, TX, USA
| | - Hicham Labazi
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Changyan Sun
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
- Molecular Vascular Medicine, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaorong Zeng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA
| | - Zhichao Zhou
- Department of Physiology and Pharmacology, Clinical and Translational Science Institute, West Virginia University, Morgantown, WV, USA.
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institutet, 17176, Stockholm, Sweden.
| |
Collapse
|
18
|
Peleli M, Carlstrom M. Adenosine signaling in diabetes mellitus and associated cardiovascular and renal complications. Mol Aspects Med 2017; 55:62-74. [DOI: 10.1016/j.mam.2016.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
19
|
Leiva A, Guzmán-Gutiérrez E, Contreras-Duarte S, Fuenzalida B, Cantin C, Carvajal L, Salsoso R, Gutiérrez J, Pardo F, Sobrevia L. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels. Mol Aspects Med 2017; 55:26-44. [DOI: 10.1016/j.mam.2017.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
|
20
|
Tune JD, Goodwill AG, Sassoon DJ, Mather KJ. Cardiovascular consequences of metabolic syndrome. Transl Res 2017; 183:57-70. [PMID: 28130064 PMCID: PMC5393930 DOI: 10.1016/j.trsl.2017.01.001] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 01/18/2023]
Abstract
The metabolic syndrome (MetS) is defined as the concurrence of obesity-associated cardiovascular risk factors including abdominal obesity, impaired glucose tolerance, hypertriglyceridemia, decreased HDL cholesterol, and/or hypertension. Earlier conceptualizations of the MetS focused on insulin resistance as a core feature, and it is clearly coincident with the above list of features. Each component of the MetS is an independent risk factor for cardiovascular disease and the combination of these risk factors elevates rates and severity of cardiovascular disease, related to a spectrum of cardiovascular conditions including microvascular dysfunction, coronary atherosclerosis and calcification, cardiac dysfunction, myocardial infarction, and heart failure. While advances in understanding the etiology and consequences of this complex disorder have been made, the underlying pathophysiological mechanisms remain incompletely understood, and it is unclear how these concurrent risk factors conspire to produce the variety of obesity-associated adverse cardiovascular diseases. In this review, we highlight current knowledge regarding the pathophysiological consequences of obesity and the MetS on cardiovascular function and disease, including considerations of potential physiological and molecular mechanisms that may contribute to these adverse outcomes.
Collapse
Affiliation(s)
- Johnathan D Tune
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind.
| | - Adam G Goodwill
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Daniel J Sassoon
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind
| | - Kieren J Mather
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Ind; Department of Medicine, Indiana University School of Medicine, Indianapolis, Ind
| |
Collapse
|
21
|
Abstract
The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321-382, 2017.
Collapse
Affiliation(s)
- Adam G Goodwill
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Gregory M Dick
- California Medical Innovations Institute, 872 Towne Center Drive, Pomona, CA
| | - Alexander M Kiel
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, Lafayette, IN
| | - Johnathan D Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
22
|
Severe familial hypercholesterolemia impairs the regulation of coronary blood flow and oxygen supply during exercise. Basic Res Cardiol 2016; 111:61. [PMID: 27624732 DOI: 10.1007/s00395-016-0579-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/02/2016] [Indexed: 01/25/2023]
Abstract
Accelerated development of coronary atherosclerosis is a defining characteristic of familial hypercholesterolemia (FH). However, the recent data highlight a significant cardiovascular risk prior to the development of critical coronary stenosis. We, therefore, examined the hypothesis that FH produces coronary microvascular dysfunction and impairs coronary vascular control at rest and during exercise in a swine model of FH. Coronary vascular responses to drug infusions and exercise were examined in chronically instrumented control and FH swine. FH swine exhibited ~tenfold elevation of plasma cholesterol and diffuse coronary atherosclerosis (20-60 % plaque burden). Similar to our recent findings in the systemic vasculature in FH swine, coronary smooth muscle nitric oxide sensitivity was increased in vivo and in vitro with maintained endothelium-dependent vasodilation in vivo in FH. At rest and during exercise, FH swine exhibited increased myocardial O2 extraction resulting in reduced coronary venous SO2 and PO2 versus control. During exercise in FH swine, the transmural distribution of coronary blood flow was unchanged; however, a shift toward anaerobic cardiac metabolism was revealed by increased coronary arteriovenous H(+) concentration gradient. This shift was associated with a worsening of cardiac efficiency (relationship between cardiac work and O2 consumption) in FH during exercise owing, in part, to a generalized reduction in stroke volume which was associated with increased left atrial pressure in FH. Our data highlight a critical role for coronary microvascular dysfunction as a contributor to impaired myocardial O2 balance, cardiac ischemia, and impaired cardiac function prior to the development of critical coronary stenosis in FH.
Collapse
|
23
|
Labazi H, Teng B, Zhou Z, Mustafa SJ. Enhanced A2A adenosine receptor-mediated increase in coronary flow in type I diabetic mice. J Mol Cell Cardiol 2016; 90:30-7. [PMID: 26654777 PMCID: PMC4729563 DOI: 10.1016/j.yjmcc.2015.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 11/09/2015] [Accepted: 11/30/2015] [Indexed: 02/08/2023]
Abstract
Adenosine A2A receptor (A2AAR) activation plays a major role in the regulation of coronary flow (CF). Recent studies from our laboratory and others have suggested that A2AAR expression and/or signaling is altered in disease conditions. However, the coronary response to AR activation, in particular A2AAR, in diabetes is not fully understood. In this study, we use an STZ mouse model of type 1 diabetes (T1D) to look at CF responses to the nonspecific AR agonist NECA and the A2AAR specific agonist CGS 21680 in-vivo and ex-vivo. Using immunofluorescence, we also explored the effect of diabetes on A2AAR expression in coronary arteries. NECA mediated increase in CF was significantly increased in hearts isolated from STZ-induced diabetic mice. In addition, both in in-vivo and ex-vivo responses to A2AAR activation using CGS 21680 were significantly higher in diabetic mice when compared to their controls. Immunohistochemistry showed an upregulation of A2AAR in both coronary smooth muscle and endothelial cells (~160% and ~140%, respectively). Our data suggest that diabetes resulted in an increased A2AAR expression in coronary arteries which resulted in enhanced A2AAR-mediated increase in CF observed in diabetic hearts. This is the first report implying that A2AAR has a role in the regulation of CF in diabetes, supporting recent studies suggesting that the use of adenosine and its A2A selective agonist (regadenoson, Lexiscan®) may not be appropriate for the detection of coronary artery diseases in T1D and the estimation of coronary reserve.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/pharmacology
- Adenosine A2 Receptor Agonists/pharmacology
- Adenosine-5'-(N-ethylcarboxamide)/pharmacology
- Animals
- Coronary Circulation/drug effects
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Coronary Vessels/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Gene Expression Regulation
- Heart/drug effects
- Heart/physiopathology
- Humans
- Male
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Organ Culture Techniques
- Phenethylamines/pharmacology
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2B/genetics
- Receptor, Adenosine A2B/metabolism
- Signal Transduction
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Hicham Labazi
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, WV, United States
| | - Bunyen Teng
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, WV, United States
| | - Zhichao Zhou
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, WV, United States
| | - S Jamal Mustafa
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences and Clinical Translational Science Institute, West Virginia University, Morgantown, WV, United States.
| |
Collapse
|
24
|
Polhemus DJ, Bradley JM, Islam KN, Brewster LP, Calvert JW, Tao YX, Chang CC, Pipinos II, Goodchild TT, Lefer DJ. Therapeutic potential of sustained-release sodium nitrite for critical limb ischemia in the setting of metabolic syndrome. Am J Physiol Heart Circ Physiol 2015; 309:H82-92. [PMID: 25910804 DOI: 10.1152/ajpheart.00115.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023]
Abstract
Nitrite is a storage reservoir of nitric oxide that is readily reduced to nitric oxide under pathological conditions. Previous studies have demonstrated that nitrite levels are significantly reduced in cardiovascular disease states, including peripheral vascular disease. We investigated the cytoprotective and proangiogenic actions of a novel, sustained-release formulation of nitrite (SR-nitrite) in a clinically relevant in vivo swine model of critical limb ischemia (CLI) involving central obesity and metabolic syndrome. CLI was induced in obese Ossabaw swine (n = 18) by unilateral external iliac artery deployment of a full cross-sectional vessel occlusion device positioned within an endovascular expanded polytetrafluoroethylene-lined nitinol stent-graft. At post-CLI day 14, pigs were randomized to placebo (n = 9) or SR-nitrite (80 mg, n = 9) twice daily by mouth for 21 days. SR-nitrite therapy increased nitrite, nitrate, and S-nitrosothiol in plasma and ischemic skeletal muscle. Oxidative stress was reduced in ischemic limb tissue of SR-nitrite- compared with placebo-treated pigs. Ischemic limb tissue levels of proangiogenic growth factors were increased following SR-nitrite therapy compared with placebo. Despite the increases in cytoprotective and angiogenic signals with SR-nitrite therapy, new arterial vessel formation and enhancement of blood flow to the ischemic limb were not different from placebo. Our data clearly demonstrate cytoprotective and proangiogenic signaling in ischemic tissues following SR-nitrite therapy in a very severe model of CLI. Further studies evaluating longer-duration nitrite therapy and/or additional nitrite dosing strategies are warranted to more fully evaluate the therapeutic potential of nitrite therapy in peripheral vascular disease.
Collapse
Affiliation(s)
- David J Polhemus
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana
| | - Jessica M Bradley
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana
| | - Kazi N Islam
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana
| | - Luke P Brewster
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia; Surgery and Research Services, Atlanta Veterans Affairs Medical Center, Decatur, Georgia; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - John W Calvert
- Department of Surgery, Emory University School of Medicine, Atlanta, Georgia
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology, and Pharmacology, Auburn University College of Veterinary Medicine, Auburn, Alabama
| | | | - Iraklis I Pipinos
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Traci T Goodchild
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana
| | - David J Lefer
- Cardiovascular Center of Excellence and Department of Pharmacology, LSU Health Sciences Center, New Orleans, Louisiana;
| |
Collapse
|
25
|
Cabiati M, Svezia B, Guzzardi MA, Mattii L, D'Amico A, Caselli C, Prescimone T, Morales MA, Del Ry S. Adenosine receptor transcriptomic profile in cardiac tissue of a Zucker rat model. DNA Cell Biol 2015; 34:333-41. [PMID: 25710208 DOI: 10.1089/dna.2014.2770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
To evaluate the possible variations of adenosine receptor (AR) profile together with TNF-α and IL-6 mRNA in cardiac tissue of obese Zucker rats (OZR) during fasting conditions (fc) and during the induction of acute hyperglycemia (AH). OZR (O, n=21) and age-matched lean control rats (CO, n=18) were studied during fc (COfc, n=8; Ofc, n=13) and during the induction of AH (COAH, n=10; OAH, n=8). The histopathologic analysis performed on O and CO heart samples did not show abnormalities of myocardial structure. The AR transcriptomic profile was analyzed in O and CO by real-time polymerase chain reaction (PCR) and a significantly lower mRNA expression was observed for A2AR in O with respect to CO (p=0.047), while a significant upregulation was observed for A3R in O with respect to CO (p=0.002). No significant differences between O and CO were observed for TNF-α or IL-6. Correlations were found between glycemia and A1R (p=0.03) and A2BR (p=0.002); total cholesterol and A2BR (p=0.02) and A3R (p=0.0002), as well as between IL-6 and A1R (p=0.05) and TNF-α and A2AR (p<0.0001). The modulation of ARs in these settings could represent a promising approach to pharmacological treatment, which must be supported by diet restrictions and physical exercise.
Collapse
Affiliation(s)
- Manuela Cabiati
- 1 CNR Institute of Clinical Physiology, Biochemical and Molecular Biology Laboratory, Laboratory of Cardiovascular Biochemistry , Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Yongming P, Zhaowei C, Yichao M, Keyan Z, Liang C, Fangming C, Xiaoping X, Quanxin M, Minli C. Involvement of peroxisome proliferator-activated receptors in cardiac and vascular remodeling in a novel minipig model of insulin resistance and atherosclerosis induced by consumption of a high-fat/cholesterol diet. Cardiovasc Diabetol 2015; 14:6. [PMID: 25592139 PMCID: PMC4300051 DOI: 10.1186/s12933-014-0165-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background A long-term high-fat/cholesterol (HFC) diet leads to insulin resistance (IR), which is associated with inflammation, atherosclerosis (AS), cardiac sympathovagal imbalance, and cardiac dysfunction. Peroxisome proliferator-activated receptors (PPARs) and nuclear factor ĸB (NF-κB) are involved in the development of IR-AS. Thus, we elucidated the pathological molecular mechanism of IR-AS by feeding an HFC diet to Tibetan minipigs to induce IR and AS. Methods Male Tibetan minipigs were fed either a normal diet or an HFC diet for 24 weeks. Thereafter, the minipigs were tested for physiological and biochemical blood indices, blood pressure, cardiac function, glucose tolerance, heart rate variability (HRV), and PPAR-associated gene and protein expression levels. Results HFC-fed minipigs exhibited IR through increased body weight, fasting blood glucose levels, plasma cholesterol and its composition, and insulin and free fatty acid (FFA) levels; decreased insulin sensitivity; impaired glucose tolerance; and hypertension. Increased C-reactive protein (CRP) levels, cardiac dysfunction, depressed HRV, and the up-regulation of PPAR expression in the abdominal aorta concomitant with down-regulation in the heart tissue were observed in HFC-fed minipigs. Furthermore, the levels of NF-κBp65, IL-1β, TNF-α, MCP-1, VCAM-1, ICAM-1, MMP-9, and CRP proteins were also significantly increased. Conclusions These data suggest that HFC-fed Tibetan minipigs develop IR and AS and that PPARs are involved in cardiovascular remodeling and impaired function.
Collapse
Affiliation(s)
- Pan Yongming
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Cai Zhaowei
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Ma Yichao
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Zhu Keyan
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Chen Liang
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Chen Fangming
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Xu Xiaoping
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Ma Quanxin
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| | - Chen Minli
- Experimental Animal Research Center, Zhejiang Chinese Medical University, No. 548 Binwen Road, Binjiang District, Hangzhou, 310053, China.
| |
Collapse
|
27
|
|
28
|
Fedele F, Severino P, Bruno N, Stio R, Caira C, D'Ambrosi A, Brasolin B, Ohanyan V, Mancone M. Role of ion channels in coronary microcirculation: a review of the literature. Future Cardiol 2014; 9:897-905. [PMID: 24180545 DOI: 10.2217/fca.13.65] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In normal coronary arteries, several different mechanisms of blood flow regulation exist, acting at different levels of the coronary tree: endothelial, nervous, myogenic and metabolic regulation. In addition, physiologic blood flow regulation is also dependent on the activity of several coronary ion channels, including ATP-dependent K(+) channels, voltage-gated K(+) channels and others. In this context, ion channels contribute by matching demands for homeostatic maintenance. They play a primary role in rapid response of both endothelium and vascular smooth muscle cells of larger and smaller arterial vessels of the coronary bed, leading to coronary vasodilation. Consequently, an alteration in ion channel function or expression could be directly involved in coronary vasomotion dysfunction.
Collapse
Affiliation(s)
- Francesco Fedele
- Department of Cardiovascular, Respiratory, Nephrology, Anesthesiology & Geriatric Sciences, Sapienza University, Policlinico Umberto I, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li ZL, Ebrahimi B, Zhang X, Eirin A, Woollard JR, Tang H, Lerman A, Wang SM, Lerman LO. Obesity-metabolic derangement exacerbates cardiomyocyte loss distal to moderate coronary artery stenosis in pigs without affecting global cardiac function. Am J Physiol Heart Circ Physiol 2014; 306:H1087-101. [PMID: 24508639 DOI: 10.1152/ajpheart.00052.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity associated with metabolic derangements (ObM) worsens the prognosis of patients with coronary artery stenosis (CAS), but the underlying cardiac pathophysiologic mechanisms remain elusive. We tested the hypothesis that ObM exacerbates cardiomyocyte loss distal to moderate CAS. Obesity-prone pigs were randomized to four groups (n = 6 each): lean-sham, ObM-sham, lean-CAS, and ObM-CAS. Lean and ObM pigs were maintained on a 12-wk standard or atherogenic diet, respectively, and left circumflex CAS was then induced by placing local-irritant coils. Cardiac structure, function, and myocardial oxygenation were assessed 4 wk later by computed-tomography and blood oxygenation level dependent (BOLD) MRI, the microcirculation with micro-computed-tomography, and injury mechanisms by immunoblotting and histology. ObM pigs showed obesity, dyslipidemia, and insulin resistance. The degree of CAS (range, 50-70%) was similar in lean and ObM pigs, and resting myocardial perfusion and global cardiac function remained unchanged. Increased angiogenesis distal to the moderate CAS observed in lean was attenuated in ObM pigs, which also showed microvascular dysfunction and increased inflammation (M1-macrophages, TNF-α expression), oxidative stress (gp91), hypoxia (BOLD-MRI), and fibrosis (Sirius-red and trichrome). Furthermore, lean-CAS showed increased myocardial autophagy, which was blunted in ObM pigs (downregulated expression of unc-51-like kinase-1 and autophagy-related gene-12; P < 0.05 vs. lean CAS) and associated with marked apoptosis. The interaction diet xstenosis synergistically inhibited angiogenic, autophagic, and fibrogenic activities. ObM exacerbates structural and functional myocardial injury distal to moderate CAS with preserved myocardial perfusion, possibly due to impaired cardiomyocyte turnover.
Collapse
Affiliation(s)
- Zi-Lun Li
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bender SB, de Beer VJ, Tharp DL, van Deel ED, Bowles DK, Duncker DJ, Laughlin MH, Merkus D. Reduced contribution of endothelin to the regulation of systemic and pulmonary vascular tone in severe familial hypercholesterolaemia. J Physiol 2014; 592:1757-69. [PMID: 24421352 DOI: 10.1113/jphysiol.2013.267351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vascular dysfunction has been associated with familial hypercholesterolaemia (FH), a severe form of hyperlipidaemia. We recently demonstrated that swine with FH exhibit reduced exercise-induced systemic, but not pulmonary, vasodilatation involving reduced nitric oxide (NO) bioavailability. Since NO normally limits endothelin (ET) action, we examined the hypothesis that reduced systemic vasodilatation during exercise in FH swine results from increased ET-mediated vasoconstriction. Systemic and pulmonary vascular responses to exercise were examined in chronically instrumented normal and FH swine in the absence and presence of the ETA/B receptor antagonist tezosentan. Intrinsic reactivity to ET was further assessed in skeletal muscle arterioles. FH swine exhibited ∼9-fold elevation in total plasma cholesterol versus normal swine. Similar to our recent findings, systemic, not pulmonary, vasodilatation during exercise was reduced in FH swine. Blockade of ET receptors caused marked systemic vasodilatation at rest and during exercise in normal swine that was significantly reduced in FH swine. The reduced role of ET in FH swine in vivo was not the result of decreased arteriolar ET responsiveness, as responsiveness was increased in isolated arterioles. Smooth muscle ET receptor protein content was unaltered by FH. However, circulating plasma ET levels were reduced in FH swine. ET receptor antagonism caused pulmonary vasodilatation at rest and during exercise in normal, but not FH, swine. Therefore, contrary to our hypothesis, FH swine exhibit a generalised reduction in the role of ET in regulating vascular tone in vivo probably resulting from reduced ET production. This may represent a unique vascular consequence of severe familial hypercholesterolaemia.
Collapse
Affiliation(s)
- Shawn B Bender
- Experimental Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
32
|
Berwick ZC, Dick GM, O'Leary HA, Bender SB, Goodwill AG, Moberly SP, Owen MK, Miller SJ, Obukhov AG, Tune JD. Contribution of electromechanical coupling between Kv and Ca v1.2 channels to coronary dysfunction in obesity. Basic Res Cardiol 2013; 108:370. [PMID: 23856709 DOI: 10.1007/s00395-013-0370-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/12/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
Previous investigations indicate that diminished functional expression of voltage-dependent K(+) (KV) channels impairs control of coronary blood flow in obesity/metabolic syndrome. The goal of this investigation was to test the hypothesis that KV channels are electromechanically coupled to CaV1.2 channels and that coronary microvascular dysfunction in obesity is related to subsequent increases in CaV1.2 channel activity. Initial studies revealed that inhibition of KV channels with 4-aminopyridine (4AP, 0.3 mM) increased intracellular [Ca(2+)], contracted isolated coronary arterioles and decreased coronary reactive hyperemia. These effects were reversed by blockade of CaV1.2 channels. Further studies in chronically instrumented Ossabaw swine showed that inhibition of CaV1.2 channels with nifedipine (10 μg/kg, iv) had no effect on coronary blood flow at rest or during exercise in lean swine. However, inhibition of CaV1.2 channels significantly increased coronary blood flow, conductance, and the balance between coronary flow and metabolism in obese swine (P < 0.05). These changes were associated with a ~50 % increase in inward CaV1.2 current and elevations in expression of the pore-forming subunit (α1c) of CaV1.2 channels in coronary smooth muscle cells from obese swine. Taken together, these findings indicate that electromechanical coupling between KV and CaV1.2 channels is involved in the regulation of coronary vasomotor tone and that increases in CaV1.2 channel activity contribute to coronary microvascular dysfunction in the setting of obesity.
Collapse
Affiliation(s)
- Zachary C Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Trask AJ, Katz PS, Kelly AP, Galantowicz ML, Cismowski MJ, West TA, Neeb ZP, Berwick ZC, Goodwill AG, Alloosh M, Tune JD, Sturek M, Lucchesi PA. Dynamic micro- and macrovascular remodeling in coronary circulation of obese Ossabaw pigs with metabolic syndrome. J Appl Physiol (1985) 2012; 113:1128-40. [PMID: 22837170 PMCID: PMC3487495 DOI: 10.1152/japplphysiol.00604.2012] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/22/2012] [Indexed: 02/06/2023] Open
Abstract
Previous studies from our laboratory showed that coronary arterioles from type 2 diabetic mice undergo inward hypertrophic remodeling and reduced stiffness. The aim of the current study was to determine if coronary resistance microvessels (CRMs) in Ossabaw swine with metabolic syndrome (MetS) undergo remodeling distinct from coronary conduit arteries. Male Ossabaw swine were fed normal (n = 7, Lean) or hypercaloric high-fat (n = 7, MetS) diets for 6 mo, and then CRMs were isolated and mounted on a pressure myograph. CRMs isolated from MetS swine exhibited decreased luminal diameters (126 ± 5 and 105 ± 9 μm in Lean and MetS, respectively, P < 0.05) with thicker walls (18 ± 3 and 31 ± 3 μm in Lean and MetS, respectively, P < 0.05), which doubled the wall-to-lumen ratio (14 ± 2 and 30 ± 2 in Lean and MetS, respectively, P < 0.01). Incremental modulus of elasticity (IME) and beta stiffness index (BSI) were reduced in CRMs isolated from MetS pigs (IME: 3.6 × 10(6) ± 0.7 × 10(6) and 1.1 × 10(6) ± 0.2 × 10(6) dyn/cm(2) in Lean and MetS, respectively, P < 0.001; BSI: 10.3 ± 0.4 and 7.3 ± 1.8 in Lean and MetS, respectively, P < 0.001). BSI in the left anterior descending coronary artery was augmented in pigs with MetS. Structural changes were associated with capillary rarefaction, decreased hyperemic-to-basal coronary flow velocity ratio, and augmented myogenic tone. MetS CRMs showed a reduced collagen-to-elastin ratio, while immunostaining for the receptor for advanced glycation end products was selectively increased in the left anterior descending coronary artery. These data suggest that MetS causes hypertrophic inward remodeling of CRMs and capillary rarefaction, which contribute to decreased coronary flow and myocardial ischemia. Moreover, our data demonstrate novel differential remodeling between coronary micro- and macrovessels in a clinically relevant model of MetS.
Collapse
Affiliation(s)
- Aaron J Trask
- Center for Cardiovascular and Pulmonary Research, The Heart Center, The Research Institute at Nationwide Children's Hospital, 700 Children’s Drive, Columbus, OH 43205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Berwick ZC, Dick GM, Tune JD. Heart of the matter: coronary dysfunction in metabolic syndrome. J Mol Cell Cardiol 2012; 52:848-56. [PMID: 21767548 PMCID: PMC3206994 DOI: 10.1016/j.yjmcc.2011.06.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/16/2011] [Accepted: 06/30/2011] [Indexed: 12/14/2022]
Abstract
Metabolic syndrome (MetS) is a collection of risk factors including obesity, dyslipidemia, insulin resistance/impaired glucose tolerance, and/or hypertension. The incidence of obesity has reached pandemic levels, as ~20-30% of adults in most developed countries can be classified as having MetS. This increased prevalence of MetS is critical as it is associated with a two-fold elevated risk for cardiovascular disease. Although the pathophysiology underlying this increase in disease has not been clearly defined, recent evidence indicates that alterations in the control of coronary blood flow could play an important role. The purpose of this review is to highlight current understanding of the effects of MetS on regulation of coronary blood flow and to outline the potential mechanisms involved. In particular, the role of neurohumoral modulation via sympathetic α-adrenoceptors and the renin-angiotensin-aldosterone system (RAAS) are explored. Alterations in the contribution of end-effector K(+), Ca(2+), and transient receptor potential (TRP) channels are also addressed. Finally, future perspectives and potential therapeutic targeting of the microcirculation in MetS are discussed. This article is part of a Special Issue entitled "Coronary Blood Flow".
Collapse
Affiliation(s)
- Zachary C. Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gregory M. Dick
- Department of Exercise Physiology Center for Cardiovascular and Respiratory Sciences West Virginia University School of Medicine
| | - Johnathan D. Tune
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
35
|
Overfed Ossabaw swine with early stage metabolic syndrome have normal coronary collateral development in response to chronic ischemia. Basic Res Cardiol 2012; 107:243. [PMID: 22231675 DOI: 10.1007/s00395-012-0243-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/12/2011] [Accepted: 12/31/2011] [Indexed: 10/24/2022]
Abstract
Ossabaw miniswine have been naturally selected to efficiently store large amounts of lipids offering them a survival advantage. Our goal was to evaluate the myocardial response to chronic ischemia of the Ossabaw consuming a hypercaloric, high-fat/cholesterol diet with and without metformin supplementation. At 6 weeks of age animals were fed either a regular diet (OC, n = 9), a hypercaloric high-fat/cholesterol diet (OHC, n = 9), or a hypercaloric high-fat/cholesterol diet supplemented with metformin (OHCM, n = 8). At 9 weeks, all animals underwent ameroid constrictor placement to the left circumflex coronary artery to simulate chronic ischemia. Seven weeks after ameroid placement, all animals underwent hemodynamic and functional measurements followed by cardiac harvest. Both OHC and OHCM animals developed significantly greater weight gain, total cholesterol, and LDL:HDL ratio compared to OC controls. Metformin administration reversed diet-induced hypertension and glucose intolerance. There were no differences in global and regional contractility, myocardial perfusion, capillary and arteriolar density, or total protein oxidation between groups. Myocardial protein expression of VEGF, PPAR-α, γ, and δ was significantly increased in the OHC and OHCM groups. Microvessel reactivity was improved in the OHC and OHCM groups compared to controls, and correlated with increased p-eNOS expression. Overfed Ossabaw miniswine develop several components of metabolic syndrome. However, impairments of myocardial function, neovascularization and perfusion were not present, and microvessel reactivity was paradoxically improved in hypercholesterolemic animals. The observed cardioprotection despite metabolic derangements may be due to lipid-dependant upregulation of the PPAR pathway which is anti-inflammatory and governs myocardial fatty acid metabolism.
Collapse
|
36
|
Bender SB, Berwick ZC, Laughlin MH, Tune JD. Functional contribution of P2Y1 receptors to the control of coronary blood flow. J Appl Physiol (1985) 2011; 111:1744-50. [PMID: 21940850 DOI: 10.1152/japplphysiol.00946.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Activation of ADP-sensitive P2Y(1) receptors has been proposed as an integral step in the putative "nucleotide axis" regulating coronary blood flow. However, the specific mechanism(s) and overall contribution of P2Y(1) receptors to the control of coronary blood flow have not been clearly defined. Using vertically integrative studies in isolated coronary arterioles and open-chest anesthetized dogs, we examined the hypothesis that P2Y(1) receptors induce coronary vasodilation via an endothelium-dependent mechanism and contribute to coronary pressure-flow autoregulation and/or ischemic coronary vasodilation. Immunohistochemistry revealed P2Y(1) receptor expression in coronary arteriolar endothelial and vascular smooth muscle cells. The ADP analog 2-methylthio-ADP induced arteriolar dilation in vitro and in vivo that was abolished by the selective P2Y(1) antagonist MRS-2179 and the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester. MRS-2179 did not alter baseline coronary flow in vivo but significantly attenuated coronary vasodilation to ATP in vitro and in vivo and the nonhydrolyzable ATP analog ATPγS in vitro. Coronary blood flow responses to alterations in coronary perfusion pressure (40-100 mmHg) or to a brief 15-s coronary artery occlusion were unaffected by MRS-2179. Our data reveal that P2Y(1) receptors are functionally expressed in the coronary circulation and that activation produces coronary vasodilation via an endothelium/nitric oxide-dependent mechanism. Although these receptors represent a critical component of purinergic coronary vasodilation, our findings indicate that P2Y(1) receptor activation is not required for coronary pressure-flow autoregulation or reactive hyperemia.
Collapse
Affiliation(s)
- Shawn B Bender
- Dept. of Biomedical Sciences, Univ. of Missouri, Columbia, MO 65211, USA.
| | | | | | | |
Collapse
|
37
|
Berwick ZC, Dick GM, Moberly SP, Kohr MC, Sturek M, Tune JD. Contribution of voltage-dependent K⁺ channels to metabolic control of coronary blood flow. J Mol Cell Cardiol 2011; 52:912-9. [PMID: 21771599 DOI: 10.1016/j.yjmcc.2011.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 06/27/2011] [Accepted: 07/02/2011] [Indexed: 01/12/2023]
Abstract
The purpose of this investigation was to test the hypothesis that K(V) channels contribute to metabolic control of coronary blood flow and that decreases in K(V) channel function and/or expression significantly attenuate myocardial oxygen supply-demand balance in the metabolic syndrome (MetS). Experiments were conducted in conscious, chronically instrumented Ossabaw swine fed either a normal maintenance diet or an excess calorie atherogenic diet that produces the clinical phenotype of early MetS. Data were obtained under resting conditions and during graded treadmill exercise before and after inhibition of K(V) channels with 4-aminopyridine (4-AP, 0.3mg/kg, iv). In lean-control swine, 4-AP reduced coronary blood flow ~15% at rest and ~20% during exercise. Inhibition of K(V) channels also increased aortic pressure (P<0.01) while reducing coronary venous PO(2) (P<0.01) at a given level of myocardial oxygen consumption (MVO(2)). Administration of 4-AP had no effect on coronary blood flow, aortic pressure, or coronary venous PO(2) in swine with MetS. The lack of response to 4-AP in MetS swine was associated with a ~20% reduction in coronary K(V) current (P<0.01) and decreased expression of K(V)1.5 channels in coronary arteries (P<0.01). Together, these data demonstrate that K(V) channels play an important role in balancing myocardial oxygen delivery with metabolism at rest and during exercise-induced increases in MVO(2). Our findings also indicate that decreases in K(V) channel current and expression contribute to impaired control of coronary blood flow in the MetS. This article is part of a Special Issue entitled "Coronary Blood Flow".
Collapse
Affiliation(s)
- Zachary C Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
38
|
Sturek M. Ca2+ regulatory mechanisms of exercise protection against coronary artery disease in metabolic syndrome and diabetes. J Appl Physiol (1985) 2011; 111:573-86. [PMID: 21596923 DOI: 10.1152/japplphysiol.00373.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chronic exercise attenuates coronary artery disease (CAD) in humans largely independent of reductions in risk factors; thus major protective mechanisms of exercise are directly within the coronary vasculature. Further, tight control of diabetes, e.g., blood glucose, can be detrimental. Accordingly, knowledge of mechanisms by which exercise attenuates diabetic CAD could catalyze development of molecular therapies. Exercise attenuates CAD (atherosclerosis) and restenosis in miniature swine models, which enable precise control of exercise parameters (intensity, duration, and frequency) and characterization of the metabolic syndrome (MetS) and diabetic milieu. Intracellular Ca(2+) is a pivotal second messenger for coronary smooth muscle (CSM) excitation-contraction and excitation-transcription coupling that modulates CSM proliferation, migration, and calcification. CSM of diabetic dyslipidemic Yucatan swine have impaired Ca(2+) extrusion via the plasmalemma Ca(2+) ATPase (PMCA), downregulation of L-type voltage-gated Ca(2+) channels (VGCC), increased Ca(2+) sequestration by the sarcoplasmic reticulum (SR) Ca(2+) ATPase (SERCA), increased nuclear Ca(2+) localization, and greater activation of K channels by Ca(2+) release from the SR. Endurance exercise training prevents Ca(2+) transport changes with virtually no effect on the diabetic milieu (glucose, lipids). In MetS Ossabaw swine transient receptor potential canonical (TRPC) channels are upregulated and exercise training reverses expression and TRPC-mediated Ca(2+) influx with almost no change in the MetS milieu. Overall, exercise effects on Ca(2+) signaling modulate CSM phenotype. Future studies should 1) selectively target key Ca(2+) transporters to determine definitively their causal role in atherosclerosis and 2) combine mechanistic studies with clinical outcomes, e.g., reduction of myocardial infarction.
Collapse
Affiliation(s)
- Michael Sturek
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 635 Barnhill Dr., MS 385, Indianapolis, IN 46202-5120, USA.
| |
Collapse
|
39
|
Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, Tune JD. Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels. Microcirculation 2011; 17:600-7. [PMID: 21044214 DOI: 10.1111/j.1549-8719.2010.00054.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study was designed to elucidate the contribution of adenosine A(2A) and A(2B) receptors to coronary reactive hyperemia and downstream K(+) channels involved. Coronary blood flow was measured in open-chest anesthetized dogs. Adenosine dose-dependently increased coronary flow from 0.72 ± 0.1 to 2.6 ± 0.5 mL/minute/g under control conditions. Inhibition of A(2A) receptors with SCH58261 (1 μm) attenuated adenosine-induced dilation by ∼50%, while combined administration with the A(2B) receptor antagonist alloxazine (3 μm) produced no additional effect. SCH58261 significantly reduced reactive hyperemia in response to a transient 15 second occlusion; debt/repayment ratio decreased from 343 ± 63 to 232 ± 44%. Alloxazine alone attenuated adenosine-induced increases in coronary blood flow by ∼30% but failed to alter reactive hyperemia. A(2A) receptor agonist CGS21680 (10 μg bolus) increased coronary blood flow by 3.08 ± 0.31 mL/minute/g. This dilator response was attenuated to 0.76 ± 0.14 mL/minute/g by inhibition of K(V) channels with 4-aminopyridine (0.3mm) and to 0.11 ± 0.31 mL/minute/g by inhibition of K(ATP) channels with glibenclamide (3 mg/kg). Combined administration abolished vasodilation to CGS21680. These data indicate that A(2A) receptors contribute to coronary vasodilation in response to cardiac ischemia via activation of K(V) and K(ATP) channels.
Collapse
Affiliation(s)
- Zachary C Berwick
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|
40
|
Bender SB, Newcomer SC, Harold Laughlin M. Differential vulnerability of skeletal muscle feed arteries to dysfunction in insulin resistance: impact of fiber type and daily activity. Am J Physiol Heart Circ Physiol 2011; 300:H1434-41. [PMID: 21317309 DOI: 10.1152/ajpheart.01093.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Functional and structural heterogeneity exists among skeletal muscle vascular beds related, in part, to muscle fiber type composition. This study was designed to delineate whether the vulnerability to vascular dysfunction in insulin resistance is uniformly distributed among skeletal muscle vasculatures and whether physical activity modifies this vulnerability. Obese, hyperphagic Otsuka Long-Evans Tokushima fatty rats (20 wk old) were sedentary (OSED) or physically active (OPA; access to running wheels) and compared with age-matched sedentary Long-Evans Tokushima Otsuka (LSED) rats. Vascular responses were determined in isolated, pressurized feed arteries from fast-twitch gastrocnemius (GFAs) and slow-twitch soleus (SFAs) muscles. OSED animals were obese, insulin resistant, and hypertriglyceridemic, traits absent in LSED and OPA rats. GFAs from OSED animals exhibited depressed dilation to ACh, but not sodium nitroprusside, and enhanced vasoconstriction to endothelin-1 (ET-1), but not phenylephrine, compared with those in LSED. Immunoblot analysis suggests reduced endothelial nitric oxide synthase phosphorylation at Ser1177 and endothelin subtype A receptor expression in OSED GFAs. Physical activity prevented reduced nitric oxide-dependent dilation to ACh, but not enhanced ET-1 vasoconstriction, in GFA from OPA animals. Conversely, vasoreactivity of SFAs to ACh and ET-1 were principally similar in all groups, whereas dilation to sodium nitroprusside was enhanced in OSED and OPA rats. These data demonstrate, for the first time, that SFAs from insulin-resistant rats exhibit reduced vulnerability to dysfunction versus GFAs and that physical activity largely prevents GFA dysfunction. We conclude that these results demonstrate that vascular dysfunction associated with insulin resistance is heterogeneously distributed across skeletal muscle vasculatures related, in part, to muscle fiber type and activity level.
Collapse
Affiliation(s)
- Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, 65211, USA.
| | | | | |
Collapse
|
41
|
Kreutz RP, Alloosh M, Mansour K, Neeb Z, Kreutz Y, Flockhart DA, Sturek M. Morbid obesity and metabolic syndrome in Ossabaw miniature swine are associated with increased platelet reactivity. Diabetes Metab Syndr Obes 2011; 4:99-105. [PMID: 21660293 PMCID: PMC3107692 DOI: 10.2147/dmso.s17105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) and type 2 diabetes mellitus in humans are associated with increased platelet activation and hyperreactivity of platelets to various agonists. Ossabaw swine develop all the hallmarks of MetS including obesity, insulin resistance, hypertension, dyslipidemia, endothelial dysfunction, and coronary artery disease when being fed excess calorie atherogenic diet. We hypothesized that Ossabaw swine with MetS would exhibit increased platelet reactivity compared with lean pigs without MetS. MATERIALS AND METHODS Ossabaw swine were fed high caloric, atherogenic diet for 44 weeks to induce MetS (n = 10) and were compared with lean controls without MetS that had been fed normal calorie standard diet (n = 10). Light transmittance aggregometry was performed using adenosine diphosphate (ADP), collagen, thrombin, and arachidonic acid (AA) at different concentrations. Dose response curves and EC50 were calculated. Glucose tolerance testing and intravascular ultrasound study of coronary arteries were performed. RESULTS MetS pigs compared with lean controls were morbidly obese, showed evidence of arterial hypertension, elevated cholesterol, low-density lipoprotein/high-density lipoprotein, and triglycerides, and insulin resistance. Platelets from MetS pigs were more sensitive to ADP-induced platelet aggregation than leans (EC50: 1.83 ± 1.3 μM vs 3.64 ± 2.2 μM; P = 0.02). MetS pigs demonstrated higher platelet aggregation in response to collagen than lean pigs (area under the curve: 286 ± 74 vs 198 ± 123; P = 0.037) and a trend for heightened response to AA (AUC: 260 ± 151 vs 178 ± 145; P = 0.13). No significant difference was found for platelet aggregation in response to thrombin. CONCLUSIONS MetS in Ossabaw swine is associated with increased reactivity of platelets to ADP and collagen. The Ossabaw swine may be a practical, large animal model for the study of certain aspects of platelet pathophysiology and examine vascular devices in a metabolic environment comparable to humans with MetS.
Collapse
Affiliation(s)
- Rolf P Kreutz
- Krannert Institute of Cardiology, Indiana University School of Medicine, IN, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Long X, Mokelke EA, Neeb ZP, Alloosh M, Edwards JM, Sturek M. Adenosine receptor regulation of coronary blood flow in Ossabaw miniature swine. J Pharmacol Exp Ther 2010; 335:781-7. [PMID: 20855445 PMCID: PMC2993551 DOI: 10.1124/jpet.110.170803] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 09/16/2010] [Indexed: 01/12/2023] Open
Abstract
Adenosine clearly regulates coronary blood flow (CBF); however, contributions of specific adenosine receptor (AR) subtypes (A(1), A(2A), A(2B), A(3)) to CBF in swine have not been determined. ARs generally decrease (A(1), A(3)) or increase (A(2A), A(2B)) cyclic adenosine monophosphate, a major mediator of vasodilation. We hypothesized that A(1) antagonism potentiates coronary vasodilation and coronary stent deployment in dyslipidemic Ossabaw swine elicits impaired vasodilation to adenosine that is associated with increased A(1)/A(2A) expression. The left main coronary artery was accessed with a guiding catheter allowing intracoronary infusions. After placement of a flow wire into the left circumflex coronary artery the responses to bolus infusions of adenosine were obtained. Steady-state infusion of AR-specific agents was achieved by using a small catheter fed over the flow wire in control pigs. CBF was increased by the A(2)-nonselective agonist 2-phenylaminoadenosine (CV1808) in a dose-dependent manner. Baseline CBF was increased by the highly A(1)-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), but not changed by other AR-specific agents. The nonselective A(2) antagonist 3,7-dimethyl-1-propargylxanthine and A(2A)-selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385) abolished adenosine-induced CBF, whereas A(2B) and A(3) antagonism had no effect. Dyslipidemia and stenting decreased adenosine-induced CBF ∼70%, whereas A(1), A(2A), and A(2B) mRNA were up-regulated in dyslipidemic versus control >5-fold and there was no change in the ratio of A(1)/A(2A) protein in microvessels distal to the stent. In control Ossabaw swine A(1) antagonism by DPCPX positively regulated basal CBF. Impaired adenosine-induced CBF after stenting in dyslipidemia is most likely caused by the altered balance between A(1) and A(2A) signaling, not receptor expression.
Collapse
Affiliation(s)
- Xin Long
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | | | | | | | | | |
Collapse
|
43
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
44
|
Neeb ZP, Edwards JM, Alloosh M, Long X, Mokelke EA, Sturek M. Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp Med 2010; 60:300-315. [PMID: 20819380 PMCID: PMC2930329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 01/03/2010] [Accepted: 04/20/2010] [Indexed: 05/29/2023]
Abstract
Metabolic syndrome (MetS), a compilation of associated risk factors, increases the risk of type 2 diabetes and coronary artery disease (CAD, atherosclerosis), which can progress to the point of artery occlusion. Stents are the primary interventional treatment for occlusive CAD, and patients with MetS and hyperinsulinemia have increased restenosis. Because of its thrifty genotype, the Ossabaw pig is a model of MetS. We tested the hypothesis that, when fed high-fat diet, Ossabaw swine develop more features of MetS, greater native CAD, and greater stent-induced CAD than do Yucatan swine. Animals of each breed were divided randomly into 2 groups and fed 2 different calorie-matched diets for 40 wk: control diet (C) and high-fat, high-cholesterol atherogenic diet (H). A bare metal stent was placed in the circumflex artery, and pigs were allowed to recover for 3 wk. Characteristics of MetS, macrovascular and microvascular CAD, in-stent stenosis, and Ca(2+) signaling in coronary smooth muscle cells were evaluated. MetS characteristics including, obesity, glucose intolerance, hyperinsulinemia, and elevated arterial pressure were elevated in Ossabaw swine compared to Yucatan swine. Ossabaw swine with MetS had more extensive and diffuse native CAD and in-stent stenosis and impaired coronary blood flow regulation compared with Yucatan. In-stent atherosclerotic lesions in Ossabaw coronary arteries were less fibrous and more cellular. Coronary smooth muscle cells from Ossabaw had impaired Ca(2+) efflux and intracellular sequestration versus cells from Yucatan swine. Therefore, Ossabaw swine are a superior model of MetS, subsequent CAD, and cellular Ca(2+) signaling defects, whereas Yucatan swine are leaner and relatively resistant to MetS and CAD.
Collapse
|
45
|
Borbouse L, Dick GM, Payne GA, Berwick ZC, Neeb ZP, Alloosh M, Bratz IN, Sturek M, Tune JD. Metabolic syndrome reduces the contribution of K+ channels to ischemic coronary vasodilation. Am J Physiol Heart Circ Physiol 2010; 298:H1182-9. [PMID: 20118408 DOI: 10.1152/ajpheart.00888.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This investigation tested the hypothesis that metabolic syndrome decreases the relative contribution of specific K(+) channels to coronary reactive hyperemia. Ca(2+)-activated (BK(Ca)), voltage-activated (K(V)), and ATP-dependent (K(ATP)) K(+) channels were investigated. Studies were conducted in anesthetized miniature Ossabaw swine fed a normal maintenance diet (11% kcal from fat) or an excess calorie atherogenic diet (43% kcal from fat, 2% cholesterol, 20% kcal from fructose) for 20 wk. The latter diet induces metabolic syndrome, increasing body weight, fasting glucose, total cholesterol, and triglyceride levels. Ischemic vasodilation was determined by the coronary flow response to a 15-s occlusion before and after cumulative administration of antagonists for BK(Ca) (penitrem A; 10 microg/kg iv), K(V) (4-aminopyridine; 0.3 mg/kg iv) and K(ATP) (glibenclamide; 1 mg/kg iv) channels. Coronary reactive hyperemia was diminished by metabolic syndrome as the repayment of flow debt was reduced approximately 30% compared with lean swine. Inhibition of BK(Ca) channels had no effect on reactive hyperemia in either lean or metabolic syndrome swine. Subsequent inhibition of K(V) channels significantly reduced the repayment of flow debt ( approximately 25%) in both lean and metabolic syndrome swine. Additional blockade of K(ATP) channels further diminished ( approximately 45%) the repayment of flow debt in lean but not metabolic syndrome swine. These data indicate that the metabolic syndrome impairs coronary vasodilation in response to cardiac ischemia via reductions in the contribution of K(+) channels to reactive hyperemia.
Collapse
Affiliation(s)
- Léna Borbouse
- Dept. of Cellular and Integrative Physiology, Indiana Univ. School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Borbouse L, Dick GM, Asano S, Bender SB, Dincer UD, Payne GA, Neeb ZP, Bratz IN, Sturek M, Tune JD. Impaired function of coronary BK(Ca) channels in metabolic syndrome. Am J Physiol Heart Circ Physiol 2009; 297:H1629-37. [PMID: 19749164 DOI: 10.1152/ajpheart.00466.2009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The role of large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels in regulation of coronary microvascular function is widely appreciated, but molecular and functional changes underlying the deleterious influence of metabolic syndrome (MetS) have not been determined. Male Ossabaw miniature swine consumed for 3-6 mo a normal diet (11% kcal from fat) or an excess-calorie atherogenic diet that induces MetS (45% kcal from fat, 2% cholesterol, 20% kcal from fructose). MetS significantly impaired coronary vasodilation to the BK(Ca) opener NS-1619 in vivo (30-100 microg) and reduced the contribution of these channels to adenosine-induced microvascular vasodilation in vitro (1-100 microM). MetS reduced whole cell penitrem A (1 microM)-sensitive K(+) current and NS-1619-activated (10 microM) current in isolated coronary vascular smooth muscle cells. MetS increased the concentration of free intracellular Ca(2+) and augmented coronary vasoconstriction to the L-type Ca(2+) channel agonist BAY K 8644 (10 pM-10 nM). BK(Ca) channel alpha and beta(1) protein expression was increased in coronary arteries from MetS swine. Coronary vascular dysfunction in MetS is related to impaired BK(Ca) channel function and is accompanied by significant increases in L-type Ca(2+) channel-mediated coronary vasoconstriction.
Collapse
Affiliation(s)
- Léna Borbouse
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | | | | | | | | | | | |
Collapse
|